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Three-Dimensional Paracontact Walker Structures

G. CALVARUSO (*)

Abstract. — We investigate paracontact metric three-manifolds equipped with an asso-
ciated Walker metric. Some interesting paracontact metric properties are studied for
the paracontact Walker structures introduced in [10], also clarifying their relation-
ships with some curvature properties. Moreover, tmproving the result on [4] on lo-
cally symmetric Walker three-manifolds, we show that homogeneity conditions give
some obstructions to the existence of compatible paracontact structures on a Walker
three-manifold.

1. — Introduction

In perfect correspondence with almost contact and complex structures, al-
most paracontact structures were introduced in [12], as a natural odd-dimen-
sional analogue of almost paracomplex structures ([13], [11]). Since then, para-
contact and almost paracontact metric manifolds have been investigated by
several authors, although most of the results focused on the very special case of
paraSasakian manifolds. Recently, the remarkable paper [17] started a sys-
tematic study of paracontact metric manifolds, describing the Levi-Civita con-
nection, the curvature and a canonical connection (analogue to the Tanaka-
Webster connection of the contact metric case) of a paracontact metric manifold.
The technical apparatus introduced in [17] is essential for further investigations
of paracontact metric geometry.

In dimension three, a metric g compatible with a paracontact structure
(p, &, m) has signature (2, 1), that is, g is Lorentzian. In [4], the present author
classified homogeneous paracontact metric three-manifolds, that is, three-
dimensional Lorentzian manifolds (M,g), admitting a transitive group of
isometries which leaves invariant the paracontact form 5. Three of the four
canonical forms of unimodular Lorentzian Lie groups [15] and two of the
three canonical forms of the non-unimodular ones [9], do admit a left-in-
variant paracontact metric structure [4, Theorem 1.1]. On the other hand, a
(locally) symmetric paracontact metric three-space is either flat or of con-
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stant sectional curvature —1. In particular, unless it is flat, a locally
symmetric Walker metric can not be associated to any paracontact structure
[4, Theorem 3.4].

Walker metrics are a peculiar class of pseudo-Riemannian metrics, which is
responsible for many of most relevant differences between Riemannian and
pseudo-Riemannian geometries. A Riemannian manifold (M,g) admitting a
parallel line field is locally reducible. This property remains true for a pseudo-
Riemannian manifold admitting a parallel non degenerate line field, that is,
generated by an either spacelike or timelike vector field. However, in the
pseudo-Riemannian framework, a peculiar phenomenon arises: it can exist a
parallel degenerate line field.

Walker three-manifolds are three-dimensional Lorentzian manifolds admit-
ting a parallel degenerate line field. The systematic study of Walker three-
manifolds has been undertaken in the basic paper [8], describing their Levi-
Civita connection and curvature and deducing several geometric consequences.
These manifolds are described in terms of a suitable system of local coordinates
(t,x,y) and form a large class, depending on an arbitrary three-variables function
ft,x,y).

The purpose of this paper is to investigate three-dimensional paracontact
Walker structures, that is, paracontact structures admitting a Walker metric as
an associated metric. As proved in [10], under the assumption (fi./fi); #0, a
Walker three-manifold (M,gy) admits a suitable contact 1-form #, which de-
termines a paracontact metric structure (¢, ¢, 5, gr), having the Walker metric gy
as an associated metric. It was also shown that, considered the product manifold
M x R equipped with the metric gy = €?¢’ conformal to the product metric ¢/,
the almost paracomplex structure

d d
J<X,a%) = <¢X+a€, ﬂ(X)%>

becomes almost para-Kéhler.

In this paper, after reporting in Section 2 some basic information about
paracontact metric manifolds, in Section 3 we will describe in detail the
paracontact metric structure introduced in [10] and characterize some
interesting paracontact metric properties of such structure, as being
paraSasakian or n-Einstein. In particular, we shall prove that this structure
is #-Einstein if and only if (M, gy) is semi-symmetric [6]. This result shows
that the non-existence of paracontact locally symmetric Walker three-mani-
folds (except for the trivial flat case) does not extend to semi-symmetric
spaces. As symmetric spaces are homogeneous, it is also a natural question to
ask whether there exist paracontact (locally) homogeneous Walker three-
manifolds. In Section 4, we shall provide a negative answer to the question
above.
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2. — Preliminaries

We briefly report the definition and basic properties of almost paracontact
metric structures, referring to [12] and [17] for more details and several inter-
esting examples. An almost paracontact structure on a (2n + 1)-dimensional
smooth manifold M is a triple (p, &, ), where ¢ is a (1, 1)-tensor, & a global vector
field and # a 1-form, such that

2.1) @) nO=1,  PE=ld-ged

and the restriction J of ¢ on the horizontal distribution Kerzy is an almost
paracomplex structure ([13], [11]), that is, J? = Id and the + 1-eigenspaces of J
have the same dimension n. A pseudo-Riemannian metric g on M is said to be
compatible with the almost paracontact structure (¢, &, ) if and only if

(2.2) 99X, 9Y) = —gX,Y) + nX)n(¥).

Remark that, by (2.1) and (2.2), n(X) = g(&, X) for any compatible metric. Any
almost paracontact structure admits a compatible metric. Moreover, compatible
metrics necessarily have signature (n + 1, %) [17].

An almost paracontact metric manifold (M?"™1, ¢p,¢& 5,9) has a structure
group U(n, R) x Id, where U(n, R) is the para-unitary group isomorvarphic to
GL(n, R). Similarly to the almost contact metric case, each almost paracontact
metric manifold (M, ¢,&,7,9) admits a local orthonormal basis adapted to its
almost paracontact metric structure, that is, of the form {&, e;, pe;}, called a ¢-
basis [17].

Given an almost paracontact metric manifold (M,p,&,n,9), consider the

product manifold M x R. Avector field on M x R is denoted by <X J ;i) , Where

X is tangent to M, t is the coordinate on R and f is a C* function. Then,
J=(X fi = | X +f¢ (X)i
- I dt - P I ;7 dt

defines an almost paracomplex structure on M x R. The almost paracontact
structure (p, &, ) is said to be normal if and only if J is integrable.

If a compatible metric g on an almost paracontact manifold (M, ¢, &, n) sa-
tisfies

(23) 9&X, 9Y) = (dnX,Y),

then the manifold (M,7,9) (or (M,¢,¢,n,9)) is called a paracontact metric
manifold and g the associated metric.

Let now (M, n,9) be a paracontact metric manifold. By V and R we shall
denote the Levi-Civita connection and the curvature tensor of M, respectively,
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the latter taken with the sign convention R(X,Y) = Vix y; — [Vx, Vy] (note that
this convention is opposite to the one used in [17]). Taking into account (2.1) and
(2.3), tensors

2.4) h=gLew  (=REK

L being the Lie derivative, are defined on (M, 7, g) and play an important role in
describing its geometry. In particular, as proved in [17], & is self-adjoint,
hop = —oh and hé = tr h = 0. Moreover, the covariant derivative and the curva-
ture satisfy the following properties:

(25) V=0, V=0,

(2.6) VeX = —pX + phX,

2.7 (V)X = — X + h2pX — ptX,
(2.8) (X + plpX = 2h*X — 2¢0°X.

We recall the following.

DEFINITION 2.1. — A paracontact metric manifold (M, n, g) is said to be

(i) paraSasakian if it is normal, that is, equivalently,
(2.9) (Vxp)Y = —g(X,Y) +n(Y)X.

(i) K-paracontact if b = 0, that is, equivalently, & is a Killing vector field.

We explicitly remark that, contrarily to the contact Riemannian case, |h|2 =0is
a necessary but not sufficient condition in order to have a K-paracontact manifold,
since in pseudo-Riemannian settings it holds whenever hX is light-like for any
tangent vector X. Moreover, paraSasakian manifolds are K-paracontact [17,
Theorem 2.8]. Although the converse does not hold in general, a three-dimensional
K-paracontact metric manifold (M, 7, g) is paraSasakian [4, Theorem 2.2].

3. — Paracontact Walker three-manifolds
In dimension three, a Walker manifold is a Lorentzian manifold M admitting
a parallel degenerate line field. It admits local coordinates (¢, x, ), such that with

respect to the local frame field {0, 0., 0,} the Lorentzian metric tensor is ex-
pressed by

0 0 1
(3.1) gf: 0 ¢ 0 y
1 0 ftay
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for some function f(t, x,y), where ¢ = + 1. The parallel degenerate line field is
spanned by d;. The special case when U = ¢; is a parallel null vector (strictly
Walker manifold) is characterized by the fact that f does not depend on the
variable ¢, that is, f; = 0 [16].

As shown in [8], with respect to the coordinate basis {0;, 0, 9, }, the Levi-
Civita connection and curvature of (M,gy) are completely determined by the
following possibly non-vanishing components:

1 1

1 1 1
(32) Vaﬁy = E ﬁat, Va&,a,, = 5 fxat, vdqay - g(‘ﬁ)‘f +ﬁj)at - % fxax - i ﬁ8y7
and
1
R(0,0,)0, = — 5 Juh,
1
R(ah ay)a = - 5 ﬁxata
1 1 1
R(6t7 87/)6 =75 fﬁtat +5 ﬁxax +3 ﬁta?/a
(3.3) 2 2¢ 2

1
R(am au)at = - i ftmata
1
R(axa au)a'c = § fxmata
R(9,,0,)0, = lﬁﬁ lf(? lfﬁ
vy Uy **2 twt+28 xﬂcx+2 teVy -
It is well known that the curvature of a three-dimensional Lorentzian
manifold is completely determined by its Ricei tensor g. Following [8], we have

that, with respect to the coordinate basis {0, 0., 9,}, the Ricci tensor ¢ and the
Riceci operator @ of any metric (3.1) is determined by

1 1 1 I3

0 0 éﬁt éftt éft% _éfm
3

B4 o=| 0 o fp | Q@=[ 0 0 Sf
1 1 1 1

gftt Efm é(gﬁrtt — faw) 0 0 §ftt

and the Ricci eigenvalues are given by
, 1
(35) il = 0, )Vg = A3 = é ﬁt.

Several curvature properties of a Walker three-manifold (M, g;) were already
investigated in [8].
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Let now (M, gr) be an arbitrary Walker three-manifold. In what follows, we
shall assume that the scalar curvature Sc = fi # 0 at any point of (M, gy). We
explicitly remark that this assumption excludes the case of a strictly Walker
three-manifold.

Following [10], we have that, whenever f;; # 0, vector field

N := -0+ 0,
tt

is an eigenvector for the distinguished Ricci eigenvalue A; = 0. The one-form
dual to N is then given by

(3.6) i = edw — 2 d,

and we easily find

dij = — (ftx> dt Ndy, — (ﬁ”> dx Ad,, nAdﬂ—e(ﬁx) dt Ndx A dy,.
ftt ﬁt f t

Therefore, we have that

()

is a necessary and sufficient condition for 7 to be a contact form, defined in a
natural way from the Ricci operator of (M, gy).

Whenever (3.7) holds, the contact one-form # uniquely determines the cor-
responding characteristic vector field ¢ by conditions 7#(&) =1 and i: i = 0.
Writing E=ao, + bd, + 0y, for three smooth functions a, b, ¢, from iy(é) =1we
get

(3.8) eb—Fe=1,
where we put F' := (fi/fu). Next, as izdi = 0, we have
0 =dn(, 0y = —cFy.

By 3.7), F'; # 0 and so, ¢ = 0. Hence, ~(3.8) yieldsj) = ¢ and so, E = ads + &0;.
From igdfy = 0 we now find that di(¢, ;) = di(&, 9,,) = 0 hold identically, while

0 =di(& 0,) = —Fia — eF,,

which, taking into account (3.7), yields a = —&(F,/F). Therefore,

N F,
(3.9) g—g<—Ftat+am).



THREE-DIMENSIONAL PARACONTACT WALKER STRUCTURES 393

Clearly, in general & # N. However, E = N holds if and only if ¢ = 1 and
(3.10) F, = FF;.

Next, we focus on paracontact structures detemined by the one-form 7 and
having the Walker metric g described in (3.1) as an associated metric.

We first remark that if # and gy are respectively the contact form and the
metric of a paracontact metric structure (¢, E, 7,9r), then from 1 = 77(3) = gf(é, E),
we have at once ¢ = 1. Thus, the assumption ¢ = 1 made in [10] is indeed the only
possible case, and from now on we shall take ¢ = 1 in equation (3.1) and derived
formulae.

The tensor ¢ is now completely determined by equations (2.1)-(2.3). In order
to describe ¢, we first remark that, with respect to the coordinate basis
{04, Ox, 0, }, the 2-form d7 is given by

0 0 -F
di=0 0 -F,
F, F, 0

It is easily seen that, because of (2.3), ¢ with respect to {0, 0., 0,} must be
written as
a c fa
p=1b 0 fo—c|,
0 -b -—a

for three smooth functions a, b, c. By (2.1), @(E) = 0, from which we get b = 0 and
¢ = —(F/Fy)a. Finally, applying ¢* = Id — 7 ® Eto 04, 0, and 0,, we find

F F.\? F
2_1 s (2 F =qg22>
a ) Ft Ft ) a )

which is equivalent to a®? =1 and F = (F,/F;). Note that this last condition is
exactly (3.10). Without loss of generality, we assume a = 1. So, with respect to
{0k, Ox, 0, }, tensor ¢ is given by

1 F f
(3.11) p=0 o -F
00 -1

Thus, we obtained the following (see also [10]).

THEOREM 3.1. — Let gr denote an arbitrary three-dimensional Walker metric,
as described n (3.1).
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(@) The 1-form 7, naturally defined starting from the Ricci operator of gy,
exists if and only if Fy # 0, where we put F' = fi,/fu. In this case, the corre-
sponding characteristic vector field is given by

F,
5‘8<_Eat+a>

(b) i and gy determine a paracontact metric structure if and only if ¢ =1
and FFy = F,. In this case, ¢ = N 1is an eigenvector for the distinguished Ricci
etgenvalue 4y = 0 and ¢ is given by (3.11).

In the remaining part of this paper, by (@, &, 7, gr) we shall denote any para-
contact Walker structure, described by equations (3.1), (3.6), E = N and (3.11).
Such a paracontact metric structure exists whenever ¢ = 1 and equations (3.7),
(3.10) hold. We shall now consider some curvature properties for the paracontact
Walker structures (¢, é 7, 9¢)-

We first determine tensor /& = (1 /2)/3 ¢. From equations (3.2), we deduce
[f O], [é, O;] and [f 0y] and then calculate h with respect to the coordinate basis
{04, O, 0y }. We find

(8.12) k(@) =0, RO =0, k0O, = %{th —JtF +f; — 2F, — FF,}0,.

We recall that given a paracontact metric manifold (M?"*1, ¢, &, 5, g), the Ricci
curvature in the direction of ¢ is given by o(&, &) = —2n + |h[*. In particular, on a
K-paracontact manifold we necessarily have o(¢, &) = 2n. Now, for any para-
contact Walker structure (¢, f 71,9¢), the characteristic vector field f is a Ricei
eigenvector associated to the distinguished Ricci eigenvalue 1; = 0. Therefore,
Q(Zf, &) = 0 and so, we have at once the following.

PROPOSITION 3.2. — Paracontact Walker structures (p,&,7, g ¢) are never K-
paracontact (equivalently, paraSasakian).

Note that, by (3.12), h? = 0 (that is, & is two-step nilpotent), although . # 0 by
Proposition 3.2. It is well known that a contact metric manifold is K-contact if
and only if 72 = 0. Recently, this result has been extended to pseudo-Riemannian
settings [7]. Henceforth, paracontact Walker structures (¢, g, 71, 9) show that this
contact metric and pseudo-metric results do not extend to paracontact metric
structures.

As already remarked in [8], a three-dimensional Walker metric g is Einstein
if and only if it is flat. This rigidity result makes interesting to investigate some
generalizations of the Einstein condition for paracontact Walker structures

(@, &,n,9¢)



THREE-DIMENSIONAL PARACONTACT WALKER STRUCTURES 395

Following [17], a paracontact metric manifold (M?"*1, ¢, &, 1, g) is said to be #-
FEinstein is there exist two smooth functions a,b : M — R, such that

(3.13) o=ag+bnxmn.

Condition (3.13) is tensorial and coincides with the analogue condition defining #-
Einstein contact metric manifolds. As proved in [1], a three-dimensional contact
metric manifold is #-Einstein if and only if ¢ and the Rieci operator @ commute.
Moreover, both conditions are equivalent to the fact that ¢ belongs to the -
nullity distribution. We recall that, more in general, & belongs to the (x, y)-nullity
distribution if

(3.14) R(X,Y)é = kn(N)X — yX)Y) + u((Y)hX — nXOhY),

for all tangent vector fields X, Y, and ¢ is said to belong to the x-nullity dis-
tribution when (3.14) holds with x = 0. A (para)contact metric manifold is said to
be a (x, u)-space if its characteristic vector field belongs to the (i, «)-nullity
distribution.

We can now calculate conditions above for paracontact Walker structures
(»,&,7,9¢). We obtain the following.

THEOREM 3.3. — For an arbitrary paracontact Walker structure (p, &, 7, 95,
the following properties are equivalent:

@ (o, E, 1, 9r) 1s n-Einstein;
(i) Qp = p@Q;
(i) & belongs to the r-nullity distribution. In this case, k = 0;
(iv) the defining function f of the Walker metric g satisfies fu for = f2s
(V) gr is a semi-symmetric Walker metric.

ProoF. — The equivalence of properties (iv) and (v) has been proved in [5].

(i) < (iv): using equations (3.1) and (3.4), a straightfoward calculation gives
that (¢, ¢, 7,9y) is #-Einstein if and only if fy f,, = fZ. Notice that in this case,

a= % feand b = — % fit, which are not constant because of (3.7).
(ii) < (@iv): it easily follows from (3.4) and (3.11).

(iii) < (iv): using (3.3) and the definition of 7, we can apply conglition (3.14)
with ¢ = 0 to the pairs (0, 0,), (0, 9,) and (0y, J,), and we find that & belongs to
the k-nullity distribution if and only if £ = 0 and fy fy., = f2 O

As proved in [4], three-dimensional locally symmetric Walker metries cannot
be associated to any paracontact structure. Theorem 3.3 shows that this rigidity
result does not extend to semi-symmetric Walker metrics, which can be asso-



396 G. CALVARUSO

ciated to paracontact structures and also play a special role in terms of para-
contact geometry.

A three-dimensional contact metric manifold satisfying Qo = ¢Q is either
Sasakian, flat or of constant &-sectional curvature x <1 and constant p-sectional
curvature —x [1, Theorem 3.3]. Here, « is the real constant such that & belongs to
the r-nullity distribution. By Theorem 3.3 above, such a classification result
cannot be adapted to paracontact settings, because paracontact Walker struc-
tures (¢, &, 7, gr) do not satisfy any of these conditions.

With regard to condition (3.14), we get the following.

THEOREM 3.4. — Any paracontact Walker manifold (M, ¢, E, 7, 9r) is a (x, u0)-
space, where
ftt f:wc _ft%

k=0, = )
"= fa(FF,—fiF + f, — 2F, — FF,)

Proor. — Because of its tensorial character, condition (3.14) is fulfilled if and
only if it holds when (X, Y) = (8, 9»), (0, 9y) or (0y, 0). From (3.3) and the defi-
niton of &, we have R(5;, 9,)¢ = 0. Hence, taking into account (3.12) and the de-
finition of 7, (3.14) yields

K 0 = k()0 — (1)) + V(D) Oy — n(OphIy) = 0,

that is, x = 0. Taking into account x = 0, condition (3.14) gives an identity when
X,Y) = (0, 0y), while for (X,Y) = (9,, 9,) it gives

2

e f — (PP~ 41, 28, - FF)
which ends the proof, since (3.12) and Proposition 3.2 imply that
fFe—fiF+f, —2F, —FF, #0 a

REMARK 3.5 (On contact Walker structures). — Contact pseudo-metric
structures (1, g), where 7 is a contact 1-form and the associated metric g is allowed
to be pseudo-Riemannian, are a natural generalization of contact metric struc-
tures [7]. A pseudo-Riemannian metric g is said to be compatible with an almost
contact structure (¢, &, ) if

(3.15) 9(pX,pY) = gX,Y) — enXn(Y),

where ¢ = £ 1. Remark that 7#(X) = eg(&, X) for any compatible metrie. In parti-
cular, g(&, &) = ¢ and so, the characteristic vector field ¢ is either space-like or
time-like, but cannot be light-like. If the compatible pseudo-Riemannian metric g
satisfies (2.3), then (¢, &, 5, ¢) is called a contact pseudo-metric structure.

As a three-dimensional Walker metric is Lorentzian, it could be the associated
metric of contact pseudo-metric structure. However, we have the following.
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PROPOSITION 3.6. — For a three-dimensional Walker metric gy, the contact
form 7 naturally defined from the Ricct operator never defines a contact
Lorentzian structure.

Proor. — Suppose that gr and the contact form # define a contact Lorentzian
structure. Following the argument used to introduce the paracontact Walker
structure (¢, E, 71,9), we find that with respect to {0}, 9., 9, }, because of (2.3) and
¢(E) = 0, tensor ¢ of such a contact Lorentzian structure can be written as

F;
a —Fta fa
F
@ .l )
0 0 sFta
0 0 —a

for a smooth function a. But the tensor ¢ of a contact structure must satisfy
¢ = —Id + 7 ® & and this yields a®> = — 1, which cannot occur. O

4. — On homogeneous paracontact Walker three-manifolds

A paracontact metric manifold (M, ¢, &,7,9) is (locally) homogeneous if it
admits a transitive (pseudo-)group of (local) isometries leaving invariant the
contact form # and so, the whole paracontact structure (¢, &, »).

A three-dimensional (simply connected, complete) homogeneous Lorentzian
manifold (M, g) is either symmetric, or it is a Lie group and g is left-invariant [2].
Consequently, a locally homogeneous Lorentzian three-manifold is either locally
symmetrie, or locally isometric to a Lie group equipped with a left-invariant
Lorentzian metrie.

As proved in [4], there exist no locally symmetric paracontact Walker three-
manifolds (M, 7, g), except for the trivial case when g, is flat. In fact, by [2], a
locally symmetric Walker three-manifold either is reducible or it admits a par-
allel null vector field. However, a reducible symmetric paracontact metric three-
space is necessarily flat [4, Proposition 3.3]. A stronger rigidity result holds for
strictly Walker three-manifolds: if a Lorentzian three-manifold (M, gs) with a
parallel null vector field admits a paracontact metric structure (p,&,7,9) sa-
tisfying V:h =0 (in particular, a locally symmetric paracontact metric struc-
ture), then (M, gy) is flat [4, Theorem 3.4].

We shall now improve the rigidity result about paracontact Walker three-
manifolds, proving the following.

THEOREM 4.1. — A (locally) homogeneous paracontact Walker three-mamni-
fold (M, gr) is mecessarily flat.
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In order to prove Theorem 4.1, we start from the classification of homo-
geneous paracontact metric three-manifolds.

THEOREM 4.2 [4]. — A simply connected complete homogeneous paracontact
metric three-manifold is isometric to a Lie group G with a left-invariant
paracontact metric structure (p,&,n,9). More precisely, one of the following
cases 0CCUrs:

() If G is unimodular, then there exists a pseudo-orthonormal frame field
{e1, €2, 3}, with es time-like, such that the Lie algebra of G is one of the following:

(1) gz : [e1,e2] = yez — fes, [er, €3] = —Pea + yes, [e2, €3] = 2e1, with y # 0.
Then, G 1is either the identity component of O(1,2) or gi(Z, R).

(2) ag: [e1,e2] = —yes, [e1,e3] = —Pez, [ez, €3] = 2ey.

In this case, G is

(2a) the identity component of O(1,2) or S’Z(& R)if B,y > 0or f,y<0;
@b) EQ) iff>0=yo0rf=0>7

2c) EQ, ) if f<0=yorf=0<y;

2d) either SO@) or SUQ) if f > 0 and y<0;

(2e) the Heisenberg group Hz if f =y =0.

(B) a4:le1,02)=—e2+@2ec—Pes, [e1,e3] = —fes +e3, [e2, €3] =2e1, with ¢ = £1.

In this case, G is

(3a) the identity component of O(1,2) or S’Z(& R) if p # ¢
@b E@) iff=e=1;
Be) EQ,D)if f=¢e=—1.

(ii) if G is non-unimodular, then there exists a pseudo-orthonormal frame
field {eq1,ez,e3}, with eg time-like, such that the Lie algebra of G is one of the
following:

(4) a5,06: [e1,e2] = [e1,e3) =0, [e2,e3] = 2e1 + dea, with 6 # 0.
(5) aq:[e1,e2]= —le1,es]= —flea+e3), [e2, e3] = 2e1 + de2+ e3), with & # 0.

Notations g, — g, for Lie algebras listed in Theorem 4.2 refer to the classi-
fication of all three-dimensional Lorentzian Lie groups, obtained in [2].

In order to show that there exist no locally homogeneous paracontact Walker
three-manifolds which are not flat, we must prove that above Lie groups do not
admit a parallel degenerate line field, unless they are flat. Indeed, we can exclude
most of the cases above by investigating the admissible forms of the Ricci op-
erator. Because of the symmetries of the curvature tensor, g is symmetric and so,
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the Ricci operator @, defined by g(QX,Y) = o(X,Y), is self-adjoint [14]. Hence,
in the Riemannian case, there always exists an orthonormal basis diagonalizing
Q, while in the Lorentzian case four different cases can occur [14], known as
Segre types. The possible cases are the following:

1. Segre type {11,1}: the Ricci operator itself is symmetric and so, diag-
onalizable. The comma separates the spacelike and timelike eigenvectors. In the
degenerate case, at least two of the Ricei eigenvalues coincide.

2. Segre type {12z}: the Ricci operator has one real and two complex con-
jugate eigenvalues.

3. Segre type {21}: the Ricci operator has two real eigenvalues (coinciding in
the degenerate case), one of which has multiplicity two and each associated to a
one-dimensional eigenspace.

4. Segre type {3}: the Ricci operator has three equal eigenvalues, associated
to a one-dimensional eigenspace.

The Ricci operator of three-dimensional Lorentzian Lie groups was de-
termined in [3]. Then, in [6], the author and O. Kowalski determined which Segre
types, and under which restrictions, occur for the Ricci operator of any locally
homogeneous Lorentzian 3-manifold. For the Lorentzian paracontact Lie alge-
bras listed in Theorem 4.2, the results of [3] and [6] easily imply the following
classification.

(1): by [6, Theorem 3.2], @ is of Segre type {12z} if § # 1 and of degenerate
Segre type {11,1} with real eigenvalues 4; <0 and 1o =13 =0if p = 1.

(2): @ is of Segre type {11,1}. By [6, Theorem 3.3], the Ricci eigenvalues
A, A2, A3 satisfy either 111273 <0, or at least two of /; are zero.

(3): @ is either of Segre type {21} with Ricci eigenvalues 1, = -2,
2 = 23 = 2(1 + 5 — p), or of degenerate Segre type {11,1}, with Ricci eigenva-
lues 4; < 0,4 = A3 = 0 [6, Theorem 3.4].

(4): Theorems 3.5 and 3.6 of [6] yield that unless 41 = 42 = A3 # 0, Q is of
nondegenerate Segre type {11,1}.

On the other hand, the following result holds.

THEOREM 4.3 [5]. — At a given point p of a Walker three-manifold (M, gy), the
Ricct operator Q) is mever of Segre type {12z} and is

o of Segre type {21} if and only if either fu(p) = fiu(p) = 0 # fra(p) (degen-
erate case), or ( fgc — fu far)(P) # 0 # fu(p) (mondegenerate case).
o of Segre type {3} if and only if fin(p) # 0 = fu(p)
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e of Segre type {11,1} if and only if either (fZ — fu fe)(p) = 0 # fu(p) (de-
generate case), or fu(p) = fie(p) = fux(p) = 0 (degenerate and flat case).

Note that for a homogeneous manifold, the Ricci operator has the same Segre
type at each point and constant Ricei eigenvalues. Now, none of the cases (1)-(4)
listed above is compatible with the existence of a Walker metric, as they con-
tradict either (3.5) or Theorem 4.3.

Thus, we are left with the case (5) of the classification given in Theorem 4.2.
We exclude this last remaining case (and so, we complete the proof of
Theorem 4.1) by proving the following.

PROPOSITION 4.4. — A three-dimensional non-unimodular Lie group G,
admitting a pseudo-orthonormal frame field {e1, ez, es}, with es time-like, and
Lie brackets described by

[e1,e2] = —[e1,e3]l = —flea +e3), le2,e3]l =2e; + d(ea +e3), with J # 0,

does not admit any parallel degenerate line field.

ProoF. — Suppose that there exist three smooth functions a,b,c: G — R,
such that X = ae; + bes + ces is a null vector field generating a parallel degen-
erate line field, that is, satisfies

(4.1) VX = 0®X,
for a suitable 1-form w = yye! + py€® + p5¢®, where {e'} is the dual basis of {e;}

and /iy, s, s are smooth functions. From the form of the Lie algebra of G, a
straightforward calculation yields (see also [3])

Velel =0, Vezel = ﬁez + (ﬂ-l- 1)63, Ve3€1 = — (ﬂ — 1)62 —ﬁeg,
(4.2) Velez = e3, Vezez = —ﬁel + des, Vegeg = (ﬂ — 1)81 — deg,
Veleg = ey, Vezeg = (/)) + 1)61 + 562, Ve3€3 = —/361 — Oes.

We then calculate condition (4.1) with respect to the basis {e;} and find that
(4.1) is equivalent to the following system of partial differential equations:

(4.3)
e1(a) =y a, e1(b) = ;b —c, e1(c) = ¢ — b,
e2(a) = ppa+pb — (B+1)c,  ex(b) = upb — fa — dc, e2(c) = e — (f+1)a — 6b,

es(a) =usa—(f— Db+ fc, eab)=usb+(F—1a+dc, es(c)=pusc+ fa+ob.

For all indices 7,7, we can now calculate [e;,e;l(a),[e;,e;]1(D),[e;, ej]l(c)
both using (4.2) and (4.3). In particular, comparing the expressions of
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[e1, e21(@), [e1,e21(b) and [e1, e2](c), we get
(e1(u) — e2(uy))a + Blus + pg)a = — (1 + 2)b + 2fc,
(4.4) (e1(pig) — e2(u))b + flug + p3)b = (1 + 2P)a,
(e1(te) — e2(py))e + Plus + 1g)e = 2fa.
Since X is a null vector field, 0 = || X||* = a2 + b — ¢2. In particular, ¢ # 0. So,

we can calculate e; (1) — ea(zy) from the last equation in (4.4) and replace in the
first two equations. In this way, we get

{ 2fab = (1 + 2B)ac,
2pa% = —(1 + 2B)be + 2f¢2,
that is, as a® = b — ¢2,
2B8ab =1 +2 ,
(45) { ﬁaz 1+ 2Rac
2pb% = (1 + 2p)bc.
Solutions of system (4.5) are eithera = b = 0, or 2b = (1 + 2f)c. Ifa = b =0,
then X =0. So, we must exclude this solution and necessarily have
28b = (1 + 2f)c. But then, as ¢ # 0, we have f # 0 and so,

1428
b = TC.
Hence, e;(b) = (1 4 26)/2p)e;(c) for all indices ¢ = 1,2, 3. By (4.3), we now find
1+2p8 _ 1428 _1+2ﬂ
U o5 C_C_el(b)_—Zﬁ (,ulc o5 c),

which, since ¢ # 0, yields f = —1/4. Therefore, b = — ¢, which also implies @ = 0.
Again by (4.3), we now have

0=-exa)=—pb—(f+1c=—-1A+2h)c= _%c,

that is, ¢ = 0, which can not occur and this ends the proof. O

5. — Final remarks and conclusions

We proved that there are not locally homogeneous paracontact Walker
structures in dimension three. In particular, the paracontact Walker structures
(o, g, i1,9r) studied in Section 3 can not be locally homogeneous. Indeed, a
stronger statement holds: @ paracontact Walker structure (p, &, 7, 9r) has never
constant Ricct eigenvalues. In particular, it is never curvature homogeneous. In
fact, by (3.5), if the Ricci eigenvalues are constant, then f; is constant. But this
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contradicts condition (3.7), which is necessary to the existence of such a para-
contact Walker structure.

The results of [4], [10] and Sections 3,4 above show that there exist no three-
dimensional paracontact strictly Walker structures (¢, &, 7, gr) satisfying any of
the following conditions:

e V:h =0 (in particular, locally symmetric);

e the contact form is metrically equivalent to the unit eigenvector for the
distinguished Ricei eigenvalue 4; = 0;

e locally homogeneous.

These rigidity results lead to the following natural

QUESTION. — Do there exist three-dimensional paracontact strictly Walker
structures?
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