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Weak L> and BMO in Metric Spaces

DANIEL AALTO

Abstract. — Bennett, DeVore and Sharpley introduced the space weak L™ in 1981 and
studied its relationship with functions of bounded mean oscillation. Here we char-
acterize the weak L in measure spaces without using the decreasing rearrangement
of a function. Instead, we use exponential estimates for the distribution function. In
addition, we consider a localized version of the characterization that leads to a new
characterization of BMO.

1. — Introduction

Bennett, DeVore and Sharpley introduced the space weak L* in [3]. The
definition of the weak L is based on decreasing rearrangements (see also the
generalizations in [2], [10] and [12]). We give here more geometric character-
izations of the weak L by analyzing the decay of the distribution functions. The
main result in [3] states that the weak L>*(Q), where @ is a Euclidean cube, is the
rearrangement invariant hull of BMO (see also [4] and [8]). We show by an ex-
ample that the weak L is not the rearrangement invariant hull of BMO in a
general metric space.

We localize the geometric characterization of the weak L> to obtain a new
characterization of BMO, too. To show that our argument is based on a general
principle, we study the characterizations in doubling measure spaces. Indeed,
there has been a considerable interest in extending classical results in harmonic
analysis to the metric setting, see e.g. [6] and [7]. The most important ingredient
in our argument is a Calderén-Zygmund type covering lemma, which may be
useful also elsewhere. There are several versions of this type of covering lemmas
in the literature, see [6] and [9], but the version presented here seems not to
follow immediately from any of them.

2. — A Characterisation of The Weak L

Let (X, ) be a measure space. The distribution function of a real-valued
function f defined in X is the function dy,, : [0, 00) — [0, o] defined by the formula

dr () = p{x € X+ [f@)] > 7).



370 DANIEL AALTO

If dy , is invertible, its inverse function f* is called the decreasing rearrangement
of f. More generally we define the decreasing rearrangement of f to be the de-
creasing function /* : (0, 00) — [0, oo] defined by

£ = inf{A : dy ,(0) < t}.

Here we use the convention inf ) = co. The decreasing rearrangement is unique,
right-continuous, homogeneous, sublinear and satisfies /*(dy, (1)) < 4, whenever
dy ,(4) is finite, and dy, ,(f*(¢)) < ¢, whenever f*(?) is finite (c.f. [4]). The preceding
inequalities can be taken as a definition of f* as well (as in [13]). We say that f
defined in (X, 1) and g defined in (Y, v) are equimeasurable functions if dy , = d,,,.
Observe that f and f* are equimeasurable.

The following Cavalieri principle is useful for us: if f is y-measurable, then for
0<p<oo we have

f \fPdy = p f 27, (A)di.
b 0
We define the maximal function f** of f* by
1
£ =5 [ s
0

The space weak L>(X) or L;7(X) is the collection of all f so that /™ is finite ev-
erywhere and

stug (@) = f®#) <oo.

Observe that the weak L>°(X) is rearrangement invariant and that it fails to be a
vector space. The next theorem gives a characterization of the weak L>(X).

THEOREM 2.1. — Let f € L} (X) so that dy, is not identically infinite. Then

loc
the following conditions are equivalent:

() The rearrangement of f is finite for all t > 0 and there exists M > 0
independent of t for which

frO -1 <M.

(ii)) There exist constants oo > 0 and M > 0 so that for all A > o, we have
dy ,(A) < oo and

|fldu < G+ M)dy . (2).
{xeX:|f()|>1}

(iii) There exist constants o > 0 and M > 0 so that for all A > o, we have
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dy ,(4) < oo and

[ s < Mz, 0.

@iv) There exist constants ci,ce > 0 so that
dr (U2) < erdy ,(Ap)e2 =)

forall 2o > 41 > 0.

ProoF. — Observe that, as a consequence of Cavalieri’s principle, if f*(¢) is
finite, we have

@ 00

t
ff*(s)ds: f thf s > 0:f(s) > A}|d2
0 0 f®

o0

=tif'®+ [ dp,(dz.
f1@®

This implies that

2.2) O —f ) = % [ druras.
f+®

Let us assume the condition (i) and show that (ii) follows. For f € L7 (X) we
define
o= tlimf*(t).

The limit exists since f* is decreasing and bounded below. Pick any s > . If
dy .(s) = 0, there is nothing to prove. Hence, we may assume dy ,(s) > 0. Using
Cavalieri’s principle, we get

2.3) [ 1fidu= [ i+ sdg ).
{xeX:|f(x)|>s} s

Since f*(dy,.(s)) < s, by (2.2) we have

fldn < [ de i+ sdy (o)
{xeX:|f@)|>s} (g u(9))

- (f**(dfy(s)) 7f*(df,,u(s)) + S)df,u(s)
< (M + S)df./l(s)'
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Assume then that the condition (ii) holds. Take any ¢ > 0. Since
df”u(f*(t)) S ta

by inequalities (2.2) and (2.3) we have

(O 1 0) = [ dy, (s
f+®

_ j |fldu — £ ®dy . (f*®)
{weX:|f@e)|>ft)}

<Mdy ,(f*@) < Mt.
This proves the equivalence of the first two conditions.
The conditions (ii) and (iii) are equivalent by the formula (2.3).
Assume then that the condition (iii) is valid. The condition (iv) is a con-

sequence of a general real analysis principle. Indeed, given any decreasing
function g that satisfies

[ gwat < mges)

for every s > o, we have

g(s +1) < crg(s)e /M

for every s > o and ¢t > 0 with ¢; =4 and ¢z = log 2. To see this, observe that
since ¢ is decreasing, the integral condition can be rewritten as

> gls +iM) < g(s)
=1

for all s > «. Using the condition recursively, we have

g(s) > 2 ig(s +iM) > 28 1g(s + kM)

=2

for all s > o and every positive integer k. Since there exists a smallest positive
integer so that t <kM, we may apply the preceding inequality to obtain

(24) gs +1) < gls + (k — DM) < 22 Fg(s) < 4e71082/M ),

The condition (iv) follows with g replaced by the distribution function of f.
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Assume now the condition (iv). Then

[ 1fdu= [ druds + 2dg )

{weX:|fw)|>A} A

< | edys (2)e?9ds + Ads ,(3)
f fou

c ,
< (—1 - A> dy ().
C2
Hence we have the second condition with M = ¢;/cz. d

The previous theorem provides us with interesting knowledge on the beha-
viour of the functions in L{?(X). Indeed, there are no big gaps in the distribution
function of f. In terms of decreasing rearrangements we see that given f and M
as in the second condition, f* is continuous except for a countable set of points
where the size of the jump is at most M. In addition, the mass is always con-
centrated on the low level sets.

COROLLARY 2.5. — Let f € Lyy(X). Suppose that dy ,(A) is positive and finite.

Then for any y > 2 we have

u({xe X A<|f@)] < A+ yM})
w{x € X A<|f(@I})

> (1-227),

where M 1is the smallest constant satisfying the second condition in
Theorem 2.1.

Proor. — By Theorem 2.1(ii) we have

| fldu < (4 + Mdy ,(2).
{0eX:[f@)|>7}

Inequality (2.4) in the proof of Theorem 2.1 implies
dpu G+ yM) < dp ()25
and the claim follows. O
Sometimes it is possible to calculate precisely the integral average of a

function over its level sets. In the following example we have a function which is
extremal for the second condition of Theorem 2.1.
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EXAMPLE 2.6. — Let f:R" — R with f(z) =log(|z| ")yxpg1), When z #0
and f(0) = 0. Then f belongs to L°(IR"), since

| fWldy = A+ Dl{z € R" : | f(2)] > A}
{zeR™| f(x)|>1}

for all 1 > 0.

3. — Functions of bounded mean tail oscillation

In this section we localize the definition of the weak L>°(X). Let (X, d, 1) be a
metric measure space. A ball with radius » > 0 and center « is denoted by

B(x,r)={y e X : dy,x)<r}
Let f be a real-valued function defined in (X, d, x). We write

fé:!ﬁu=kglﬁw

for the mean value integral over the ball B. If u(B) = 0, then we set f3 =0. A
locally integrable function f is of bounded mean oscillation, if there exists M > 0
so that

f17 ~fuldu < m
B

for every ball B C X and we write f € BMO. Similarly, if there exists M > 0 so
that

|f —faldu < O+ Mu({x € B : | f@) — f3| > A})
{weB:|f(@)—fp>2}

for all 1 > 0 and for all balls B C X, we say that f is of bounded mean tail os-
cillation and write f € BMTO(X). Functions of bounded mean tail oscillation are
of bounded mean oscillation and satisfy the John-Nirenberg inequality.

THEOREM 3.1. — Let f € L}OC(X ). Then the following conditions are equiva-
lent:

(1) There exists M > 0 so that
|f —fpldu

{weB:|f0)~f]>1}
SU+Mu(r e B: |f() —fz| > 1})

for all 1 > 0 and for all balls B C X.
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(ii)) There exist constants c1,ce > 0 so that
ul{x € B :|f(x) —fgl > 2})
<au{x € B : |f@) —fg| > Jq})ecsz M)

forall 0 < A1 <A and for all balls B C X.
In addition, if f is of bounded mean tail oscillation, then f € BMO(X) with

sup £ | — fuldu < M
B B

and f satisfies the John-Nirenberg inequality: there exist cq,ce > 0 so that

p{x € B:|f —fz| > A} < cyp(Be 2
SJorall > 0.

PrOOF. — Suppose that f € BMTO(X). Fix a ball B and consider the measure
space (B, tt|p). Then f — fp € L(B, u|p) with o = 0 and we may apply Theorem
2.1. Hence, by inequality (2.4), we have

u{x e B:|f@@) —fz| > 42}) <4u({x € B : |f(x) — fz| > i })2A—=/M,

Since B is arbitrary, the second condition follows.
Assume then that f satisfies the second condition. Applying Theorem 2.1 to
measure space (B, u|g) for every ball B C X we get the first condition with

M= C1 / Ca.
For the BMO condition we use the BMTO condition with A = 0. The John-
Nirenberg inequality follows at once. O

4. — BMO and the weak L*> for doubling measures

In this section the focus is in the connection between BMO and L;; . We as-
sume that the measure space is doubling which guarantees covering properties
of the space. These can be used to prove that the space BMO is included in LY.
We also characterize essentially bounded functions and functions of bounded
mean oscillation with a condition similar to the BMTO condition.

4.1 — Doubling measures
Let (X, d, 1) be a metric space endowed with a metric d and a Borel regular

measure x so that all open balls have positive and finite measure. During the rest
of the current section we assume that the measure u is doubling, i.e. there exists
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a constant ¢, > 1, called the doubling constant of 4, so that
u(B(x,2r)) < c u(B(x, 7))

for all x € X and » > 0.

The doubling condition implies a covering theorem. Indeed, given any col-
lection of balls with uniformly bounded radius, there exists a pairwise disjoint,
countable subcollection of balls, whose 5-dilates cover the union of the original
collection. This theorem implies Lebesgue’s differentiation theorem, which
guarantees that any locally integrable function can be approximated at almost
every point by integral averages of the function over a contracting sequence of
balls. For the proofs we refer to [6] and [7].

4.2 — Essentially bounded functions

Let us study the localized weak L*>°. Here we show that essentially bounded
functions can be characterized as functions satisfying the weak L condition in
every ball of the space.

LEMMA 4.1. — Let f be a measurable function in X. Then f € L*(X) if and
only if there exists M > 0 so that

f fldu < G+ Myu{e € B : |f@)] > A},
{xeB:|f(x)|>1}

for all balls B ¢ X and for all /. > 0.

ProOF. — Let f € L*(X) and B C X an arbitrary ball. Then

| Fldue < 1l gonfer € B 1f@)] > 4})
{xeB:| f(x)|>2}

and the necessity of the condition follows.
For the sufficiency, let f be a function on X satisfying

|fldu < G+ M)u({x € B : | f(@)] > 2}),
{weB:|f@)]>2}

for all balls BCcX and for all 21 >0 with some M > 0. Define A=
{x € X :|f(x)] > 2M}. Suppose u(A) > 0. By Lebesgue’s differentiation theo-
rem, A has at least one density point, say a € A. Hence, there exists a ball
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B(a,r) Cc X so that
w(B(a,r)NA) 1

uB(a,r)) 2
On the other hand
2MuBanA) < [ |flp

B(a,r)NA

< [
{xeB(a,n):|f(@)|>0}

<0 + M)u(B(a, ).

This is a contradiction and hence the proof is complete. O

4.3 — A covering lemma

Here we present a Calderén-Zygmund type covering lemma which is a
generalization of the Lemma 3.2 in [3].
LEMMA 4.2. — Let By be a ball. Let F' C 3By be a measurable set and denote
1 . C .
E=FnBy. If u(f) < 5 1W(By), then there exists a disjoint family of balls con-

tained i 3By so that
(i) uB;NF) < u6B; \ F),

) ,u(E\LOCJ5Bi> —0,

i=1
(111) iﬂ(g)Bi) < cu(F),
-1
where ¢ depends only on the doubling constant of the measure .
PrOOF. — Let « € E be a density point of £. Since
W 0BG, 200) < u(F) < 2 iBo) < 2 (Bl 200),

we have
u(Bx,2r0) N F) < u(B(x,2rp) \ F)

and since x is a density point of E, there exists a greatest integer k so that
5B, = B(x,2' %) satisfies

BBy NF) < ubB,; \ F).
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By the maximality of k¥ we also get
(B, 25 r) N F) > u(B(, 2 7g) \ F)

for all j > k. By a covering theorem for the balls B, there exists a countable
family of balls {B;} which satisfy the first condition of the lemma. Since almost
every point is a density point the condition (ii) follows. For the condition (iii), we
observe that

f: u(sB) < ¢ f: 1 (ng)
i=1

i=1

4.4 — Functions of bounded mean oscillation

In doubling metric measure space it is possible to characterize the functions
of bounded mean oscillation with a condition similar to that of bounded mean tail
oscillation.

THEOREM 4.3. — Let f € L}OC(X ). Then f € BMOX) if and only if there exists
M > 0 so that

|f = feldu <A+ M)u({x € 3B : |f(x) — f| > A})
{weB:|f@)—fp|>1}
for all A > 0 and for all balls B C X.

PrOOF. — Assume f € BMO(X) and write ||f]|, for the BMO-norm of the
function f. Fix a ball B. Given 1 > 0 we write

E,={xeB:|flx)—fg| > 1}
and

Fy ={xe3B:|f()—fpl > 2}.
We have

F17 = folan < 15 ~ fonldu+ 15 — ol < A+ S
3B 3B
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Hence,

- 1
uFy) < [ fo“dﬂ < SHu(B)
3B

whenever J > 1y = 262(1 + 02)|| fll.- Fixany A > 9. Now we apply Lemma 4.2 to
the sets £, and F;. We have

f(lf —fal = Ddu

1 Mg

f (\f —fil = iy
5B;NF

1

Mg

f|f fSBldﬂ
B,NF;

I
—

i

o0

Zu(5B NEXS = fo)sm,| = 2)-

Let P be the set of indices for which the last sum has a positive term. Then

> wGBiNF)((f = fa)sm,| — 2 <> pGBi \ F)| fp —fon,| — 2
i=1

ieP
<> f (fs — fon:| = |f —foDdn
i=1 5B\F;
<> [ 1r - Fwldn
=1 5B\F,
This gives
Jr -’32 [\~ o

i 5B;

< fI. Y uGB:)
< 2c|| f|,u(F).

The last inequality follows from Lemma 4.2. For 1<y we have

f |f —fuldn = f f = faldut [ 1 = foldu

RY
< (io + || FllouF ;) + Aol — u5,))
< (24240 + | fIl)uE).

Now the theorem follows. O
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REMARK 4.4. — If we assume

u(Bo)
Zcﬁ ’

uF) <

then we have
U 5Bi c 1 +27Bq

in the covering lemma. Consequently, we have another version of the Theorem
4.3. Indeed, let p > 1. Then f € BMO(X) if and only if there exists M > 0 so that

Lf = feldu < (A + M)u({x € pB : | f(x) — fg| > 2}).
{weB:|f()—fpl>4}
Rewriting the proof of the lemma with p > 1 instead of constant 3 shows that the

bound M in the final estimate blows up when p approaches 1.

REMARK 4.5. — In some metric spaces the above result can be sharpened.
Indeed, if every pair of points can be joined by a curve with a length as close to
their distance as wished, a similar argument as above shows that f € BMO(X) if
and only if there exists M > 0 so that

\f = feldu < O+ Mu({x € B : | f(x) — fz| > A}).
{xeB:|f(@)—fp|>1}

In particular, this characterization is valid for doubling measures in R".

4.5 — The Weak L* and BMO

The following theorem establishes the connection between the weak L>(X)
and BMO(X). Briefly, every function of bounded mean oscillation with a finite
distribution function belongs to the weak L*°(X).

THEOREM 4.6. — If f € BMO(X) and there exists « > 0 so that dy ,(2) is finite
for all A > o, then there exists M > 0 so that

f \fldu < G+ Mufe € X - |f@)] > 2}
{xeX:|f(@)|>1}
forall 2> o.

ProoF. — Let f € BMO(X). We may assume f is positive since |f] is also in
BMO(X) with a norm at most twice that of f.
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We split the proof in two cases according to the total mass of the space X.
First we suppose u(X) = oco. Let ¢ > 0 and consider A > « + ¢, where o > 0 is
given by the assumption. Fix a point 2y € X and define

Ei = {x € Blwo, k) : f(x) > A}
and F}: = EY,. Since d (o + ¢) is finite,

W(FD

im ———*__ =0
koo u(B(x0, k))

and consequently there exists an integer N, so that the above quotion is at most
1/2for any A > a + e whenever k > N,. Fix some k > N,, apply Lemma 4.2 to the
set F and obtain a collection of balls {B;}. This implies

[=nau<S2| [ 1f ~fonldu+uGB; 0 F fon, — 1)
i=1

Similar to the proof of Theorem 4.3 we estimate the last term in the summand
with
uBB; OVF) fon, D < [ 1 ~ fomldn
5Bi\F’
and hence

g (F =0 <> [ 1f ~fonldue < el £ uF.

i=1 5B;

By monotone convergence theorem the above inequality may be passed to the
limit (w.r.t. k) and the theorem follows since the conclusion is independent of ¢.

Let us then consider the case u(X)<oo. Then « may be discarded since all
sets in X have finite measure. Write

E'={xeX: flx)>l.
Since f is finite x almost everywhere, u(E*) approaches zero as A tends to

infinity. Hence we may pick a 1y so that
1
HE) < JpX)

for any A > Ag. Since u(B(xy, k)) — w(X) as k tends to infinity, we have N > 0 so
that
WE}) 1
w(B(wo, k) — 2
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for all 2> 4y and k > N. As above we apply Lemma 4.2 and monotone con-
vergence theorem. We have

J =D <elfldr
E*

for all 2 > Jy. The case of small 1 is treated as in the end of the proof of the
Theorem 4.3. O

The preceding theorem shows that any function of bounded mean oscillation
belongs to the LY as soon as the the measure space is doubling. The converse is
not true in general since the local behaviour of the function in L7 is not controlled.

In a Euclidean cube, equipped with the Lebesgue measure, there is a con-
verse result stating that every function in the weak L* is equimeasurable to
some function of bounded mean oscillation [3]. However, if the measure is
changed, the result is no longer true as the next example shows.

LEMMA 4.7. — There exists a doubling metric measure space (X,u) and a
Sunction f € LX) so that no function g defined on X, equimeasurable to f,
belongs to BMO(X).

Proor. — We define X C R to be the countable collection of points
X = {wnhiso = {270
with the Euclidean distance. We set
plaey) =27

for every x;, € X. The metric measure space (X, 1) is doubling with a doubling
constant ¢, = 4 and (X) = 2. Let us now define

fl) = (= D'%.
and fix 4 > 0. Then
|flde < A+ 2u{x € X : |f(x)] > A}).
{xeX:|f(x)|>1}

and hence f € L*>°(X). Nevertheless, f is not of bounded mean oscillation. This
can be seen by considering the balls

By, = B(xa,5-27%73)

since now

16k + 10
FIF =t ===
By,
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which blows up as k grows. Observe that because of the special structure of the
space, f is the only function defined on X which is equimeasurable to f. This
proves the lemma. O

REMARK 4.8. — The Hardy-Littlewood maximal operater is bounded in BMO
for doubling metric measure spaces [1], for Euclidean case see [3] and [5]. The
argument in [3] showing that maximal operator preserves the weak L* in the
Euclidean case, depend only on the weak and strong type estimates of the max-
imal operator. Since these estimates are available also in doubling metric measure
spaces, we can conclude that the maximal operator is bounded in L{?(X) as well.

5. — BMO and the weak L*> for non-doubling measures

In this section we show that the arguments of the previous section can be
generalized to some non-doubling measures in Euclidean spaces. Indeed, we
study positive Radon measures u for which no hyperplane L, orthogonal to one of
the coordinate axes, contains mass. These measures are not rare since for every
nonnegative Radon measure for which u(p) = 0 at every point p € R"”, there
exists an orthonormal system so that the above mentioned hyperplane condition
is satisfied (for further details, see [11]). In this case Lemma 4.2 is replaced by
the following result.

LEMMA 5.1. — Let u be a positive Radon measure in R" such that for every
hyperplane L, orthogonal to one of the coordinate axes, u(L) = 0. Let E be a
subset of R™. Suppose E is contained in a cube Qy with sides parallel to the

. 1 .
coordinate axes, and suppose that u(F) < 5 1WQo). Then there exists a sequence

{Q;} of cubes with sides parallel to the coordinate axes and contained in Qo
such that

) wQNE) <w@;\E)
(i) u(E\U@-) =0,
i=1
@) Y Q) < cmu®),
i=1
with c¢(n) depending only on the dimension of R".

Following exactly the same line of arguments as in the proofs of Theorems 4.3
and 4.6 we obtain the following results.
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THEOREM 5.2. — Let u be a positive Radon measure in R" such that for every
hyperplane L, orthogonal to the coordinate axes, (L) = 0. Then f € BMO(uw) if
and only if there exists M > 0 such that

|f —foldu < G+ Mu({x € Q : | f(x) — fol > 1})
{reQ:| f(x)—fo|>2}

for all cubes Q and A > 0.

THEOREM 5.3. — Let u be a positive Radon measure in R" such that for every
hyperplane L, orthogonal to the coordinate axes, u(L) = 0. If f € BMO(uw) and
there exists o > 0 so that dy ,(2) is finite for all 2 > o, then [ € Ly ().

Whether there exists a converse, i.e. if for every f € LS(u) there exists an
equimeasurable function of bounded mean oscillation, is not clear. Observe that
the counterexample in the previous section was singular with respect to
Lebesgue measure and does not satisfy the hyperplane condition.
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