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Finite Energy Solutions of Nonlinear Dirichlet Problems
with Discontinuous Coefficients

Lucio BocCARDO

A Enrico Magenes, uno di coloro che hanno dato Uanima per darci una patria libera.
Al Professor Magenes, uno dei padri della matematica italiana del dopo-guerra.
A Enrico, che era pin forte di me anche nei 100 piani.

Abstract. — This paper dedicated to the memory of Enrico Magenes, concerning
nonlinear Dirichlet problem, follows the previous one ([1]) dedicated to the memory of
Guido Stampacchia, concerning a similar linear problem (see [14]).

1. — Introduction

Let Q be a bounded, open subset of RV N>2let M: QxR — RNZ, be a
bounded and measurable matrix such that, for some 0 <a < f,

) AP <M@Ee, IM@| <P, aexecQ VEeRY;

let £ and f be functions such that

@) Ec@N@)Y, fel .

Under these assumptions, existence and uniqueness of the weak solution
A W&’z(!)) of the linear Dirichlet problem

@) { —diviM (x)Vu) = —div(u E(x)) + f(x) in Q,

u=0 on 09,

is studied in [17] by Guido Stampacchia (with slightly stronger assumptions), in
[1], where are studied also the cases f € L"(Q), m > 1, with solutions of finite or
infinite energy, and in [16].

In this paper, we consider a nonlinear version of the boundary value problem
(3) whose simplest example is

—div(b@)|VuP2Vu) = —div(julP 2uE@) + () in Q,
(4)
u=0 on 02,
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where o < b(x) < f3, for some 0 <o < ff and

(5) 1<p<N.

Here (in the above model case (4) and in the general case (7) below), as in the
linear cases studied in [17] and [1] (see also [6], [15], [18]), the main difficulty is

due to the noncoercivity on W, (®2) of the differential operator.
Now let us define the differential operator

AWw) = —div (alx, Vv))

where a: Q x RY — RY be a Carathéodory function such that the following
holds (for almost every « € @, for every & € RY and 5 in RY, with & # )

ale, & & > alél,
(6) jae, &) < plEPT,
(CL(-’)C, é) - a(xa ;7)) (é - 77) > 07
where o, f§ are strictly positive constants.
Thanks to (6), A is a monotone and coercive differential operator acting be-
tween Wé’p (2) and its dual; hence, it is surjective (see [10], [11], [13]).

In this paper, we study existence and uniqueness of weak solutions of the
following nonlinear boundary problem

{A(u) = —div(gu) E®)) + f(x) in Q,

7
@ u=20 on 022,

under the assumptions

N
8) Ec (L)Y,
) feL™Q), m=pY,
(10) g(s) is a real continuous function such that |g(s)| < y|s[’ ",

for some y > 0.
To this aim, let us consider the following approximate Dirichlet problems

g(un) E() n f(@)

11) u, € WP(Q) : — div (a(, Vau,)) = — div )
0 1 .1 1
Lt 14 |B@)] ) 1+ | f@)]

Note that a weak solution u,, of (11) exists thanks to Schauder fixed point Theorem.
Moreover, since for every fixed n the function

) E(x)
1 _ 1

1+ [u, P71 14 = |E)|
n n
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belongs to €=@)N, every u, is bounded thanks to Stampacchia’s boundedness
theorem (see [17]).

2. — Basic estimates

Even if in this paper we assume E € (L’ﬁ(Q))N, in this section we will only
need that E ¢ (L” (Q)".

LeEMMA 2.1. — Assume (5), (6), (10), K € (L”/(Q))N and f € LY(Q). Then the
solutions u, of (11) satisfy

(12) [fmyrﬂmwﬂ*<pr+fm

where L = L(o, p, y) is a strictly positive constant.

ProoF. — Take

sign(u,) as test function in (11).

1 . 1
(p—-1 (1 + || )P~!

U
[t < 1 we have

We have, using (6) and (10) and si
e have, using (6) and (10) an Slncel+|un|_

u"|p |E| |vun| 1
+ )
f(1+|un|)p 2 (1 + o) (p—l)Qf|f|
so that (thanks to Young inequality),

|V, |P .
& [, y_fW|+fM

here, as in all the paper, we denote by C; strictly positive constants independent

N
of n. Note that p' < =

1 (since p < N) which implies

f|10g(1+ Iunl)l’{’] <Cgf\V10g(1+ | |) [P <f|E|P +f|f|

which is (12). O
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REMARK 2.2. — Remark that for every o > 0, it is possible to choose k, such
that

P

meas{m € Q: |lu, (@) > k}p <o, Vk>k,,
thanks to the estimate (12), which implies also

(13) meas{ac € Q: Juy(x)| > k} " <

_WI[IEV“ + [ f11-

O

We recall the definitions of T (s) and Gi(s), for s and k in R, with k£ > 0:
Ti(s) = max( — k, min (k, s)) and Gi(s) = s — Ti(s).

LEMMA 2.3. — Assume (5), (6), (10), K € €PN and f € LY(Q). Then, for
every k € RY, the sequence T}.(u,) is bounded in W&’p (Q). More precisely we have

(14) Af v <k [1BY +k [ 11,
Q Q

Q

where A = A, p,y) 1s a strictly positive constant.

ProoF. — Using T (u,) as test function in (11) and using (6) and (10), we get

o [ 19T < 7k [ EI9TG)]+ k111
Q

Q Q

Then Young inequality implies the estimate (14). a

3. — Existence of weak solutions

LeEMmA 3.1. — Assume (5), (6), (8), (9), (10). Then there exists ky and
Ik E,f o, p,y) such that, for every k > k,

(15) ||Gk(un)||%.p(g) <I'k,E, f,op,y), for every k > k.
PrOOF. — Define
Ayl ={x € Q:k < |u,(®)|}.

The use of Gy(u,) as test function in (11), with Young, Hoélder and Sobolev
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inequalities imply that

Cap [ IVGRIP <
Q

[ 16l B Gl + 58 [ 1B 9G] + [ Gutun)]
Q Q Q

scly[ [ 1mps [ w6
Ay(k) Q

1 1 1 ﬁ

7 P P , Y
+ykf“l I/ Ed VG| +a [ |VGk(un>|”] l I Ifl(’”)]

A, (k) Q Q Ay (k)
Then
i -}
{Cx,pcly [ 1Bp= } Il |VGk(un)|”]
Ay(k) Q

< ykf“[ [ 1=

v
+C
An(k)

(Y w7
[ s

Ay (k)

Now Remark 2.2 implies that there exists kg, such that

1

p1
N

C«-,pr[ [ 1B zC;’p, e > ko.
Aull)
Thus we have, if k > ko,
C 17% ' (,,%)/
| 'VGM)IP] <! [ [y +al [ |f|“°">’] ,
Q e 2

that is (15). O

COROLLARY 3.2. — Assume (5), (6), (8), (9), (10). Then the sequence {u,} is
bounded in Wé‘p (Q).

ProoF. — The estimates (14) and (15) imply that, if £ > ko (k¢ of Lemma 3.1),

f\an’ < M, p,E, f,7),
Q
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where
kP sk
MG,p BN =" [ B +5 [1f1+T.
Q Q 0

This Corollary ensures the existence of a subsequence (not relabelled) and a
function u in Wé P(Q) such that

(16) { Uy, converges weakly to u in Wé’p (Q),

u,(x) converges a.e. to u(x).

In some sense, the next lemma improves Lemma 3.1.

LeMMA 3.3. — Assume (5), (6), (8), (9), (10). Then, for every k > k,

(p*) ﬁ
[ s

Ay (k)

p-1
N

1—% ‘
f|VGk(un)|p‘| < [ f|E‘ﬂ%l
Q

Ay (k)

17) r +

where I' = I'(a, p, 7, E, f) is a strictly positive constant.

ProoFr. — The use of G (u,,) as test function in (11), and Hoélder and Sobolev
inequalities imply that (thanks to Corollary 3.2)

o[ (V)P <7 [ w7 BIV Gy + [ |Grau] ]
Q Q Q

SCM[ [ 1z I |VGk<u%>pH / |f|"’”']w,
Q

Ay (k) Ak

1

[I|VGk(uaz)p
Q

which implies the inequality (17). O

1
D

+Cy

COROLLARY 3.4. — Thanks to the absolute continuity of the integral and
Corollary 3.2, we can say that

(18) klim f |VGr(u,)” =0, wuniformly with respect to n.
LEMMA 8.5, —
(19) Uy, converges strongly to u in Wé’p Q).

ProoF. — In the first step of the proof, we show that, for every k£ > 0, we have.

@0) [ o, VT - o, VT VITm) - Ti) — 0.
Q
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Note that
—div(a(x, Vu) = — div(a(x, VTi(w,))) — div(a(e, VGi(uy))).
Moreover it results

—div(alx, VTi(un)) — div(ale, VG(un))

- g(un))({m‘gk} E(x) g(un))f{\u,,bk} E(x)

= —di —div

. 1 . 1
1+ = |u, [Pt 1+ = |E)| 14— |u, [Pt 1+ = |E@)|
n n n n

+ fu(@).

Note that the contribution of terms of the type a(x, VT (v))VGy(v) is zero. Then
the use of [T} (uy) — T (u)] as test function implies

[ o, VT VIT ) — T - [ 0, V)V Ty, o0
Q Q

_ 9 X<y E)

1, . 1
2 1+ =|upPt 14— |E@)|
n n

VITi(un) — Ti(w))

. g(un)7){{|u"|>k} E(QC)

; VI + [ fu@Ti(a) = Tyl
2 1+%|un|”*1 1+ |E@) 2

Now note that, for almost every k > 0,

a(x, Vu,) converges weakly to Y(x) in @Y Q)N ,
VT, >y converges strongly to VTx(w)y -y = 0 in (LP@Q)N,

and

g(un)){{\unlﬁk} E@)

1 _ 1
1+ = |u ™t 14> |E@)|
n n

converges strongly in (L” (Q))V,

VITi(uy,) — Ti(u)] converges weakly to 0 in (LP(Q)V.

Thus we can prove the convergence (20), which implies that
(21) Tr(u,) converges strongly to T (u) in Wé P(Q),

thanks to the assumptions and to a result in [11] and [9] (see also [8]).
Since u,, = Gi.(u,) + T (1), in order to prove that u,, converges strongly to u
in Wé’p (), we only need to put together (17) and (21). O
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THEOREM 3.6. — Assume (5), (6), (8), (9), (10). Then there exists u € W, ()
weak solution of (7); that is

fa(x,Vu)Vv :f gu) E(x)Vv +ff1), Voe Wé‘p(Q).
) Q )

PrOOF. — Since the sequence {u,} converges strongly to u (see (19)) in
Wé"” (), it is possible to pass to the limit, as » tends to infinity, in the weak
formulation of (11). Therefore u is a weak solution of (7). O

COROLLARY 3.7. — If f(x) > 0 then u(x) > 0.

Proor. — Use T}, (u™) as test function in (7). Thus we have

[ ate,~9Ti@ VT = [ 9@ B@VTie0) + [ £ Tuwo),
Q Q Q

which implies

o[ VT < [ lo@l 1B 9Tw0)] = [ £ T3 ) < [ gt 1B VT
Q Q Q Q

Let 0<Z <. Then the inequalities

1 1 1

cll Il |Th<u>|p] sfx[ | |VTh<u>|P] Syh”ll Il |E|"’]
Q Q

—h<u<0
imply
. 7
C1h" meas{u< — 6} < yh”‘ll f |E1" |,
—h<u<0
that is
L’
e
C; meas {u< — ) < y[ f B
—h<u<0
Since |E| € L7(Q), the right hand side goes to 0, as % — 0. Thus
meas {u< — d} =0, for every ¢ > 0. O

4. — Uniqueness of weak solutions

Note that Corollary 3.2 implies the uniqueness of the weak solution, if f = 0.
The uniqueness in the general case is more difficult.
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We are able to prove the following partial (because of the assumption (24)
below, see also [7]) result.

THEOREM 4.1. — Assume (8), (9), (10) and consider the boundary value pro-
blem
22) — div(b(ac)|Vu|p_2Vu) = —div(gw) E(x)) + f(x) in Q,
u=0 on 0Q,

where
o < blx) < B, for some 0<o < p.

Moreover we assume also that g(s) is a C! increasing function such that
(23) 9@ < ulsP"™ + a1,

for some u > 0, and

(24) l<p <.

Then the weak solution of (22) is unique.

Proor. — For simplicity we will consider positive solutions (see Corollary 3.7);
thus let u, w > 0 be solutions of (22) and use T, — w)" as test function. Then we
have

fb(m)[|Vu|p_2Vu — VP EVwIV T (u — w)*
Q
= [ 0w - geE@VT 0w
{0<u—w<h}

Now we use the following coercivity inequality (see also [12]). Let 1<p < 2.
There exists H,, > 0 such that, for everey 5, £ € RY

— s = — &7 ¢l — <],
P ol + EIE? Inl”"n — || n
so that
VT — w)* .
25) oH - E||VT)(u -
I e S LR

= [ 0w - gl EV T~ w0
{0<u—w<h}

< [ (gt~ @BV Ty~ w0y,
{0<u—w<h}
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We use the following inequality in (25)

VT,(uw —w P @—pp
[T —wyp = VT = (vl + vy
Q {0<u—w<h} (|V%| + |V7/l)‘) 2

2-p
p)

<

f VT — w)" [P :
2 (V| + [V

f (V| + | Vaw])?

{0<u—w<h}

so that it results

26) G f VT — w)|P
Q

oS

[ f (V| + |w;|)?’}

{0<u—w<h}

< [ [ s = ganiBI VT - w)* |}
{0<u—w<h}

p(p=1)
3

<CE{ f (g(w+h)—g(w))"p;1}

{0<u—w<h}

fVTh(u—w)ﬂPH f(m+|w)|)f’} :
Q

{0<u—w<hn}

Let 0<h <. The Holder and Poincaré inequalities with (26) yield

Cs he meas{(3<u—w}%§ lf|Th(u—w)+|p] <
2

%
f VT — w)*d
Q
2-p
2

p(p—1)

* 2p*
< Cy [ f (9w +h) — g(w»'ﬂ f (|Vu| + |[Vw]P |
{0<u—w<h} {0<u—w<h}
which implies

=D 2-p
_ p-1 2p* 2

C5 meas {6<u—w}% < [f(M) ] [ f (|Vu|+|Vw|)?

Q {0<u—w<h}

On the right hand side note that the first integral converges, as & — 0, to

f g )P
Q

which is finite, because of (23); on the other hand the second integral converges
to zero since

ﬂ {0<ux) —w)<h} = {0<ulr) —wk) <0} =0,
h>0
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and the continuity of the measure with respect to intersection then implies that
meas({0 <u(x) —w(x)<h}) — 0, as h — 0.

Thus meas{d<u(x) — w(x)} = 0 for any J > 0, that is u(x) = w(x) a.e. in Q. O

REMARK 4.2. — Note that, unfortunately, the simple case g(t) = |t|p’2t sa-
tisfies assumption (10), but it does not satisfy assumption (23), since 1 <p < 2.

5. — Summability and boundedness

In the spirit of [17], if the summability assumption of the right hand side f is
stronger that (9), it is possible to prove a stronger summability result on the
weak solutions of (7). Following [1], [4] and [5] it is possible to prove the following
theorem.

) e, PN
THEOREM 5.1. — Assume (5), (6), (8), (10) and if f € L"™(Q), IN—N+p <

N
m< —, then there exists a weak solution u of (3), which belongs to

(pm)*

Wy (@ NL 7 (Q). N N
Moreover, if f € L"™(Q), m > F and E € (L"(Q)N , > m, then there

exists a bounded weak solution u of (3).

REMARK 5.2. — The previous techniques can be adapted easily to differential
problems with more difficult assumptions of coercivity (see [2], [3]), with respect
to (6)-1, like

alx,s,8) &> a (1 + [s])|E]”

or
o

where y > 0and a : Q x R x RY — RY is a Carathéodory function.
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