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Revisiting Pinors and Orientability

LoORIANO BONORA - FABIO FERRARI RUFFINO - RAFFAELE SAVELLI

Abstract. — We study the relations between pin structures on a non-orientable even-di-
mensional manifold, with or without boundary, and pin structures on its orientable
double cover, requiring the latter to be invariant under sheet-exchange. We show that
there is not a simple bijection, but that the natural map induced by pull-back is
netther injective nor surjective: we thus find the conditions to recover a full corre-
spondence. We then consider the example of surfaces, with detailed computations for
the real projective plane, the Klein bottle and the Moebius strip.

Sunto. — In questo articolo studiamo le relazioni tra le strutture di pin su una varieta
non orientabile di dimensione pari, con o senza bordo, e, dall’altro lato, le strutture
di pin sul doppio ricoprimento orientabile, invarianti per lo scambio di foglie.
Mostriamo che non c’e una semplice bigezione, come ci st potrebbe attendere, ma che
la mappa naturale indotta dal pull-back non e né suriettiva né iniettiva: troviamo
quindi le condiziont per recuperare una piena corrispondenza. Consideriamo poi
lesempio delle superfici, con calcoli dettagliati per il piano proiettivo reale, la bot-
tiglia di Klein e il nastro di Moebius.

1. — Introduction

Given a non-orientable manifold X, we call X its orientable double cover,
equipped with the orientation-reversing involution 7 such that X/t ~ X: we
study the relations between pin structures on X and t-invariant pin structures
on X. We show that there is not a simple bijection as one might expect. In
particular, recalling that there are two inequivalent euclidean pin groups at a
fixed dimension, called Pin* and Pin~, there is a natural map induced by pull-
back:

@ : {pin® structures on X} — {r-invariant pin* structures on X}

but this map is neither injective nor surjective. To make it surjective, we must
impose one condition more: if ¢ is a pin® structure on X and dr is an
equivalence between & and &, then d< must be the identity, not the sheet-
exchange of ¢ with respect to the tangent frame bundle PoX. With this re-
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quirement we recover surjectivity. Moreover, non-injectivity is due to the fact
that two pin® structures on X, which can be obtained from one another via the
action of w;(X) € H (X, Zs), are pulled back to equivalent structures on X.
This is clearer if we describe pin structures via the holonomy of the pin
connection over 1-cycles: two such structures differ by the holonomy along the
cycle whose lift in X is not a cycle any more, but a path joining the two lifts of
the same point of X. Thus, pulling them back to X their difference disappears.
We will see how to recover such a difference considering the correspondence,
analogous to @, for pinors as sections of the associated vector bundle, not
simply for the pin structures themselves. This gives a global geometrical
description of the approach considered in [10], and it is the explicit con-
struction for pinors of what stated in [1] about a generic action of a discrete
group on a manifold. We then consider the analogous result for the case of
manifolds with boundary.

2. — Preliminaries
2.1 — Preliminaries on pinors

We recall that the group SO(n) has a unique 2-covering Spin(n), while the
group O(n) has two inequivalent 2-coverings Pin™(n), obtained from the Clifford
algebras with positive and negative signature respectively, as explained in [8]
(for Clifford algebras we use the convention vw + wv = 2(v,w), without the
minus sign). Let p* : Pin®(n) — O(n) be such 2-coverings with kernel {#1}, both
restricting to p : Spin(n) — SO(n). If we fix a the canonical basis {e;,...,e,} of
R" and we denote by j; the reflection with respect to the hyperplane e;-, we have
that O(n) = (SO(n),7j1), and (pi)’l({l,jl}) = {+1, +e;}: the latter is isomorphic
to Z4 if €2 = —1 and to Zg @ Zs if € = 1, that’s why in general we get non-iso-
morphic coverings. For details the reader can see [8]. Similarly to the case of spin
structures, there is a simply transitive action of H'(M, 7Z») on pin* structures on
abundle £ — M. In particular, this implies that if there exist both pin* and pin~
structures, their number is the same. Given a real vector bundle 7z : E — M, the
following conditions hold [7]:

e F admits a pinT-structure if and only if we () = 0;
e F admits a pin~-structure if and only if wo(E) + w1 (E) Uw(E) = 0.

As for spin structures, a pin structure on a manifold is by definition a pin
structure on its tangent bundle.

Let M be a manifold of dimension 2n. We say that a pin*® structure ¢ is in-
variant under an isometry ¢ if & ~ ¢*¢, i.e. if there exists a (non-canonical) lift dg
completing the following diagram:
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dyp

Ppi“i A\l > PPiI)‘t A‘[
sl B> ls
(1) PoM —% ~ PoM
L

M—— M.

If such a (% exists, there are only two possibilities, linked by an exchange of the
two sheets: in fact, c/Z; is a lifting of the map ¢*&to a2 : 1 covering of the codomain
([6] prop. 1.34 pag. 62). Calling y the sheet exchange, the two possible lifts are Zi?p
and cfi\(} o 7. Then c,l\(;; oy=7yo (fl\(} since, if c,i(;;(px) = (), then the only possibility is
that (%(y(px)) = 9(qp@) in order to cover do.

2.2 — Double covering of a non-orientable manifold

As is well-known, every non-orientable manifold X has an orientable double-
cover X with an orientation-reversing involution 7 such that X ~ X /7. For
n:X — X the projection, the kernel of 7* : H'(X, 7.2) — H* X , 7.) is isomorphic
to Zsg, and it is generated by w;(X). This is a consequence of the following exact
sequence in cohomology [9]:

S HTWX, 79) D HIX, ) T HIX, V)~ HI(X, Zg)—s -+
For i =1, since H'(X,72) = 72 we have that Im(U w;(X)) = wi(X), thus by
exactness Ker n* = {0, w;(X)} ~ Z». This is what we expected: since the double
covering is orientable, the pull-back 7* must kill w;(X).
In the sequel we will also need another general result, that the reader can
easily verify.

LEMMA 2.1. — Forn : X — X the projection and p : TX — X, p : TX — X the
tangent bundles, there is the canonical bundle isomorphism:
0:TX = o*'TX
p(v) = (dr(v),p)) .

Similarly, for the orthogonal frame bundles with respect to a metric g on X and
its pull-back n*g on X, there is the canonical isomorphism:

0o : PoX — n*PpX
po(x) = (dn(x), p(x)) .
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2.3 — Pinors on the double covering

We now want to compare pinors on a non-orientable manifold X and pinors on
its double cover X which are t-invariant. We start with the following simple
lemma:

LEMMA 2.2. — If X admits a pin®-structure or a pin~-structure then X is
spin.

PrOOF. — By lemma 2.1 we have that wg(ff ) = m*we(X). Since w1 (X) € Ker 7*,
we obtain njwz(X ) = 7" (we(X) + w1 (X) Uwi(X)), thus if there is a pin™ structure
we get we(X) = 0. O

Let us suppose that a pin® structure on X is r-invariant. Thus we have two
possible lifts of dt in diagram (1):

dr, droy

PPin*‘i' PPin*‘i'
g s lg
\Y 3

1)()‘? o = )()./‘;'
R
X : X.

Since dr o y=17yo d}, it follows that (dz o PE = d? , and the latter can be only id or
7, since it is an auto-equivalence of & which covers d% = id.

We show that the pull-back of a p~injE structure on X is a pin* structure on X
which is r-invariant and such that dz®> =id. Let us consider the following dia-
gram:

s
71'*IDPini)( —> PPiniX

|

:i
@) PoX ™ ;™ PoX ——>PoX
131 szl i]’

T

where & defines the pull-back on X of the pin structure & of X, for ¢ defined in
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lemma 2.1. Thus we consider as the total space of the bundle exactly 7" Pp;, - X. It
is now easy to see that ¢ is r-invariant via the two possible equivalences:

1,7),(v,7

™ PI’m X ™ ‘Pl’m X
l ¢ l
3 £
PoX 4 PoX
ﬁl lf'

where y is the exchange of sheets of Pp. +X with respect to PpX, while 7 is
the exchange of sheets of X with respect to X. In fact, by diagram (2) we
have &p', %) = 1 o (&,id)(p', #) = ¢~ '(p, &) = dn;'(p) where m; is 7 restricted
to a neighborhood of & on which it is a diffeomorphism. Therefore, for
e=1

dro &', %) = de(dn; (p) = d(z o 3 )(p) = d(m}))(p)
Eole, )P, 0) = &), 1@) = d(m})(p)

so that the diagram commutes. In particular, we see that the two possible iso-
morphisms dr = (1, 1), (y, 7) have the property that d® = 1. We have thus con-
structed a function:

@ : {pin® structures on X} — {pin® structures on Xr-invariant with de = 1}.

We now show that @ is surjective, i.e. that a t-invariant pin® structure EonX
satisfying dr? = 1 is the pull-back of a pin* structure on X. The latter is:

&:Pp-X /dt— PoX /dr ~ PoX .

In more detail:

PPiniX/;E

5 13
@ \
Y

PoX /dr —— PoX

2] ll’
Y .
~ }.7;

X /7
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where v([p]) = dn(p). From d2 =1 we get that the quotient is a 2-covering of
PpX, otherwise we would obtain a 1-covering, i.e. a bundle isomorphism, since
y = dt® would identify also the two points of the same fiber. To see that &~ *¢,
we use the equivalence:

Ppini/{( ’I:l’ ﬁ*(PPin*X'/éF)
®) b ol
£ p~1o(&,id)
PoX

for wu(pz) = ([pz],%). The inverse of u is given by w N[z, &) = Pz or equiva-
lently 1 1([p:], ©(®)) = dt(pz). The diagram is commutative: g1 o (¢,1d) o u(pz) =
¢ 1o (& id)([(Ps], ®) = 0 (v o [ED[Pa)), @) = ¢~ 1 (dn(E(Dz)), &) = &E(Pa).

It is easy to show that @ commutes via 7* with the actions of H'(X, Z») and
H\(X,7s). In fact, for ¢ : Pp,+:X — PoX a pin® structure, up to isomorphism
we can view () as n'l:n*Pp, X — 1" PpX. We fix a Cech class [w] €
H'(1,7s) for a good cover I ={U,},.; of X. If the transition function of
Py, .+ X are s,p and we fix a representative w, then the new transition functions
are S,s - w,5. On the two components of 7 1U,4, the transition functions were
both s,; and they become both s,z - w,4, i.e., @ acts on the transition functions
of n*¢ exactly as n*w. Since [7*w] = 7*[w], we get the claim. Thus we have a
diagram:

ek , P it 2 . o s
{Pin*-structures on X} — {Pin®-structures on X 7-invariant with dr = 1}

HY(X,Z,) AN HY(X,Z,).

This implies in particular that @ '(¢) is made by two inequivalent pin* struc-
tures, obtainable from each other via the action of w;(X) € Ker n*. We will now
show that the two inequivalent counter images can be recovered as Pp =X /dr
and PPiniX / (dt o p), by proving that these two quotients are inequivalent. In
fact, let us suppose that there exists an equivalence:

P

Poy+ X / (dr o)

PoX

Pp- :EX/(/E_

m

then it lifts to an equivalence of the pull-backs:
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PoX
13 1%
7 (Pome X / dr) e " (Poe X / (d7 0 7))
PP”,+X /(17' Ppl,l+)x / ( (17' 07)

\/

but, being both the pull-backs equivalent to PPiniX via (3), the only two possi-
bilities for p are the following:

id,y

Ppm+X Ppm:LX

Nk

7* (Pt X | dr) —> 7*(Ppinz X / (dr 0 7).

Let us show that none of the two can be a lift of p. In fact, if it were so, they would
be of the form:

4) p(pl,®) = (plpl, )
while:
([pa), &) ———ps — s ps — (3], &)
(lps], 7(2)) 2.ael (?7‘(1)_;) — (’l;(p;) ([(l‘r(p )Wsr(2))

and in the codomain [p;] # [d~r(p9~c)] since the class is taken with respect to dro Y,
thus (4) is inconsistent. The same would happen choosing y instead of the iden-
tity. Thus p lifts only the auto-equivalences of each of the two quotients, not an
equivalence between them.

Now that we have seen the relationship between pin® structures on X and the
corresponding ones on X, we analyze such a relationship at the level of pinors
(i.e. sections of the associated vector bundles). Let us start from X and pull-back
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a pin® structure as in the following diagram:

'/T*Ppinj;X PpmiX

g l&

PoX —*— PoX.

For the associated bundles of pinors, we have that (z*Pp;-X) x, % ~
T (Ppy= X %, (50 canonically. Thus, given on X a pinor s € I'(Pp;,: X X, % we
can naturally consider on X its pull-back n*s € I'((m* Ppy+ X) %, (2"). The natural
equivalence between f and t éls given by dr(p x) = (p, ©(®)), and, if we extend it
to the associated vector bundles, we have that a section s € I'(n* Ppy = X) %, ()
is the pull-back of a section on X if and only if dr(s’ )=7¢.

Vice versa, let us start from X. We fix a pin® structure & such that & ~ t*¢&
with d7? = 1. Then there are two natural vector space isomorphisms:

e dr-invariant sections of the associated bundle correspond to sections of the
pin® structure Pp,+ X / dr on X;

° ((ir o p)-invariant segtiong of the associated bundle correspond to sections of
the pin* structure Pp,+ X /(dt o y) on X.

In particular, the two conditions of invariance for sections are equivalent
to sy = dt(syw) in the first case, and s, = —dr(s,)) in the second case, since
the action of y corresponds to the multiplication by —1 € Pin®(n). We remark
that if we want to describe invariance of pinors under general isometries, we
must take into account the sign ambiguity due to the projective action of
isometries on pinors and spinors [4]. In the present case, since we distinguish
dr and dro y on the basis of the associated quotient on X, we fix this ambi-
guity. In this way we compensate the lack of injectivity of the map & between
pin®-structures on X and t-invariant pin*-structures on X, restoring the
injectivity on pinors as sections of the associated vector bundles.

3. — Surfaces
We show the explicit examples of pin structures on surfaces (cfr. [3, 5]).

3.1 — Invariant structures on the torus

The torus has trivial tangent bundle 72 x R? ~ S! x S! x R% The four in-
equivalent Spin or pin* structures can be all obtained from the trivial principal
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bundle S* x S* x Spin(2) or 8! x S x Pin*(2) in the following way:

0,0,7") 0, ¢,p) 0, p,p) 0,0,7)
(0,0, p) (0,0, Ry -p) 0,9, R, - p) (0,9, R,Ro - p)

where R, is the rotation by the angle x. To see that, e.g., the first two are not
equivalent, we notice that we would need a map:

(0,0,7) g (0,0, R_gp')

(0,¢.p)

for R_ alift of R_, to Spin or Pin™. But in this way p is not well defined, since for
0 and 0 + 27 we get two lifts differing by —1.

We now see that all these pin® structures are t-invariant, where 7 is the in-
volution giving the Klein bottle, namely (0, ) = (0 + n, —¢). On the tangent
frame bundle we have the action dz(0, ¢, p) = (0 + n, —¢,j2p) Where js is the re-
flection along ey, ie. (x,y) — (x,—y). The equivalence between & and &, is
given by the following diagram:

0, 0,0) > (0 + 7, —p, €5 - 1)
&0
| lo
0, ¢,p) —2 (0 + 7, —¢, jop)

or equivalently by dr o y which can be obtained by choosing —ez. Here we see that
for the Pin*-structure, since 5 = 1, we get dr? = 1, while for the Pin~-structure
we get di® = —1. Thus, only the Pin"-structure is the pull-back of a Pin"-
structure of K2. For &:

(9, @, [)/) dT (9 + T, —, ]‘?_9_7621?9])/)
. &1 -
fll / 151
(6, ¢, Rop) ——> (0 + 7, —¢, j2 Rop)

and dr is well-defined since with the shift 0 — 0 + 27 we get a minus s1gn in both
lifts of the rotations. Then dt® = R_ Osm)-n€2Ry 7R _p_esRp = R _o,63 = —é3,
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thus we get opposite results with respect to Eo- For &:

0, 0,7) dT—>~(0 +7,—¢,R egf?p])')
. T&2 %
f-zl £2

(0, ¢, R,p) —— (0 + 7, —p, j2R,p)

and dr is well-defined since with the shift 0 — 0 + 2z we get a minus sign in both
lifts of the rotations. Then di? = R_,esR_,R,e2R, = €2, thus we get the same
results of Eo- It is clear that 53 behaves as El.

3.2 — Invariant structures on the sphere

We think of the sphere S? as the Riemann sphere CP!, with two charts
1
Uy = CP'"\ {N} and U; = CP"\ {S} and transition function go;(z) = - The

antipodal involution 7 is specified each of the two charts' by 7(z) = — = We com-

pute its Jacobian to find the action dz on the tangent bundle. In real coordinates:

Y
so that the Jacobian becomes:

1

Jr(x,y) = m

-y 2wy
20y y? —a?

which, on the equator |z| = 1 becomes the orthogonal matrix:

cos20 sin260 }

5) J(cos 0, sin ) = [ sin20 —cos20

We now consider the sphere as the union of the two halves glued on the equator,
so that we restrict both the charts Uy and U, to the disc |z| < 1, and we glue them
via go1. Now we consider the trivial spin structure for each of the two dises and we
glue via a lift of dgo; on |z| = 1. On the equator of both charts the transformation
(5) is a reflection with respect to the real line generated by (cos 0, sin 0), i.e. by
(—sind, cos ‘. Thus, if we consider the point (cos d,sinf) € C ~ U,, we get
7(cos 0,sin 0) = —(cos 0,sin0) and dr(ospsing) acts on the tangent bundle as a
rotation of 7 along the equator composed with a reflection of the orthogonal

(*) Note that r commutes with go;, that’s why the expression is the same in both charts.
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direction. Hence its possible lifts to a Pin*-principal bundle are:
de(0,p) = (n + 0,%( — sin fe; + cos Oes) - p) .

Then de® is given by (— sin(f + n)e; + cos (6 + n)ex)( — sin fe; + cos Hez) =
(sin Be; — cos Bez)( — sin fe; + cos fez) = —sinZfe? — cos20e3. Thus we see that
dr® =1 1if and only if €2 = ¢ = —1, namely if the structure is Pin": this shows
that RIP? ~ S2 / 7 has two pin~ structures, lifting to the one of the sphere, but no
pin™ structures (compare with [8]).

4. — Manifolds with boundary

We now want to give the analogous description in the case of unorientable
manifolds with boundary. We start with a brief review of the case of orientable
manifolds with boundary.

4.1 — Orientable manifolds with boundary

Let X be an orientable manifold of dimension 2% with boundary 90X, and let us
consider its double X¢ obtained considering two disjoint copies of X and iden-
tifying the corresponding boundary points. We mark one of the two copies
considering an embedding 7 : X — X, In this way, an orientation of X¢ induces
an orientation of X and the opposite one on the other copy. We have a natural
orientation-reversing involution 7 identifying corresponding points of the two
copies, which is not a double covering since the boundary points are fixed.

We consider on X couples (¢, 0) where 0 : [,y — ¢|,x is an automorphism.
Then we can glue two copies of ¢ to a structure & on X?, which we call & Uy &, such
that &y, := &and ¢| Xi\Int(x) ‘= TS, gluing on 90X via the isomorphism 6. For every
connected component Y C 9X, since 0|y lifts the identity of the tangent bundle of
Y, it must be the identity or y. There is an equivalence of categories:

{ (&,0) : & pini structure on X } % : E pini structure on X s.t.
—>

0:&lox - Clox de - E|X - T*(%|X‘1\Int(X))

In fact, we have already shown how to pass from the Lh.s. to the r.h.s.; vice versa,
if we have a pin® structure & on X9, then ¢is equivalent to &|y Uyg 7(& | X\ Intx))- 1
there exists an isomorphism de: &y — (| x\Int(x))» We restrict the latter to
dr| ox - é| ox &,y and if we apply dr! to the second component, we obtain
Ey U be é| v (We can freely choose drordro y since they differ by an overall sign,

thus We can suppose dr! dr) On sections, we just ask s, = dr(sm))
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We briefly explain why to consider couples (&, 0) as above. With spinors, one
usually considers on X one spin structure for the positive chirality, and one for
the negative chirality, with the condition that they must glue at the boundary [2].
With pinors, which are extendable to the non-orientable case, there are no dis-
tinctions between chiralites: in particular, if we consider a pin structure on an
orientable manifold and, fixing an orientation, we restrict it to a spin structure,
we get the same spin structure for positive and negative spinors. That’s why we
fix only one pin structure & and an automorphism of it on the boundary.

4.2 — Unorientable manifolds with boundary

Let X be an unorientable manifold with boundary. Then we can consider the
diagram:

(X- 1)
() X\ (X4, 73,74) .

(X(I,TQ)

We remark that we have immersions X ¢ X¢ and X C Xd, while 7; and 74 are
double coverings. In particular 7, and 73 have fixed points while 7; and 74 do not.
By the definition of X and X? with the relevant involutions we easily get the
following properties:

® 711 O T3 = M2 O Tiy;

L] 77,'4|X = and ‘C4|X =11,

® 7T30T4 = T4 OT3.

We want to show that there is a surjective map:
&'+ ¢ pin® structure on X9 sit.
} — 3(;['/3 : é/ |X = (Tg)*(é/|Xd\Int(X))

{ (&,0) : € pin™ structure on X
3dey : & = (20).¢ with drg®=1

0: f|ax — f|aX

which is not injective, but such that the counterimage of each element of the
codomain contains 2 elements. As for the open oriented case, we must fix a couple
(¢,0) with ¢ a pin* structure on X and 0: ¢|,x — &|;x an automorphism. To
establish a correspondence with pin* structures on X?, we can follow the upper
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or the lower paths of diagram (7). If we follow the lower path, we consider
g1 .= £y ¢ on X, then we pull it back to 7;(¢%?). Otherwise, following the
upper path, we first pull back ¢ to 7;¢ as in the closed case, so that &| 5 pulls-back
to (1;&)|,5 and the morphism 6 pulls back to a morphism 770 : (7;8)| .5 — (716, 5%-
Then we double 7j¢ on X? putting it on both copies of X and using n;0 as the
isomorphism on 0X,1.e. we consider nié Ur:o n;&, which we call (n’{é)d(’q ) The two
results are the same, in fact (7;(&"?))|z = (4] )" (") = 7@ = (O™ ™5,
and the same for the other half of X? and for the isomorphism 6. Considering
sections of the associated vector bundles of pinors, since under pull-back of pin®
structures we pull-back also sections and under doubling we ask invariance of
the sections, we obtain sections s € I’ (PPiniT(nIgy)dm;m (X% x » %", such that
Sp = Styw) = Sty() = Sty - Here we do not have drz and dry since we are
working with explicit pull-backs.

Vice versa, if we are given a pin® structure ¢ on X9, such that there exists
drs - Elg ~ (rg)*(é’&d\lnt@)) and drg : & 5 (14),& with drs® = 1, then we can
find a pin* structure on X such that & ~ (z;&)™. We can find it using the two
paths of the diagram. If we follow the upper path, we consider the couple (&'|+,id)
where id : &'|,5 — &'| 5 is the restriction of drs. Then, since 4|y = 11, if follows
that &'|; is 7y-invariant with dr;2 = 1, thus we can consider ¢ = (¢ %)/ dr; as in

the closed case. For sections on X¢, we must ask s, = oii(smx)) = (irvg(sfg(%)). Ifwe
follow the lower path of the diagram, we first quotient by (iﬂ and then we use the
projection of drs to X¢ by 7.

We can also consider the orientation-preserving involution 734 = 73 0 74 on X4,
The space X' = X4 / 734 is an oriented and closed manifold with an orientation-
reversing involution 7' such that X' /7’ ~ X. In fact, 734 has no fixed points:
t34(%) = & is equivalent to t3(x) = 74(x), but if « ¢ 0X C Xd, then 73 maps it to a
point of the other copy of X, while 74 exchanges the sheets of the covering of the
same copy of X; instead, if « € 0X c X%, then t3(x) =  while 74 has no fixed
points. Therefore t3(x) = 74(x) is impossible. Hence X' = Xd/ 734 1S a smooth
closed orientable manifold double-covered by X¢. Then 73 and 74 projects at the
quotient to the same involution 7’. We can thus complete the diagram:

(XsTl)
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The previous picture is analogous to considering a pin® structure flon X’ which
is 7-invariant with dt/? = 1. Via 734 we pull-back it to a structure on X9 satisfying
the previous requirements.

4.3 — Moebius strip

We now study as an example pinors on the Moebius strip. In this case dia-
gram (7) becomes (calling Cyl the finite cylinder or annulus and M? the Moebius

strip):
P (Cyl, )

M2 <= (T2, 7) <=2 (T2, 73, 74) .
)

o |

(1\‘2. T2).

with the involutions we now describe. We represent all the four surfaces involved
as the square [0,27] x [0,27] with suitable identifications on the edges. In
particular, for M? we identify (0,%) ~ (27,27 — ), for Cyl (0,y) ~ (2, y), for T?
0,%) ~ @r,y) and (x,0) ~ (x,27), and for K> (0,7%) ~ 2m,%) and (x,0) ~
(2n — «, 21). When two edges are identified with the same direction (and only in
this case), we think of the orthogonal coordinate as a 2n-periodical coordinate
R /2nZ. With these conventions a possible choice of involutions is:

1, y) = @+ 7,21 — ) @,y =Y —x,y)
73(90’?/):(_'%'7?/) T4(90a?1)=(7t—907?/+75)-

We now analyze pin* structures on 72. We can prove as before that they are all 74-
invariant. In the (6, p)-coordinates 74 becomes 74(0, ¢) = (— 0 + n, ¢ + n). Then:

0, 0,7) " (=0 + 1,0 + €1 - )
(0, 0,p

dry .
) > (—0+ 7,0+ 7, 11p)

—0 + T, p+m, [{0 xr°€1° I;)() . ])I)
2 (ra)*€_—" l.
131 e &

Y L = ]
(0,0,Rp-p) — > (=0 +m,0+7,j1- Ro - p)

dr:
,p) —— (

—_
o
AS)

O+m,o+mR - 1;); ')
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so that dﬂf;2 becomes respectively:

o &2 for &;
e Ry-ei R g Ry, e1-Ry=éffor &y
e R, 9,1 Ry Ry e1-Ry=—¢éfor&.

The structures &; and &, have opposite behavior with respect to the involution
previously considered, since in this case the variable changing sign is  and not y.

We now analyze the situation for r3. First of all we can show that all the four
structures satisfy &;|cy = (23).(Sil g2\ me(cyn) €xactly in the same way as for 74, and
in this case we do not have to require that the isomorphism squares to 1.
Actually, we will now prove that &, and &; (and similarly & and &) restrict to
equivalent structures on Cyl, but they differ by the isomorphism 6 at the
boundary. In fact, the equivalence:

@, o, ) ! (8, ¢, R_gp")
9)

is not well defined on 72 since Ry = —R9+2n, but if we restrict 0 to the interval
[0, ], corresponding to the cylinder, there is no ambiguity left. This reasoning
does not work between &, and & since the interval of ¢ is not halved. For &, we
have the diagram:

0,p0,p") —>(—0,p,e1 D)
: l (3)*&o <
0 o
drs : .
(0,¢,p) —— (0,9, 51p)

while for &;:

(dr3) =
(0, 0. p') —> (—0, ¢, Ryey Rop')

R
® (m3)*& .
&1 &1
e

(8, 0, Rop) —=— (-8, ¢, j1 Rep)

and we can show that the two couples (&, (Ci:[/g)(ﬂ ax) and (&, (&?3)1‘ ox) are not
equivalent. In fact, they are equivalent to the triples (&, (r3).&p,id) and
(&, (13).¢4,1d) via the equivalences p of diagram (9) and (r3),p of the following
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diagram:

(T:;)*ﬂ

(—6, p,e1p) (—0, o, [20(?11)/)

(10) N ‘%

3)«&0
(0,,p).

Comparing (9) and (10) we can see that the diagram:

(3)xplox
(73)*50’0): s AT (7’3)*51 |i).\'

J /

lax
olox rox &1lax

does mot commute or anti-commute. In fact, for 0 =0 we get p(0,¢,q") =
(t3).p(0,0,q9") while for 0=n we get p(n,0,q)=—(13).p(n,0,q) since
R_, = —R,. The diagram would not commute either by choosing poy or
(t3),p o y or both.

Some comments about the behavior of &, &1, (13).&o, (13).&y at the boundary
are needed in order to avoid possible confusion. We deal with the spin structures
for simplicity, then the reader can see what happens for pin structures con-
sidering basis with the opposite orientation. If we embed Pgo(0Cyl) C Pgo(T?)
via the outward orthogonal normal unit vector, it follows that {e;, es} is the only
orthonormal oriented basis ? at a boundary point (0, ¢) with e; outward, while for
(7, ) the only embedded basis is {—e;, —ea}. Thus, since the principal bundle
Pgo(T?) is the bundle of isomorphisms from the trivial bundle 7% x R? to the
tangent bundle 7'(T?), which is also trivial, it follows that the embedded basis for
0 = 0 corresponds to (0, p,id) € ST x ST x SO(2), while the embedded basis for
0 = n corresponds to (1, p, —id) € S x S x SO(2). Thus, is we consider the Spin-
bundles Pgyin(0Cyl) C Pspin(Tz) we have that the lifts of the embedded basis are:

0=0 O0=mn
Eolift: | (0,0, £1) | (n, 0, £e1e2)
Eift: | (0,0, +£1) | (m,0,£1)

(t3)"&-lift: | (0,9, %e1) | (7,0, % (e1)%e2)

(t3) & -lift: | (0,0, %e1) | (,0,%e1)

() Since the boundary has dimension 1 there is only one oriented orthonormal basis.
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It may seem strange that at the boundary, whose tangent space is generated
only by eq, also the outward vector e; is involved, but that’s due to the fact that on
7 there is a —1 to lift due to the orientation and for all the structures different
from Eo there is a twist in the projection of the third factor Spin(2) — SO(2)
which makes e; enter in the lifting. The isomorphisms of spin structures we dealt
with until now are then at the boundary:

P(07(073|31) = (07(0>:t1) /)(7'[, (07:t6162) = (7-[7 (”7:F1)
(dt3)o(0, 0, £1) = (0,0, £€1)  (drz)o(m, 9, Le1e2) = (, 9, £ (e1)Pes)
(des)(0,0,£1) = (0,0, +e1)  (desh(m, 0, £1) = (m, 0, +e1) .

Summarizing, there are two pin®-structures on the torus which lift a pin*-
structure (&, ) on a Moebius strip. We consider the pin™ ones, i.e. &, and &. We
know that on the torus 20 Uid (rg)*EO o~ Eo U o Eo and the same for 21. Some
representatives of the two equivalence classes are then:

Class of & on T%: & U(d;)o &~ & U ()& ~ & U éy

Class of & on T%: & Ui, &~ Ui =~ &HUad .
The situation is analogous for the pin~ case. In particular, there are 4 in-
equivalent pin* structures and 4 inequivalent pin~ structures on the Moebius
strip. It is easy to find the invariance conditions for pinors as sections of the
associated vector bundles. Moreover, all this picture is equivalent to considering
(T?,7); we leave the details to the reader.
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