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Integral Inequalities for the Principal Fundamental System
of Solutions of a Homogeneous Sturm-Liouville Equation
and their Applications

N. A. CHERNYAVSKAYA - L. A. SHUSTER

Abstract. — We consider the equation

(1 —y'(@) + q@y@) =f(x), xR,
where f € L,(R), p € [1,00] (Lx(R) := C(R)) and

x+a
@) 0<qell*(R) 3a>0: inf f q(dt > 0.

(Condition (2) guarantees correct solvability of (1) in class Ly(R), p € [1,00].) Let y be
a solution of (1) i class L,(R), p € [1, 0o], and 0 some non-negative and continuous
Sfunction in R. We find minimal additional requirements to 6 under which for a given
p € [1,00], there exists an absolute positive constant c(p) such that the following in-
equality holds:

sup 0@)|y@)| < cO|f |, w)y> U € Lp(R).

xeR

1. — Introduction

In the present paper, we consider the equation
(1.1) -y (@) + q@yx) =), xR,
where f € L, (L,(R) := L), p € [1,00] (Loo(R) := C(R)) and
(12) 0<qgely L(R):=Ly).

A solution y of (1.1) is understood as any function, absolutely continuous together
with its derivative, satisfying (1.1) almost everywhere in R. In addition, we as-
sume that equation (1.1) is correctly solvable in Ly, p € [1,00]. The latter re-
quirement means that

I) for every function f* € L, there exists a unique solution of (1.1) y € L;
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II) there exists an absolute constant c(p) € (0, c0) such that the solution of
(1.1) y € L, satisfies the inequality

(1.3) 1yll, < c@IIflly Vf €Ly fll, =171,

(see [12, Ch. III, § 6, no. 2]).
Note that a precise requirement for the function ¢ to guarantee I)-II) is as
follows:

r+a
(14) 3a>0: qa) = inf f bt > 0
reR

r—a

(see [5]). Therefore throughout the sequel we assume that conditions (1.2) and
(1.4) hold and do not mention them in the formulations. Another convention is
that the letters c, c(-) stand for absolute positive constants which are not es-
sential for exposition and may differ even within a single chain of calculations.
Finally, the symbol y will everywhere denote the solution of (1.1) from the class
L, which corresponds, according to I), to the function f € L, p € [1, cc].

Our general goal consists in investigating the behaviour of solutions of (1.1) in
the uniform metric. In particular, we study possibilities for strengthening the
following inequality (see [8]):

(1.5) sup [y@)| < e fll,, V€ Ly.

xeR

Let us now go over to precise statements. Suppose that we are given some
continuous and non-negative function 6(x) for x € R and a number p € [1, oo].
We have to find a minimal additional requirement to the function 6 under which
the following estimate holds:

(1.6) sugﬁ(ac)l?/(ﬂc)l <c@Ifll,, f € Lp.

(Below for brevity, we say “the problem (1.6)” or “the question (1.6)”.)
Let us now describe in general terms a solution of the aforementioned pro-
blem. For this, we need the following lemmas.

LEMMA 1.1 [3]. — There exists a fundamental system of solutions (FSS)
{u,v} of the equation
(1.7) 2'(x) = qx)z(x), xE€R
which possesses the following properties:

(1.8) w(x) >0, v >0 w<0, V>0 xckR,

(1.9) v (@)u(x) —u (2)vx) =1, xeR,
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(1.10) lim 28y U0 _

r——00 u(gc) o wam - 07

0 ) 00 0
dt dt dt dt

Moreover, properties (1.8)-(1.11) determine the FSS {u,v} uniquely up to po-
sitive constant mutually inverse factors.

An FSS {u, v} with properties (1.8)-(1.11) is called a principal FSS (PFSS) of
1.1)

LEMMA 1.2 [10]. — We have
(112) mm:mewwﬁ,xeR

where G(x,t) is the Green function of equation (1.1):

(1.13) G t) = w@w®), x>t
| T wlw), w <t

We come to our original problem. Below, in connection with (1.6), the fol-
lowing assertion is of great importance.

THEOREM 1.3. — Inequality (1.6) holds if and on ly if o, <oc. Here

(1.14) 7p = Sup (O(x)ap(x)),
u(@)(), ifp=1
L15) %mszmw+mwmw,ﬁpamm
waﬁﬁ, if p = oo,
(1.16) Ty = [vwa, L@ = [ oo

and, finally, p' = p(p — 17"

Condition (1.14) is, obviously, implicit and therefore needs clarification and
further investigation. Towards this end, we need an additional function d and
Otelbaev’s inequalities.
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LEMMA 1.4 [6, 9]. — For every x € R, there exists a unique solution in d > 0
of the equation

V2d  w+t
(1.17) [ [ a©acat=2.
0 x—t

Denote this solution by d(x), x € R. The function d(x) is positive and differ-
entiable for all x € R, and |d'(x)| < 1/v2,x € R.

THEOREM 1.5 [6]. — Let p(x) = u(x)v(x), x € R. Then Otelbaev’s inequalities
hold:
d(x)

(1.18) NG < ple) < V2d(x), x€R.

REMARK 1.6. — The function d was introduced in [2]. Two-sided, sharp by
order estimates for the function p were first obtained by M. Otelbaev (see [17])
(under some additional requirements to ¢ and with another, more complicated,
auxiliary function). Therefore, all inequalities of type (1.18) (see, e.g., [3]) are
called Otelbaev’s inequalities.

Let us come back to (1.14). By merely matching (1.15) and (1.18), we arrive at
the following statement.

THEOREM 1.7. — For p = 1 inequality (1.6) holds if and only if hy <oo. Here

(1.19) h1 = sup (O(x)d(x)).
reR

Note that usually the function d admits sharp by order two-sided estimates
(see Section 5) which, together with (1.19), lead (for p = 1) to a complete solution
of problem (1.6) for concrete equations (1.1) (see Section 5). Further, it is clear
that if also for p > 1 we obtain sharp by order two-sided estimates for the
function g, (x), then, as in Theorem 1.7, problem (1.6) is solved also for p > 1. To
get such inequalities, we write the function o,(x), « € R, for p > 1in a different
form (see (1.18))

1/ 1/p
(1.20) Up(ac):p(ac){[Jpl(%)} +{I”’(x)] } v e R.

() w(x)”

From (1.18) and (1.19) it follows that the required estimates will be obtained
when we find analogous inequalities for the values from (1.20) appearing in
brackets.
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THEOREM 1.8. — For every p € (1, c0), we have
(121)  Jy@ =) W @d@), Iy > @dw), e R

Thus in (1.21) we establish a possible order of the values Jy(x) and Iy (x),
x € R. Therefore, in view of Theorem 1.8, by applying Theorems 1.3 and 1.5, we
obtain the following preliminary conclusion.

THEOREM 1.9. — Suppose that for some p € (1, 00) we have the estimates

(1.22) e Lp@d@'” < T @) < cpp@d@'’, xeR,

(1.23) e pyu@)d@)'” < DY (@) < epru)d@)'?, v e R.

Then inequality (1.6) holds if and only if h, <oo.

Here

(1.24) hy, = sup O@)d(x)> 7.

reR
Thus, it only remains to find necessary and sufficient conditions under which
estimates (1.22)-(1.23) hold. In Section 3, we present the results of the in-
vestigation of this particular problem.

Note in addition that, to the best of our knowledge, inequalities (1.22)-(1.23) are
new. Obviously, they can be used in problems of estimating the solution of (1.1) in
weight spaces as well as in the problem of the behaviour of the solution of (1.1) at
infinity. Some of these applications will be presented in a forthcoming paper.

For the reader’s convenience, we describe the structure of the paper. In
Section 2, we collect facts used in the proofs. Section 3 contains a description of
the results that were not listed above, along with some comments. Section 4
contains all the proofs. Finally, in Section 5, we consider examples of the solutions
of problem (1.6) for concrete equations (1.1) as well as some technical assertions.

2. — Preliminaries

LEMMA 2.1 [6]. — For a given x € R, consider the equations in d > 0 :

N Vod it
2.1) [ Jeoaa=1, [ [ gqodea=1
r—t 0

0 x

FEach of the equations (2.1) has a unique finite positive solution.

Further, we denote the solutions of (2.1) by d;(x), do(x), respectively.
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THEOREM 2.2 [6]. — For x € R, we have the inequalities

PACD) 1 @)
(22) f ()dl(),f \/§ ()dz()<\/_

THEOREM 2.3 [13, 3, 9]. — The PFSS {u,v} of equation (1.7) satisfies the
Davis-Harrell representations:

(2.3) u(x) = /plx) exp( f 0(%)) v(x) = +/plax) exp (2 f c(lg))

where p(x) = u(x)v(x), x € R, xg is a unique solution of the equation u(x) = v(x)
wn R. In addition, we have

vir) 14/ ww)  1-p@
)  2px) u(x) 2p(a)

(24) r e R,

(2.5) |p ()] <1, x e R.

REMARK 2.4. — Representations (2.3) (in a slightly different form) were found
in [13]; see [3] for a generalization; relations (2.4) and (2.5) were used in [9].

DEFINITION 2.5 [T]. — Suppose we are given x € R, a positive function x, a
sequence {Xy},cny, N'={x1,£2,...}. Consider the segments 4, = [4, ,A; ],
A =, £ Kk(x,). We say that the sequence of segments {4,}:> (resp. {4 ,}n}oo
forms an R(x, x)-covering of [x, 0o) (resp. ( — 0o, x]) if the following conditions

hold:

1) 47 =4, forn>1(resp. 45 | =4, forn < —1);
2) 47 =, U Ay, = [, 00) (resp. Atl =, U Ay = (— 00, 2]).

n>1 n<-1

LEMMA 2.6 [7]. — Suppose that a positive continuous function x for x € R
satisfies the condition

tlim t — k() = o0 (resp. tlil}l ‘(t + k(t)) = —o0).

Then for every x € R there is an R(x,k)-covering of [x,c0) (resp. R(x,k)-
covering of (— oo, x]).

REMARK 2.7. — Assertions similar to Lemma 2.6 were first used by Otelbaev
(see [14]). Note that some technical assertions are in Section 5 in the course of
exposition.
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3. — Results

We want to emphasize that the theorems from Section 1 are note restated
here (except for Case A) of Theorem 3.7). Therefore in the sequel we only pre-
sent our investigation of inequalities (1.22)-(1.23) and the main result of the
paper. In addition, since estimates (1.22)-(1.23) perhaps are of intrinsic interest,
we reconsider them here as an object of independent study, without any con-
nection to the problem of (1.6).

THEOREM 3.1. — Suppose that for some s € [1, 00) the following inequalities
hold:
(3.1) c M) (@)d(x) < Jo(®) < c(s)’(x)d(x), x e R,
(3.2) c L) (@)d(x) < Ix) < cs)u’@d®), xeR.

where J (1) = Jp(x) s I(x) = Iy() pg € R (see (1.16)). Then there exists a
constant ¢ > 1 such that for all x,t € R, we have the estimate

) |

Unfortunately, we have not succeeded in obtaining an unconditional converse
to Theorem 3.1. On the other hand, in the next assertion we propose a sufficient
condition for inequalities (3.1)-(3.2) to hold which is “as near as possible” to the
necessary condition (3.1).

t

dé
IF

X

(33) plt) < ep(a) exp (8%2

THEOREM 3.2. — Suppose we are given s € [1,00). If there are constants

o€ (O, %), ¢ > 1and xy > 1 such that in the domain D

(3.4) D={xteR:t<x<—-xtU{x,teR:t>x>ux},

), x,teD,

Using Theorem 3.2, one can deduce various sufficient conditions for (3.1)-(3.2)
to hold; in particular, such conditions are obtained in the next two theorems. The
first one is of special interest since its statement does not depend on the para-
meter s € [1, c0).

we have the estimate

t
(35) p) < cplxr) exp ((HLZ _ 5) ‘ f p"l(_g)

then inequalities (3.1)-(3.2) hold.
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THEOREM 3.3. — Suppose the following condition holds (see (1.17)):
V2d()
(3.6) lim d(x) f (q +t) — g — t)dt | = 0.

|| =00 5
Then for any s € [1, 00), inequalities (3.1)-(3.2) hold.

To formulate the second, more subtle, condition for estimates (3.1)-(3.2) to
hold, we need a new definition.

DEFINITION 3.4. — Suppose that for a given function q there exista > 1,b > 0
and xo > 1 such that for all |x| > xo, we have the inequalities:

(3.7) o td@) < d@t) <ad@) i |t < bd()
(see (1.17)). Then the value
V2s b
— 2 _ Ve
(3.8) ws)=a exp( s 2a>’ s €[1,00)

1s called an exponent of the function q corresponding to the number s.

THEOREM 3.5. — Suppose we are given a function q and a number y, > 1.
Then for every s € [1,00) there exists an exponent y(s) of this function such that

7(8) = 7p-

We can now formulate the second condition for inequalities (3.1)-(3.2) to hold.

THEOREM 3.6. — Let a function q be given. If for a given s € [1, 00) at least one
of its exponents y(s) is less than 1, then estimates (3.1)-(3.2) hold.

We now state the main result of the paper.

THEOREM 3.7. — Suppose we are given a function q and a continuous and
non-negative for x € R function 0(x). Then the following assertions hold:

A) for p =1, inequality (1.6) holds if and only if hy <oo (see (1.24));

B) forthe validity of inequality (1.6) for p € (1, 00) it is necessary and, under
the condition that at least one exponent y(p') of the function q is less than 1, also
sufficient that h, <oo (see (1.24));

C) forthe validity of inequality (1.6) for p = oo it is necessary and, under the
condition that at least one exponent y(1) of the function q is less than 1, also
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sufficient that hy, <oo. Here

(3.9) hoo = sup 0(x)d?(x).

reR

D) Let p € [1,00]. For the validity of inequality (1.6) it is necessary and,
under the condition (3.6), also sufficient that h, < oo.

REMARK 3.8. — For the sake of completeness, we restate Theorem 1.7 in
Case A) of Theorem 3.7.

REMARK 3.9. — Inequalities (3.7) and a scheme for their application were in-
troduced by Otelbaev (see [14, 16]).

4. — Proofs

Proor oF THEOREM 1.3 (Necessity). — We treat the cases 1) p=1, 2)
p € (1,00), 3) p = oo separately.

1) Case p = 1.

Let us check the implication: (1.6) = g1 <oco. Fix & € R and set in (1.1)

v(t), t<wx
0, t>w.

Then || f;|l; = v(x), and
Y@ = u@ [ v@fOdE + @) [ w@f(©d

w(x) - v(x)?

= u(@ [ vz =2

(see Lemmas 1.1 and 1.2). By (1.6), we now have

() u(x)v®(x)

5 = O0(x)|y(x)| < sup 0Dly®| < cl fell; = cv@), R =

O@)plx) = O@)u@v(x) <2, x€R = og<oco.

2) Case p € (1,0).
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Let us check the implication: (1.6) = ¢, <occ. Fix ¢ € R and set in (1.1)

v t<w

f(t) :fr(t) = {

0, t>w
® 1/p ® 1/p ® 1/p
1 fell, = l f |fm<t>|”dt1 = [ f v(t)p@’”dtl = [ f v(t)ﬁ’dt] :

Further (see (1.12)),

(@) = u@) f VOOt + v() f w@ B dt = ul) f o) -7 L b)dt

— () f o) dt.

Using (1.6), we get

X

. !
e [ 0t = B@ly@)] < supODly(O] < Pl = c(p)l i v(t)”/dt] '
N = O@u@) )" @ < dp)<oo, e R. N
Similarly, we get the inequality
0w )" @) < cp)<oo, € R.

Hence g,(x) < 2¢(p), € R = gp<oo.

3) Case p = oo.
Let us check the implication: (1.6) = 0. Set f(t) =fo() =1, t € R in (1.1).

Then from (1.12) for x € R, it follows that
() = f G, Ofo(tdt — f G, Odt = o0 (r) =

0(x)0 oo () = O(x) |y ()| < sug 0D|y@)| < c(oo)||f0|\C(R) =c(00)<00 = 0s <00.
tel

ProOF OoF THEOREM 1.3 (Sufficiency). — We treat the cases 1) p=1,
2) p € (1,00), 3) p = oo separately.

1) Case p = 1.
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In the following relations, we use (1.12) and (1.18):

sup 0@)|y(@)| < sup O() [u(ac) f V@) F@)|dt + v(x) f u(t)| f(t)|dt]
xeR weR s .

reR

Ssupﬁ(ac)u(x)v(x)l f f@)[dt+ f | f(t)|dt] —o1-|Ifl, = (16).

2) Case p € (1, 00).

Below we use (1.12) and Holder’s inequality:

reR reR

sup 0(@)|y(@)| < sup [H(x)u(x) f V@) £ @)[dt + Oey(@) f u(®)| f(t)|dt]

< sup 0x) [u(x)J;,/p’(m)H £ll, +o@IY @) f||p]:ap-|\ fll, = (6).

xeR

3) Case p = oc.
In the following estimate we use (1.12):

oo

sup y(®)|0x)| < supOx) | G, b)|f@)|dt

reR reR
—0o0

gsugﬁ(x)f G, Ot | fllo = 0o - | Fllogy = 1.6).
xre
I -

Proor oF THEOREM 1.7. — The assertion is a direct consequence of relations
(1.14), (1.15), (1.18) and Theorem 1.3. O

Proor oF THEOREM 1.8. — We need some auxiliary facts.

LEMMA 4.1. — For all x € R we have the estimates
(4.1) cld(x) < d@®) <cd@) if |t—a| <d).

Proor. — Let t € [x — d(x),x + d(x)]. Below we use Lagrange’s formula and
Lemma 1.4:

|t—9€|<M

) - de)| = [ Ot -] < == <~

4.1).
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LEMMA 4.2. — Forx € Rand t € [x — d(x),x + d(x)], we have the estimates

(4.2) c @) <o) < cvl@) and ¢ tule) < ul) < cul).

PRrOOF. — For x € R and ¢ € [x — d(x), x + d(x)] from (2.5), (2.4), (1.18) and
(4.1), it follows that

V() 1+
(& 2p)

1

&)

IN

x+d(x) x+d(x)

v(@ 4 d(x) v'($) ac
= | ek |

l

v(x) - V() -ode B
aa= ] % =¢ | am=c

r—d(x) r—d(x)

v —d@) v+ d) <e meR
v(x) v T '

1

-<

c
These estimates together with Lemma 1.1 imply (4.2). O

Inequalities (1.21) are proved in the same way, using (4.2). Let us check, say,
the first one:
X X
Jy@ = [ odt> [ ' odt > o) dw).
—00 x—d(x)

O

ProOF oF THEOREM 1.9. — The assertion immediately follows from (1.22)-
(1.23), (1.18) and Theorem 1.3. O

Proor orF THEOREM 3.1. — We need some additional information.

DEFINITION 4.3. — We say that finite positive functions ¢ and y defined in the
mterval (a,b) (— oo < a<b < oo) are weakly equivalent (and write p(x) < w(x),
x € (a, b)) if for all x € (a,b), we have the inequalities:

(43) ¢ o) < wx) < cp(x).

LEMMA 4.4 Suppose we are given a finite positive function f defined in R.
Then this function is weakly equivalent in R to some nondecreasing (non-in-
creasing) finite positive function if and only if there is a constant ¢ > 1 such that
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Sfor all x € R, we have the estimate

(4.4) supf(t) < cf (@) <sup () < cf(x)).

t<w t>w

REMARK 4.5. — The problem solved in Lemma 4.4 was suggested to the au-
thors by Prof. I.R. Liflyand during their discussion of the paper [11].

Proor oF LEMMA 4.4 (Necessity). — Both assertions of the lemma are checked
in the same way; therefore, we only consider the first one.

So suppose we are given a finite positive nondecreasing function ¢ defined in
R and f(x) < p(x), x € R :

(4.5) ¢ o) < f@) < cpw), weR.

Assume that the estimate (4.4) does not hold. Then for every n > 1, there exist o,
and «,, such that

(4.6) 0y <Xy and fo) > nf (), u=12....

Then using (4.5) and (4.6), we obtain the following chain of inequalities:

071(0(0%) Sf(an) < C(D(O(n), n = 1,2, .
=
c Lo, < flay) < cplxy), n=12,...

ciln(ﬂ(an) < Ciln(”(xn) < nf(xn) gf(fxn) < C(o(fxn) =
n < 02, n=1,2,..., a contradiction = (4.4)
Proor or LEMMA 4.4 (Sufficiency). — Suppose that (4.4) holds. Set
p(x) = sup f(t), « € R. Then the function ¢ defined in R is finite, positive and
t<wx
does not decrease, and f(x) < p(x), x € R :
¢ o) = ¢ tsupf(t) < f(x) < supf(t) = o) < cp(x), © € R.
t<wx t<x
O
Let us now prove (3.3). From (1.18), (3.1) and (3.2), it follows that
V(@)p(e) < v (@)d(x) < J(x), reR, w@pl) =< u' (@dx) < I;x), xeck.

Here the functions J5(x), Is(x), x € R for every s € [1, o0), are defined in R, finite,
positive and do not decrease (increase) in R, respectively. Hence by Lemma 4.4
there exists a constant ¢ > 1 such that for all x € R, we have the inequalities

VOpt) < cv’(@ple) if t<xz, xeR, w®pt) <cu’e)plx) if t>2x, xe R

To prove (3.3), it remains to substitute instead of the functions v and u their
representations (2.3). O
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ProoF oF THEOREM 3.2. — To prove the theorem, we need some auxiliary
assertions.

LEMMA 4.6. — Denote (see Lemma 1.4 and 2.1)
(4.7) dy = supd(x), dgl) = supd;(x), dgz) = sup da ().

rxeR reR reR

Then dy< oo, dy’ <oo, df <co.

ProoOF. — All three inequalities are checked in the same way. Consider, say,
the first one. Assume the contrary. Then there exists a sequence {x,},-; such
that (see Lemma 1.4):

(4.8) d,) >Ven, n=12,..., |vJ—o0 as n— oo

Then for all n > a (see (1.4)), we get (see (1.4)):

V2d(w,)  w,+t V2d(e,)  w+t A, ”"Jr%d(‘"””)

_ Ln

2= Of [aoacaz [ [ qoaa=3 [ oo

T —t %d(wn) L=t Xn, 7#(”‘17)

Lp+N Lp+a

>u [ q@dzzn [ q@de> ngo@ — oo asn - oo.
Lp—n Lp—aQ

Contradiction. O

LEMMA 4.7. — For s € [1, 00), we have the estimates

X

(4.9) Jy@) <c- f YOdt, zeR,
o
o4d?

(4.10) L@ <c- f wdt, xeR.

X

ProOF. — Both estimates are proved in the same way. We prove (4.10). Let
x € R, k > 1. Below we use (4.7), (2.2) and (1.8):

9c+kd(2) w+kdy
k-1_ f _dc
\/_ \/— (2) d(Z) (2) dZ(é)
d(}
411 at+kd? wt+kdy
) < f Ol g _ _ fou’(é)d ZMM
- S u(®) L w(©) w( + kd)

@) v (2)
= uw@+kdy’) <e 2ulx+d;’), veR, k>1
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The following relations are based on (1.8) and (4.11):

0o w+d? o THleDdd
L@=[wed= [ woa+d [ wod
@ @ F=1 o kd®
w+d? o [ #rGndd wt+dy !
= [ woad1+>| [ woa| | [ woa
@ L @
od? N |
< [ waa- {1+Z[us(9c+kdg2))-d(02)] Jwre + | }
x k=1
od?
: = kd
= [ woagzs Y[R (2))
) = | we +dy”)
wtd? N ot
k-1
< [ us(t)dt{2+ ews} —c [ woa
k=2

X X

O

Let us now go over to (3.1)-(3.2). These inequalities are proved in the same
way, and therefore we only prove (3.1). Moreover, it is clear that only the upper
estimate of (3.1) needs a proof (see (1.21)).

In order to prove it, consider three separate cases (see (3.4)):

D @< —wg; 2) @ 2w +dys 3) @ e[ —w,a0+dy']

1) Case x < —uxy.

In the following relations, we use (2.3), (3.5) and (1.18):

Jy(@) = f V(t)dt — f (B exp (2 f (é)dé> dt

—00

v (x) N
T f ® (t) ( 2f (é))
. 2 d 1
< ws(%)p(gc).fexpl(;(sg)g)fp(él .p(t) ( Zf (f))

s+ 2 dé s
< ' @)d@) f e ( i~ f (£)>dt—cv @d@) = G.1).
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2) Case x > xp + df)l).
In the following relations, we use (4.9), (2.3), (3.5) and (1.18):

Jo(x) = f v(@)dt < ¢ f v()dt =c f pt)*% exp (2 f (f)>

—00 W—d(l) r— d(l)

— V@) . - sl _—
= | P e < 2f (é))

7d‘1)

. s+2 daé s
< v @p) - 51) e ( 5 f (é)>dt<cv(m) dx) = 3.1).

3) Case x € [ — xg, 20 + df)l)].
It is easy to see that the function

f@) = J@@ @d@) ™",  wel -, +dy]

is continuous on the whole segment under consideration (see Lemmas 1.1 and
1.4), and therefore it is bounded. Hence (3.1) is also true for x ¢
[—900,900+d61)]- d

Proor oF THEOREM 3.3. — From (1.17) it is easy to deduce the relations

(see [4)): 9

V2d(x) 2+V/2d(x)
d(x) = — f (GG — ) — qla + )dt | - qtdt| , wzeR
\/E 0
x—/2d(x)
2++/2d(x)
2 < V2d(x) f git)dt, xeR
©—/2d(x)

which immediately imply

d ( ) V2d(w)

(4.12) @@ <52 [ @@+t - gty
0

x e R.

From (4.12) and (3.6), it follows that for a given ¢ > 0 there exists xy = xy(¢) such
that

(4.13) |d' (@) <e  forall || > ao.
From (4.13) and (1.18) we now obtain the estimates
!
(4.14) V2 _dO _VE s

p(f) @) = p(é) ’
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Fix ¢, any number in the interval (0’34—%) and set

(4.15) 9\2 <Sj’_25>

Then from (4.14) and (4.15) it follows that in the domain D (see (3.4)) where xy is
taken from (4.13)), the following inequality holds:

¢
S dé
4.16 dit) < d — 9 — .
(4.16) ) < <x>exp[(8+2 )xfp@
Further, using (4.16) and (1.18) we conclude that in the domain D, condition (3.5)
holds. The theorem now follows from Theorem 3.2. O

ProOF OF THEOREM 3.5. — We need the following lemma.

LEMMA 4.8. — Let ¢ € [0,1]. Then for any x € R we have the inequalities
(4.17) (1 —ed@) < dit) <A +ed@) if |t—a| <V2ed).

Proor. — From Lagrange’s formula and Lemma 1.4, it follows that

d@®) — d(x)| = |d'O)| |t — x| < %;c' <ed(®) = (4.17). -

REMARK 4.9. — Inequalities similar to (4.17) were introduced by Otelbaev
(see [14]).

Let us now turn to the proof of the theorem. From (4.17) it follows that

(1—gd@) <dt) < A+edx) <1 —o tdw) for |t—ux| < V2ed), &c(0,1).

This means that in (3.7) we can take ¢ = (1 — s)*l, b =12¢,¢€(0,1). Thus for a
given s € [1, 00), the function ¢ has the exponent y(s) where (see (3.8)):

wWx) = %exp (— si—sze(l — s)) =), e€(0,1).

It is not hard to see that the function ¢(¢), ¢ € (0,1) has the properties
p(0+0)=1, p(1 —0) = 400, ¢'(¢) > 0 for ¢ € (0,1). Thus for any y, > 1 there is
& € (0,1) such that y(s) = p(gy) = 7. O

Proor oF THEOREM 3.6. — Clearly, only upper estimates need a proof (see
(1.21)). So suppose that for some a > 1 and b > 0 we have (3.7) and y(s)<1 for a
given s € [1, c0) (see (3.8)). Below we will show that condition (3.5) then holds and
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hence inequalities (3.1)-(3.2) are valid because of Theorem 3.5. We maintain the
convention that within the present proof, the letter a, b, and x( exclusively stand
for parameters from (3.7) and, in addition, the notation of the following Lemma
4.10 is kept.

LEMMA 4.10. — Let x,t € R be given such that either t<ux < —xy or
t > x > x9. Denote by {An};,oo and {4,},-;, R(x, bd)-covering of ( — oo, x] and
[x, 00), respectively. Then if t € A,, n € N ={x1,£2,...}, the following in-
equalities hold:

(4.18) a”2"d(x) < dt) < a®"ld(x),
(4.19) J pd(—g) > V2 2(|n| 1), if t<x< —x,
t
dé b .
(4.20) I@Z\/ﬁ&(n—l), if t>x> .

X

PRrROOF. — Lett > x > x (fort < & < —xy all the inequalities of the lemma are
proved in the same way). First note that from (3.7) and Definition 2.5, we get the
estimates

1 d(t) .
< < >
a*d(acm)*a if ted,, m>1
1 d(x,) -
421 —< "< if om>1,
( ) o~ dd,) ~ -
1 dt) 9
< < >
az_d(Aj)_a for ted,, m>1

From (4.21) and Definition 2.5, we obtain (4.18) for n = m = 1. In addition, if in
(4.21) we set t = A, we get the estimates

m’

(4.22)

Let us now obtain the upper estimate of (4.18) for n > 2 (the lower estimate of
(4.18) is obtained in the same way). Below we use (4.22), (4.21) and Definition 2.5:

Ay d®)  dd) ddy)  dAr ) Al s s s s
av _ — . . a?.. . d? = 4.18).
dx)  d4y)  d4y) d(4,)" d4, ) d(A;L)Su—a/ @ = 41y

n times

Let us now check (4.20) (the estimate (4.19) is proved in the same way). For
n = 1 this inequality is obvious. Let n > 2. Below we use (1.18), Definition 2.5
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and (3.7):

fﬁzifﬁzi“l‘l 1 fdogg)

n—1 n—1
zi fd(xk) ¢ _ 1 2b:ﬁ( .
A

We now show that if y(s) <1, then (3.5) holds. Lett >« > xpandt € 4,,n > 1
(the case t <ax < —xy is treated in a similar way). Since y(s)<1, there is

o€ (O, L) such that
s+ 2

ys)e p(? ﬁé> = (see (3.8)

b s s
4.2 2 -—@1- —
(4.23) o <exp<\/_a8+2( 5)), 0<(3<S

By (4.23), for any n > 1 we get

az”’gexp{\/— L 51— 5)%}—exp[\/§ gﬁ(l—&]-exp[\/— b_s_ 51— 00— 1)}

(4.24)
b s
:VeXp[\/—aerZ 5)}

b s
5)(%—1)}, v:exp[\/—aerz

Since t € 4, n > 1, from (1.18), (4.18) and (4.24) it follows that

[J(t) d(t) 2n
(4.25) /T%’) < 4d( < < 4o < 4y exp{ o)(n — 1)]
and from (4.20) it obviously follows that
(4.26) 1-0)—s f - om 1.

s+2 (f)

Finally, from (4.25) and (4.26) we get

(4.27) p(t) < 4vp(x) exp [(1 —> +2 f P 5)} cp() exp{( ()>f (f)}

where ¢ =4v > 1, i(s) = %, t > x> xy. Since (4.27) coincides with (3.5), it

remains to refer to Theorem 3.2.



442 N. A. CHERNYAVSKAYA - L. A. SHUSTER

Proor or THEOREM 3.7. — The assertion of the theorem is a direct con-
sequence of Theorems 1.9, 3.3 and 3.6. O

5. — Examples

In this section, we study two special cases of equation (1.1):

(5.1) —y'@) +ely@) = fw), weR,
(5.2) — (@) + @ + h@)y@) = fx), xR,
where

(56.3) h(x) = e'”‘cos(e"‘"”‘), reR, ae(0,00).

Throughout the sequel equation (5.2) is viewed as a perturbed equation (5.1)
where the perturbation % is defined by (5.3).

Our general goal is to determine what is the influence of the perturbation / on
the solution of problem (1.6) for equation (5.2) while o € (0, 00) changes. The
following four items contain a list of main results concerning this question to-
gether with some comments:

1) Equation (5.1) is correctly solvable in L, p € [1, oc].
2) Forp € [1, o] the solutions of equation (5.1) satisfy the following estimate:

(5.4) sup e @ [y@)| < e@)||f [, Y € Ly
xeR
3) Equation (5.2) is correctly solvable in L,, p € [1,00] for any a € (0, 00).
Thus equation (5.2) “inherits” correct solvability in L,, p € [1, o] from equation
(5.1), in spite of the perturbation %. Since our main goal is related to (5.4), we can
now formulate our problem more precisely: find all « € (0, co) such that the so-
lutions of equation (5.2) satisfy the same estimate (5.4) as the solutions of (5.1).

1
4) Let p € [1, oc]. The solutions of (5.2) satisfy inequality (5.4) for o > 5" For
1
o€ (O’E)’ estimate (5.4) does not hold.

REMARK 5.1. — Equations (5.1) and (5.2) were already studied in [1].
Therefore, to avoid repetitions, we do not present proofs of the technical facts
from that paper where their exposition is too lengthy. Instead of calculations, we
present the final results together with key intermediate assertions. We thus
mainly describe the logic and methods used for transition from the “implicit”
(because of the function d, see (1.17)) Theorem 3.7 to the study of problem (1.6) for
concrete equations. All details of the computations can be found in [1].
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PROOF OF THE EXAMPLES

ProoF oF 1). — Equation (5.1) is correctly solvable in L,, p € [1, c0] because
(see (1.4))

x+1 x+1
(1) = inf f eldt > inf [ 1dt=2>0.
xeR 1 xeR i

PrOOF OF 2). — We need an auxiliary function introduced by Otelbaev (see [9,
14]). For a given « € R, consider the equationind > 0 :

x+d

(5.5) Fy=2,  Fd=d [ q@ad

x—d
LEMMA 5.2 [9]. — For every x € R, equation (5.5) has a unique finite positive

solution.

Below we denote the solution of (5.5) by d(x), © € R. Our interest in the
function d is explained in the following lemma.

LEMMA 5.3 [6]. — For x € R we have

(5.6) % < d(x) < V2d(@).

Thus to obtain sharp by order two-sided estimates for the function d, it is
enough to get such estimates for the function d. To solve the latter problem, one
usually uses the following fact.

LeEMMA 5.4 [9]. — For every x € R, the inequality n > &(x) 0<y< &(x))
holds if and only if F(n) > 2 (F(y) < 2).

The following proposition exemplifies an application of Lemma 5.4.

LeEmMA 5.5 [8, 9]. — Suppose the function q is representable in the form
(5.7) q=q1+q

where q1(x) is positive and continuous everywhere in and is twice differentiable
for x| > 1, and gz € LY*. Denote

(5.8) A@) = [0,2q: () *], xeR,
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a4t

(5.9) @) = W s | ft GOdE|, o] > 1,
1 x4t
(5.10) Ko@) = Tam | ft eOde|, xeR.
Then if 1(x) — 0, Kxa(x) — 0 as |x| — oo, we have
(5.11) d@) = @ V2 xeR.
Let us now turn to 2). In (5.7) set
(5.12) qw) = @) =€, @) =0, wxeR.

Then by Lemmas 5.5 and 5.3, we get
(5.13) d) <d@) =< e, zeR.

From (5.13) it follows that in case (5.12), condition (3.6) holds. Indeed, for x > 1
(the case x — —oo is treated in a similar way), we have

V2d(x)
< ce"/? f (¢! — e Hdt
0

V2d(x)

d(x) - (@t — " Hdt

V2d(x)
< ce*/? f tdt
0

= ce*?d*(x) < ce /? — 0,

as x—oo = (3.6)
Inequality (5.4) now follows from Theorem 3.7(D) and (5.12).
ProOF OF 3). — This assertion is a consequence of the following lemma.

LeEMMA 5.6 [1]. — Suppose that the function q is representable in the form
(5.7) where 0<q; € LY and g € LY. If the following conditions

X+

o) there exists ag > 0 such that infx € R f q1(dt > 0,
B) t(a) — 0 as a — oo where e
-1

xr+a r+a
= deé| - t)dt >
(a) Suﬂg“ 0(©) é] l[ ql()] . a>a

hold, then there exists a; > ay such that qo(ay) > 0 (see (1.4)).
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REMARK 5.7. — In [1], Lemma 5.6 was applied to equation (5.2) with
q1(x) = el qo(x) = h(x), x € R.

Proor or 4). — We need two more lemmas.

LeMMA 5.8. — Let q1(x) be a positive continuous function in R, continuously
differentiable for |x| > 1, such that

q; (@)
5.14 =
(5.14) se gy (1)
(5.15) @ >0, ¢ =inf (.
reR

Then for any f > 1, there exists x; = x1(f) such that for all |x| > x; and t € w(x),

8 8 |
b + b R7
Va@ " \/q1<x>] e

(5.16) wx) = [x —

we have the inequalities

1\ q) 1\ 2
1 1-— =
17 ( 2ﬂ> = q1(x) = < 2/3)
PRrOOF. — Fix > 1. Then by (5.14) and (5.15), there exist 2y = 29(f) and
x1(B) > xo(B) such that

[ 1
Q&2 " B
(5.19) o@) N[ —xg,x0l =0 if || > .

(5.18)

if |f| > X,

Let |x| > x; and t € w(x). By (5.18) and (5.19), we have

1 RITRAGH QUAGIIE B S SN
Va® Va@| 2] ¢ J q?/z@ T2 T2 /W
<l—l> L < L < <1+1) ! , teo), |x]>wn.

28) /@)~ /@ 28) /(@)
The last estimates imply (5.17). O

LeMMA 5.9. — Suppose that for a given function q there exists a function qq
such that the following two conditions hold:

1) the function q1 such that conditions of Lemma 5.8;
2) the following inequalities hold (see (1.17)):

¢! ¢

<d@) < ,
Va1 (x) ’ VvV q1(%)

(5.20) € R.
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Then for every given f > 1 there exists x1 = x1(ff) such that for all |x| > x1 and
t € aw(x) where

(5.21) wox) = {x — b

c

B

dxe),x + Cd(ac)], x e R.

the following inequalities hold:

1 1 d(t 1\’
(5.22) 62(1—2ﬁ>§d((x))gc2(1—2ﬂ) :

Proor. — From (5.20) we obtain the inclusion w(x) C w(x), x € R (see (5.16)).
Together with Lemma 5.8, this implies that for a given f > 1 there exists
21 = x1(f) such that for all || > x; and ¢ € @(x) the following inequalities hold:

1 1\ _1 Jq@ _do) _ 5 jg@ 1\

O
1
Let us now show that for o > 5 the estimate (5.4) holds. In (5.7), set (see (5.3))

(5.23) q=q1+q, Q@) = el q2() = h(x), x e R.
Then by Lemma 5.5 for o > 1/2, we get (see [1])
(5.24) ) = —2 el xeR.

q1(x)

1
In [1], Lemma 5.3 was applied to establish (5.24) also for o = =. In view of (5.6)
. 2
and (5.24), this gives

- 1 Ja 1
2 = = —¢z 2 >
(5.25) d(x) = d(x) ) ez, x e R, 225

From (5.25) and Lemmas 5.8 and 5.9, it now follows that in (5.23) inequalities
(5.22) hold. Therefore to compute the exponent y(s), s € [1, co) of the function ¢
from (5.23) (see (3.8)), one can take

YOI AR
G/—C(l—ﬁ> s b—E, Vﬂz:l

and then for s € [1, 00), we have

2(s) = ¢t (1 %) _2exp< 8?32 Cﬁs (1 - %)) VB> 1.

This implies that regardless of s € [1,00), there exists f > 1 such that
1(s)<1—9,0 € (0,1) for all s € [1, 00). By Theorem 3.7 in case (5.23), this implies

1
(5.4) for all p € [1, 0], o > 5"

O
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. 1
Consider now the case o € | 0, 5): Below we show that for every such « re-
lation (5.24), and hence (5.25), do not hold, i.e.,

(5.26) lim d(@)e = oo.

|| =00
Then using (5.26), Theorem 1.9 and the necessary part of Theorem 3.7, we
1

conclude that in case (5.23), for all p € [1,c0] and « € (0, —) , inequality (5.4) does

. 2
not hold either because

1 N | Z_l
lim el H"d@? ) = lim |eFd@)]| =00 = hy=oc.

|| —00 || =00

To realize this program, we need one more lemma.

LemMA 5.10 [1]. — Suppose that the following conditions hold:

1) the function q has roots in points xi, k = 1,2,... and |x;| — oo ask — oo;

2) the function q is absolutely continuous in R together with its derivatives
q?,i=1,2,3 and ¢"(x;) # 0 for all k> 1.
Denote

1
A, =104 y , O =su
¢ l \ q"(xw] e

Then if 6, — 0 as k — oo, we have

~ i 6
(5.27) d(x) = ”—(1 + &), lex] < cog, k> 1.
q"(xwy,)

Let us apply this lemma to the case (5.23). Clearly

qx;) =0 for xk:w7 s 1

x+t

| o
x—t

T},

’ 5]6

(below it is enough to consider only positive roots of the function q). In [1], it was
shown that Lemma 5.10 implies the relation

1420

(5.28) dag) <@k +1)"%,  k>1.
Equality (5.26) now follows from (5.6), (5.28) and the following obvious relations:

14 1424

Tim e - @k -+ 17 = lim e(@)(@k+ DEE

= @) Jim @+ DF =00, Vae (0%)

Thus assertion 4) is completely proved.
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