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Asymptotic Behaviour of Solutions to a Nonlinear Third Order
P.D.E. Modeling Physical Phenomena

SALVATORE RIONERO

To the memory of Enrico Magenes

Abstract. — The longtime behaviour of the solutions to the initial boundary value problem
(1.1)-(1.3) modeling various physical phenomena, either in the autonomous case or in
the nonautonomous case, is studied. Conditions guaranteeing ultimately bounded-
ness and conditions guaranteeing nonlinear asymptotic global stability of the null
solution are obtained. Boundary conditions, different from (1.2)1-(1.2)2, are also
considered (Section 9).

1. — Introduction

The present paper is concerned with the initial boundary problem (I.B.V.P.)
(1.1) g + aup = C@)yy + e@ugar + F (),

(12) {u(O, t) =u(l,t) =0,

u(x,0) = uo(x), w(x,0) = v1(x),

with uy and v; assigned regular functions such that
(1.3) up =v1 =0, x=0,1,
with
0<eeCYRY), RT =[0,0c[, C < C e CHRY),

(1.4) C = positive constant, 0 < a = a(t) € C}(R™),
F(0) = 0, F' generally nonlinear function of .

The 1.B.V.P. (1.1)-(1.3), either in the autonomous case or in the nonautonomous
case, has attracted the attention of several authors {cfr. [1], [16], [20] and the
references therein}.

This is because (1.1)-(1.3) arises in modeling various physical phenomena. We
confine ourselves to recall that (1.1)-(1.3): i) for

(1.5) F(u)=bsinu, b = const,
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reduces to a perturbed Sine-Gordon equation used for describing the classical
Josephson effect in the superconductors theory [3]-[6]; ii) arises in modeling heat
conduction at low temperature [7],[20]; sound propagation in viscous gases [8];
propagation of plane waves in M.H.D.[9]; motions of viscoelastic fluids [10]-[12].

Various qualitative analysis of (1.1)-(1.3), either in the autonomous case or in
the nonautonomous case, have been done in [13]-[16]. In particular conditions
sufficient for the stability have been found assuming that at least two of the
inequalities

(1.6) uF(u) < ku?, uF(u) <0, p(u) = f F(2)dz<0,
0

with k positive constant, hold M.

Our aim here is to study the longtime behaviour of the solutions either in the
autonomous case or in the nonautonomous case. Precisely our aim is to obtain
conditions:

1) guaranteeing the ultimately boundedness of solutions;
2) necessary and sufficient for the global asymptotic nonlinear stability of the
null solution.

Apart from Section 2 devoted to some preliminaries, the paper is divided in
two parts. Sections 3-5 are devoted to the autonomous case, while the non-
autonomous case is considered in the Sections 6-9. The paper ends with some
final remarks (Section 10) and an Appendix (Section 11) where some proofs are
sketched.

2. — Preliminaries

In view of the boundary conditions, we embed the problem in the space
L;(0,1) such that @ € L;(0,1) requires

i) ®=0forx=0,1;
i) @ e W?2(0,1),
iii) @, &y, Dy, Dy, Py can be expanded in Fourier series absolutely uni-
formly convergent in [0,1], Vt € RT.

M 1.6); is implied by (1.6)z { cfr. [20] exercise 2.12 }. In [16] can be found various
examples of forcing terms F(u) fulfilling two of inequalities (1.6). We confine ourselves
to mentioning the cases F(u) = —blu|’u, with b and ¢ positive constants. Then
uF(u) = —blu|"u? <0. Obviously (1.6); is also implied by (1.6)s.
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In the sequel we denote by

|| - || the norm in L3(0, 1);

(-,-) the scalar product in L3(0,1), and further assume assume that
&(t), C(t) and a(t) are bounded functions.

Since {sinnmx}, (n =1,2,...), is a complete orthogonal system in L;(0,1),
according to 11), it follows that

(2.1) U= Z Up,
n=1

with

(2.2) u, = X, (t) sinnmx,

implies

(2.3) wp ="y v,(t),
n=1

with

vu() = > Y, () sinnme,

(2.4) =1
_dXy
Y, () = -
Setting
(2.5) Uy =, 2 = C®, Y22 = &,

(1.1)-(1.3) is reduced to the binary reaction-diffusion of P.D.E. with self and cross
diffusion given by [18]

U =0,
(2.6) x €10,1,

Vt = =0V + YopVsz + V1oUax + F(u) )

under the 1.B.C.

@1 {u(ac, 0) = up(x), v(x,0) = vi(x),
u=v=0, x=0,1.

Setting

(2.8) v = wr,

with u positive constant scaling to be chosen suitably later, and omitting the star,
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it follows that

Ut = Hv,
(2.9) ) 3
V= — O + Yp2V00 + V12t Uaw + 1 F W),

under the I.B.C. (1.3).
We end this section by recalling the basic conditions guaranteeing stability-
instability for nonautonomous systems [19].

i) Stability. As concerns the stability, the main stability theorems of the
Direct Method for nonautonomous systems guarantee that: the existence of a
positive definite function W i.e.

(2.10) W > m(|u|® + |[v|®), m = positive constant,

implies

— stability if the temporal derivative along the solutions is semidefinite
negative {i.e. W <0 };

— asymptotic stability if admits an upper bound which is infinitely small
at the origin {i.e. W < my(||Jul|* + ||v||*), mq positive constant}, and its
temporal derivative along the solutions is negative definite {i.e.W<O
for [l P+ o]0 }.

ii) Instability. As concerns the instability, the Cetaev instability theorem
guarantees that: If exists a function W
— taking positive values in any disk centered at (u = v = 0),
— (for all t >ty > 0 in which W is bounded), W is positive definite
then the null solution is unstable.

3. — Ultimately boundedness in the autonomous case
Setting
(31) G = Voo (Vaw + 77«'27))7 G2 = P12t (WU + 7727/’/2)7

(2.9) becomes

Ut = W,
(3.2) e B
vy =pAu+ I+ Gy + G + u1F(w),

with

(3.3) A=y =712C, I=—(a+ 1) = —(a+emd).
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Introducing the positive definite functional

1
1
(3.4) Vs f [A(uz F2) 4 1 2A%R + (v — )] d,
0
the temporal derivative of V along the solutions is easily find to be [17], [21], [22]
1
(3.5) V= Al f W2 + ¥ de +Pp + P,
0
with
1
(3 6) Y= <A2Q} — Asu, G+ Gz), VY = ,l_l <A27.) — Agu,F(%»,
Ay =A+ 7 Az =pl.

LEMMA 3.1. — Let

(3.7 T799 > 712, < C <e(a + en?).
Then

(38) o= |]|V1:2h—2 ne —&—nezng) -C’
mmplies

(3.9) v, <0, vt > 0.

Proor. - In view of the Poincaré inequality holding in L3(0,1),
(3.10) Vol > 2ol ¥y € L;0.D),
one obtains
(Agv — Asu, G1) = (A0 — A3t o5 (Ve + 720)) =
gany L AF R Tl )+l ) + 22,0,
(A2v — Agu, Gz) = (A2v + pllu, yiop ™ Uy + 7*0)) =

(A + @Bap (= (i, Va) + (,0)) + pral1IC= | + 2% a][*),

and hence

—{ [A-le] V22||7)x||2+ [/1|[|sz+(A+/12)V12ﬂ71]<%m V) + 712/ ||ux\|2}
(312) ¥, = n

72 [A+12] vl ol + [tz + A+ a2 Yt D+ Tl
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Requiring to u to verify the equation

(3.13) (|79 + A+ ()10 =24/ (A + 12)p22712)1],

ie.

2
(3.14) (VT - e+ ot ) =0,

one obtains that one has to require

(8.15) ([]ya2 — Vlz)ﬂz = A
Therefore, when (3.7) holds, for u = x,, one obtains
(3.16) ¥ =~ Vol + 2o,
with

(3.17) ¢ =/ Viellu + A+ H2)Y220,

and (3.9) is immediately implied by (3.10). We can now show that (3.7) and
(3.18) I1<0, |F(u)|<m = positive constant,

guarantee the ultimately boundedness in the autonomous case. In fact, in view of
(3.5) and (3.9), it follows that

1 2
(3.19) V < —All| f u? + %) da +A :;2“* |(v, Fw))| + 1] - |(u, F(w))|.
0

*

On the other hand
5,2
m
(0. F@)] < (ol m) < Gl + 5,

(3.20) ,
n, o M

< = —

[{(u, F(u))| < 5 |lae]]” + o

with 0 < <1, hence (3.19) reduces to

1
(3.21) V< —A|z|f W + ) dae + e + |02 + %mz,
0
with

1(A+ 2
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Choosing

_ . _LAJ]
(3.23) N=n=g-—
it follows that

Aln ¢

(3.24) v <24 f W? 4+ ¥ de + 7,

2 0
with

20 _,

and in view of

A 2

A 2, .2
(3.26) Vel Of(u +?)da,
one obtains
(3.27) V< IV 7.

THEOREM 3.1. — Let (3.7) and (3.8) hold. Then (in the autonomous case), the
set S, of the phase space (u,v) such that

(3.28) Saz{u,veSg:>V<(1+a)%},

with o > 0, is an absorbing set.

ProOF. — The proof is easily reached by following the standard procedure
associate to (3.27) { cfr. [23], p. 259 }. For the sake of completeness a sketch of the
proof is given in the Appendix.

REMARK 3.1. — The assumption |F(u)| € L(oo) reflects essentially the case
(1.6). Obviously the ultimately boundedness can be obtained under weaker as-
sumptions on F'(u). In fact also

A+
2

*

(3.29) (v, F@)| + 1] - |, F@))| < k(e + [o]*) + hu,

with 0 < & < |I|A, hy = const. > 0, implies the ultimately boundedness.
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This is the case, for instance, of F'(u) sublinear. In fact, let F(u) < r|u|*, with »
and s positive constants with s <1. Then

(3.30) (v, F(w)) < g||1)||2 +;27||u8||, n = const. > 0.

On the other hand — via the Young inequality — one obtains

2sp 1
(3.31) [ < M +— 0<n; = const,
P mq
. 1 1 . 1 1
with p,q > 1, — + = = 1. Therefore, choosing p = g( >1) and ¢ = l—s( > 1),
one obtains

3 7r2s r2(1—s)
(w, Fa)) < Tjo)|? + 55 22 a2 + 522,
2 2}’] 2;71477
(3.32) - . !
(. Pa)) < Tl + 7 =2 ulfp + LS.
2 12y T
2771*"
Choosing
1
(3.33) 7

m=m= W’
one obtains (3.20) with

(3.34) m? = M.

=
-8
m

4. — Linear instability in the autonomous case

In order to know which are the best stability conditions in the autonomous
case, it is useful to obtain the conditions necessary and sufficient for the linear
instability.

In view of (2.1)-(2.4) and

Ay, = —n2n2un, Mv, = —nznzvn,
disregarding F'(u), (3.2) imply
X,

dt

dy,

=0 'Xn + ,Uan
(4.1)
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The eigenvalues of the matrix

0 JZ
(4.2) 12,2 2
—u NPy, —(a + mENPys)

have negative real parts if and only if the (Routh-Hurwitz) conditions
Aﬂ/ == 7'52%2))12 > O, [’IZ = —(CL + 7T27/L2V22)<0, Vn € N,
hold. In view of (¢ > 0,C > 0), the following theorem holds.

THEOREM 4.1. — The null solution of (1.1)-(1.3) is linearly asymptotically
stable if and only if

(4.3) a+en® > 0.

5. — Nonlinear stability in the autonomous case

Returning to the nonlinear equations (3.2), and introducing the functional
1
(5.1) W=V+k f " d,
0

with V given by (3.4), k being a positive constant (to be chosen later) and ¢ given
u

by (1.6); i.e. ¢ = | F(2)dz, the temporal derivative of W along the solutions of
(8.2), in view of ©

1 1 1
(5.2) %f e " dyp = —f e "ol de = —f e " yF(u) de,
0 0 0
is given by
1 1
(5.3) W= Al f WP+ P de + ¥+ — k f =" OpF () e,
0 0
with ¥; and ¥ given by (3.6).
THEOREM 5.1. — Let
(5.4) a+er® >0, C<ela+end),

together with either
(5.5) ulF(u) <0,
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or

(5.6) o) <0, uF(u) < Au?, A < A,

hold. Then (in the autonomous case) the null solution is globally asymptotically
stable.

ProOOF. — By virtue of Lemma 3.1, choosing 1 = u, (5.3) reduces to

1 1
(5.7) W= Al f W2+ R de +¥ — k f e~ "R () do,
0 0
with
A+
(5.8) w =2 ) Fw) + (1| (w, Fw)).
. } A+ 2.
Both in the cases (5.5)-(5.6), choosing k = * it follows that (5.7) reduces to
1 *
(5.9) W= Al f W + ) dee + |1, Fw)).
0
and hence
1
(5.10) (0, Fa)) < 0= W< — Al f W +?) de,
0
while
1
(5.11) (u, Fw)) < Au? = W< — (A — Al f (W + ) dx 0,
0

which proves the theorem in both the cases (5.5)-(5.6).

6. — Ultimately boundedness in the nonautonomous case

In the nonautonomous case A and ! depend on ¢, hence the temporal deri-
vative of V along the solutions, in view of (3.4)-(3.5), is given by

av

1
_ 2, .2 av
(6.1) V_Alof(u + o+ Y+ +
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with
V B ) ,dAZ dl
(6.2) !{A(u ) 0 2w — ) S|
and hence
1
(6.3) 2V = [ (Pay? + QUn? — 2R(ww) dav + 2071 + ),
0
with
d12 dA? dl
(6.4) P(t) = A + 241 +o LQ) =A+2AT+ w2 o  R@t) = o
LEMMA 6.1. — Let
(72C + *)C A+
(6.5) = m Vo2 = mTVlZa vt >0,

with o positive constant. Then, in the nonautonomous case, choosing u = 0 it
follows that

(6.6) W, <0, Vt>0.

Proor. — Infact (3.12) continues to hold also in the nonautonomous case. Then
it is enough to verify that (6.5) and (3.15) coincide, Vt > 0, for u = d.
For any function f : R — R, we set

(6.7) fo=inf f, f*=supf.
R* Rt

LEMMA 6.2. — Let (6.5) hold. Then, in the nonautonomous case, the func-
tional

1
_]‘ 2 2 A2 2 2
(6.8) V_E_O[[A(u £00) 4 5500 4 G0~ 1)

has the following properties

i) at any instant t € RY, in any disk centered at (u = v = 0) of the phase
space (u,v), exists a domain that verifies the inequality

(6.9) V(t,u,v) >0,

ii) V is positive definite and admits an upper bound which is infinitely
small at the origin
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iii) the temporal derivative of V along the solutions, is given by

1
(6.10) 2V — f Pdu+ 29,
0
with
(6.11) P = Pt? + Qtn? — 2R(t)uv.

PROOF. — As concerns 1)-1?) it is enough to remark that, since

(6.12) A, >Cr® >0,

it immediately follows that

(6.13) V> %nzé(@ﬂ + 7).

Hence V is positive definite. Moreover, since ¢, a, C are bounded, in view of (10.5),
it follows that

(6.14) V < M@? 417,
with

1
(6.15) M=;

)

A\ 2
At (7) 1266 4 1)

and hence V admits an upper bound which is infinitely small at the origin. Finally
iii) is immediately implied by (6.3) and Lemma 6.1.
We can show now that

(6.16) I’ <0, |[F'(w)| <m,
together with

Pr< =2l Q(~2hy, (R|')’<2dhihs,
(6.17)

O0<d<h;, h;= const. >0, (1=1,2),
implies

1
(6.18) 2V < f (= hau® — hov? + 2d/ Tk uo)) dee + 2,
0
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and hence
1 2 9 A* + 52
(6.19) ) Of [ = dpi® + (e = D] de + —— (v, Fw)
Setting
(6.20) M= % inf (hy — d, hy — d),

and following the procedure used for obtaining (3.20), one obtains

2
(6.21) V< Mf @ +v*)da + v +0<7

with a given by (3.22) with A*, |I*| and ¢ at the place of A, |/| and x, respectively.
Therefore one obtains

1
' M 2 2 =
(6.22) Vg—zof(u +od)de + 7,
with
s %m2 1M
(6.23) y—ﬁm, =5
In view of
1 - 1
(6.24) V> 22 ] (W + %) de,
2 0
it turns out that
(6.25) V<MV +7,
with
- M
6.26 M=
(6.26) =0

and hence the ultimately boundedness theorem.

THEOREM 6.1. — Let (6.5) and (6.16)-(6.17) hold. Then (in the nonautonomous
case), the set

(6.27) SJ:{(u,v)GSﬂ :>V<(1+U)Ay4},

with o > 0, is an absorbing set.
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7. — Linear stability in the nonautonomous case

Disregarding ¥ and letting (6.5) holds, (6.10) reduces to
i 1
(7.1) V:E_O[de,

and the following theorem immediately follows.

THEOREM 7.1. — Let (6.5) holds. Then the null solution in the nonautonomous
case is linearly:

1) stable, if P is semidefinite negative Vt > 0;
2) asymptotically stable, if P is definite negative ¥t > 0;
3) unstable, if P is definite positive ¥Vt > 0;

In particular, denoting by hy and he two positive constants, (6.17) 1mply
asymptotic stability, while

(7.2) P.>h, Q.>hs, (R|.?>2d hihs,

mmply instability.

8. — Global nonlinear stability in the nonautonomous case
THEOREM 8.1. — Let the assumptions of linear stability of the non-
autonomous case, together with (5.5) or (5.6), hold. Then the null solution — in the

nonautonomous case — 1s globally asymptotically stable.

ProOF. — In fact the temporal derivative of

1
W= V+kfe*‘/’(“’ de,
0

(8.) \
ow = [ Fe)dz,
0
is given by
1
(8.2) W:Q_O[de+%

with ¥ given by (5.8) and hence ¥ < 0, by virtue of (5.5) or (5.6)
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REMARK 8.1. — One easily verifies that, choosing:
i)

C? 2 h
= 0=5 C=Cy+ Cre™™,
with

C1, Cy, h suitable positive constants,

all the assumptions of the stability-instability theorems can be verified.
i)

d=1=aqa, e=C=1+¢",

it follows that all the assumptions of global stability are verified with

Pu? + Qv? — 2Ruv < —2(u? + %) — B2 + v)? < —2u® + 7).

9. — Final Remarks

i) The paper is concerned with the longtime behaviour of the solutions to
(1.1)-(1.3), either in the autonomous case or tn the nonautonomous case.
ii) Conditions guaranteeing the ultimately boundedness of the solutions
are found.
iii) The asymptotic nonlinear global stability of the null solution is studied.
iv) The procedures used continue to hold also when, instead of (1.1), one
requires

(9.1) w0,8) =0, u(1,)=0, V>0,
or
(9.2) u0,8) =0,  w@d,p)=0, Vi>0.

In fact, in the case (9.1), for instance, at the place of {sinnnx}, one has to sub-

. . 1 2 .
stitute the sequence {sm (n — Enm) } and % at the place of n° in (3.10).

10. — Appendix
Proor oF THEOREM 3.1. — i) S, is an invariant set. In fact, let

(10.1) Vity) < (1 + 2%) for an n € N.

7
1|’
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A trajectory starting in S, can leave S, only if exists an instant ¢. such that

Vit) = (1+4) o

on |[| ’

(10.2) (dv>

— > 0.

at ), —
But

av
(10.3) <%> =-lVt) +y=-0+0)y+y= -0y,
t=t,

i.e. S, is invariant.
ii) S, is an attractor. In fact let 2 be a bounded set of the phase space and let

(10.4) M =supV.
s
Since (3.25) implies
(10.5) V®§V®5W+ﬁ,

V(0) € X implies

(10.6) V(t) < Me V"t 4 %
Requiring
Melt 4+ —4g) L
|1] |11
ie.
(10.7) M _ e
oy
it follows that for ¢ = ¢
1 M
10.8 t=—log —
(10.8) 1 %% omy

any trajectory beginning in X has reached S, and hence will remains there
Vit > t.
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