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Some Remarks on Vector Potentials for Maxwell’s Equations
in Space-Time Carnot Groups

ANNALISA BALDI - BRUNO FraNcHI (%)

This article is dedicated to the memory of Enrico Magenes

Abstract. — In this paper we prove a I'-convergence result for time-depending variational
Sfunctionals in a space-time Carnot group R x G arising in the study of Maxwell’s
equations in the group. Indeed, a Carnot groups G (a connected simply connected
nilpotent stratified Lie group) can be endowed with a complex of “intrinsic” differ-
ential forms that provide the natural setting for a class of “intrinsic” Maxwell’s
equations. Our main results states precisely that a the vector potentials of a solution
of Maxwell’s equation in R x G is a critical point of a suitable functional that is in
turn a I'-limit of a sequence of analogous Riemannian functionals.

1. — Introduction

A connected and simply connected Lie group (G, -) (in general non-commu-
tative) is said a Carnot group of step i if its Lie algebra g admits a step « stra-
tification, i.e. there exist linear subspaces V1, ..., V, such that

a=Vie...aV., [V,Vil=Via, V.#{0}, V,={0}ifi>«x,

where [V, V;] is the subspace of g generated by the commutators [X, Y] with
X € Viand Y € V;. The first layer Vi, the so-called horizontal layer, plays a key
role in the theory, since it generates g by commutation.

The Carnot group G is said to be free if its Lie algebra is free, i.e, if the com-
mutators satisfy no linear relations other than antisymmetry and Jacobi identity.

A Carnot group G can be always identified, through exponential coordinates,
with the Euclidean space (R", ), where # is the dimension of g, endowed with a
suitable group operation.

One of the main properties of Carnot groups is that they are endowed with
two family of important transformations: the (left) translation 7, : G — G de-

(!) The authors are supported by MURST, Italy, and by University of Bologna, Italy,
funds for selected research topics and by EC project CG-DICE.
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fined as z+— 7,z := x - 2, and the (non-isotropic) group dilations J, : G — G, that
are associated with the stratification of g and are automorphisms of the group
(see Section 2 for details. In general, we refer to [9] or [5] for an exhaustive
introduction to Carnot groups).

The Lie algebra g of G can be identified with the tangent space at the origin e
of &, and hence the horizontal layer of g can be identified with a subspace HG, of
TG,. By left translation, H(G, generates a subbundle HG of the tangent bundle
TG, called the horizontal bundle. A section of HG: is called a horizontal vector
field.

Obviously, Euclidean spaces (R",+) are commutative Carnot groups, and,
more precisely, the only commutative Carnot groups. Indeed, in this case the
stratification of the algebra consists of only one layer, i.e. the Lie algebra reduces
to the horizontal layer. The simplest example of non-Abelian Carnot group of
step 2 is given by the first Heisenberg group H! = R?, with variables (x, %, z) and
product

@y En0= (s ytnati—34—m).

Indeed, letus set X := 0, — %yaz, Y =9, +%x8z,Z := 0,.Since Z = [X, Y], the

stratification of the algebra g is given by g = V; @ V,, where V; = span {X,Y}
and Vy = span {Z}.

It is well known that Carnot groups are endowed with an intrinsic geometry,
the so-called Carnot-Carathéodory geometry (see for instance, choosing in a
wide literature, [9], [5], [15] [10]). From now on, we use the word “intrinsic” when
we want to stress a privileged role played by the horizontal layer and by group
translations and dilations in (R”,-). On the contrary, the word “Euclidean” is
used when dealing with the special commutative group (R”, +).

It is worth stressing that Carnot-Carathéodory geometry is not Riemannian
at any scale (see [20]). In addition, Carnot groups have a privileged role, akin to
that of Euclidean spaces versus Riemannian manifolds, acting as rigid “tangent”
spaces to more general metric structures (the so-called sub-Riemannian spaces).
Here, the word “rigid” is meant to stress their invariance under left translations
and group dilations. Thus, Carnot spaces provide a natural setting for Maxwell’s
equations, similar to that of Euclidean spaces in special relativity, that is, roughly
speaking, a “tangent theory” for general relativity.

The aim of this paper is to study, from a variational point of view, a new class
of vector-valued equations in Carnot groups that, though not hyperbolic, we can
still call “wave equations” because of their origin, as “equations for a vector
potential”, from a class of intrinsic Maxwell’s equations, precisely as it holds in
the Euclidean setting, where the potential vector associated with classical
Maxwell’s equations satisfies a d’Alembert wave equation. Let us remind this
procedure in the Euclidean setting.
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Consider the space-time R x R® of special relativity, where we denote by
s € R the time variable and by « € R? the space variable. If (Q*,d) is the de
Rham complex of differential forms in R x R?, classical Maxwell’s equations can
be formulated in their simplest form as follows: we fix the standard volume form
dV in R?, and we consider a 2-form F € Q* (Faraday’s form), that can be always
written as ¥ = ds A E + B, where E is the electric field 1-form and B is the
magnetic induction 2-form. Then, if we assume for sake of simplicity all “phy-
sical” constants (i.e. magnetic permeability and electric permittivity) to be 1,
classical Maxwell’s equations become

(1) dF =0 and d(xyF)=J.

Here xj, is the Hodge-star operator associated with the space-time Minkowskian
metric and the volume form ds A dV in R x R?, and J = ds A *J — pis a closed
3-form in R x R?, where *J and p = podV are respectively the current density
2-form and the charge density 3-form (here x is the standard Hodge-star op-
erator in R?® associated with the Euclidean metric and the volume form dV).
Since dF' = 0, we can always assume that F' = dA, where A (the electromagnetic
potential 1-form) can be written as A = Ay + ¢ds. If, in addition, A » and ¢ satisfy
suitable gauge conditions, then they satisfy the wave equations

PA
82
3) 878(20 =—dp +py,

where 4A 5 is the positive Hodge Laplacian on 1-forms
AAs = (d*d + dd")As.

We remind that, in the Euclidean space, the Hodge Laplace operator 4 acts
diagonally on 1-forms, i.e.

AAs = A (ZAz,i d%‘i> = Z (AAZ,i)dﬂﬂia

so that equation (2) reduces to a system of uncoupled wave equations.
Recently, in a series of papers ([4], [12], [11], [2]), the authors introduced and
studied the notion of “intrinsic” Maxwell’s equations in free Carnot groups (see
(16)). The setting for these equations is provided by a subcomplex of “intrinsic”
differential forms (£}, d.) — homotopic to de Rham’s complex (2", d) — introduced
by Rumin in [19], [18], (see also [3]). The main features of this theory are sket-
ched in Section 2. Here is important to stress that, when acting on intrinsic
1-forms, the “exterior differential” d. is an operator of order r (the step of the
group) in the horizontal derivatives. Therefore, the associated Laplacian
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Acq = did. + (d.d})" is a (maximal hypoelliptic) operator of order 2x. Assume
now (as we can always do) the higher order gauge condition

o4l @ _
4) (—=4c)" 0. As + s 0.

m
where 4 =) X72 is the usual subelliptic Laplacian in G, {Xj,---,X,,} being a

J=1
suitable basis of V. Then the corresponding “wave equations for a vector po-
tential” Ay + ¢ ds takes the form:

OPA
(5) WQE = —A(},IAZ
o K
(6) —(98(5 =—(—4c)9p,

provided (4) holds.

It is important to notice that the equation for Ay cannot be diagonalized,
unlike in the Euclidean case. But the main new phenomenon is that the “wave
equations” we obtain utterly differ even in the scalar case from what one could
imagine as “wave equations in the group”, i.e.

Indeed, the equations we obtain are by no means hyperbolic equations, by [16],
Theorem 5.5.2, since they contain second order derivatives in s and 2«-th order
derivatives in x, so that their principal parts are (degenerate) elliptic. Thus, we
should not expect any hyperbolic behavior, as, for instance, finite speed of pro-
pagation like in (3) (see, e.g., [17], [14]).

Another interesting feature of “wave equations” (5) has been already pointed
out in [12]. In case of cylindrical symmetry in I (i.e. when dealing with functions
depending only on the horizontal variables), the components of Ay, as well as ¢,
solve the equation

Pu
9 =

In this way, we recover a classical equation of elasticity, the so-called Germain-
Lagrange equation for the vibration of plates (see e.g. [21], Section 9).

In [2], we proved that intrinsic time-harmonic Maxwell’s equations in a
bounded domain of (5 are variational limits of classical time-harmonic Maxwell’s
equations in the matter in presence of strongly anisotropic electric permittivity
and magnetic permeability. In this paper we prove a corresponding result in
terms of I'-convergence for time-depending variational functionals associated
with the wave equations (5) in the space-time Carnot group R x & (that actually
is not free).

—Afu  in RZ



SOME REMARKS ON VECTOR POTENTIALS FOR MAXWELL’S EQUATIONS ETC. 341

More precisely, we prove that the vector potential Ay + ¢ds is a critical
point of a variational “energy functional” £, and that £ is the I"-limit of a se-
quence of functionals £, associated with approximated Riemannian energies. It
is worth to stress here that this result is not meant in the perspective of ob-
taining existence of critical points for £, but only to show in what sense vector
potentials in the group can be seen as limits of “usual” vector potentials in the
de Rham complex.

The paper is organized as follows: in Section 2 we collect some known results
on Carnot groups and we present the main results of Rumin’s theory of differ-
ential forms in Carnot groups; in Section 3 we remind the notion of Maxwell’s
equations in space-time Carnot groups, and finally in Section 4 we prove our
main convergence result.

2. — Differential Forms in Carnot groups

To keep this paper self-contained we remind some defintions and properties
concerning the“intrinsic” complex of differential forms in Carnot groups, as
defined by Rumin in [19], [18], (see also [3]). Let (5, -) be a Carnot group of step x
and let g be its Lie algebra with dimension 7.

DEFINITION 2.1. — Let ey, . .., e, be a basis of g adapted to the stratification,
and let X = {Xi,...,X,,} be the family of left invariant vector fields such that
X;0)=e;, 1 =1,...,n The Lie algebra g can be endowed with a scalar product
(-,), making {Xi,...,X,} an orthonormal basis.

DEFINITION 2.2. — Let m > 2 and x > 1 be fixed integers. We say that ,, , is

the free Lie algebra with m generators xy, . .. ,x,, and nilpotent of step k if:
i) T, i a Lie algebra generated by its elements x1,...,Tp, e
fm,}f = Lie(mla s axﬂz);

ii) f,,.,. s nilpotent of step r;

iii) for every Lie algebra 1 nilpotent of step xk and for every map ¢ from the
set {x1,...,%n} to 0, there exists a (unique) homomorphism of Lie algebras ¢
from §,, . to nwhich extends ¢.

The Carnot group G is said free if its Lie algebra g is isomorphic to a free Lie
algebra.

When G is a free group, we can assume {X,...,X,} a Grayson-Grossman-
Hall basis of g (see [13], [5], Theorem 14.1.10). This makes several computations
much simpler. In particular, {[X;, X;1,X;,X; € V1,i1<j} provides an ortho-
normal basis of V.
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Since G is written in exponential coordinates, a point p € G is identified with
the n-tuple (p1,...,p,) € R" and we can identify G with (R",-), where the ex-
plicit expression of the group operation - is determined by the Campbell-
Hausdorff formula.

For any x € G, the (left) translation v, : G — G is defined as

2 TR =X 2.
For any 4 > 0, the dilation J, : G — G, is defined as

8,1, .. ) = Ay, ..., 2%,

where d; € N is called homogeneity of the variable x; in G (see [9], Chapter 1).
The dilations d; are group automorphisms, since J,x - 0, = J,(x - y).

The Haar measure of G = (R", -) is the Lebesgue measure £" in R". IfA c G
is L-measurable, we write also |A| := L"(A).

Following [9], we also adopt the following multi-index notation for higher-
order derivatives. If I = (1,. .., 1,) is a multi-index, we set X/ = Xfl . Xf1 By
the Poincaré-Birkhoff-Witt theorem (see, e.g. [6], 1.2.7), the differential opera-
tors X’ form a basis for the algebra of left invariant differential operators in Gi.
Furthermore, we set |I| := i; + - - - + i, the order of the differential operator X’
and d(I) := dyi; + - - - + dpi, its degree of homogeneity with respect to group
dilations.

Let k be a positive integer, 1 < p<oo, and let 2 be an open set in G. The
Folland-Stein Sobolev space Wf,;p (Q) associated with the vector fields X3, ..., X,
is defined to consist of all functions f € LP(Q) with distributional derivatives
XIf € LP(Q) for any X' as above with d(I) < k, endowed with the natural norm.
We keep the subscript G to avoid misunderstanding with the usual Sobolev
spaces WrP(Q).

The dual space of g is denoted by /\1 g. The basis of /\1 q, dual of the basis
X1, -, Xy, is the family of covectors {61, --,0,}. We indicate by (-,-) also the
inner product in /\1 g that makes 61, - - -, 6, an orthonormal basis. We point out
that, except for the trivial case of the commutative group R”, the forms 61, - - -, 0,
may have polynomial (hence variable) coefficients. Following Federer (see [8]
1.3), the exterior algebras of g and of /\1 g are the graded algebras indicated as

Aa=D N, aand A" g =P A"awhere A\gg = A\’a = R and, for 1 </ <n,
h=0 7=0
/\hg::span{Xil/\---/\Xih:1§i1<-~-<ih§n},
/\hg::span{ﬁil/\--~/\t9ih:1§i1<---<ih§n}.

The elements of A, g and /\h g are called k-vectors and h-covectors, respectively.
We denote by 2, and Q" the spaces of all sections of N\, ¢ and /\h a, respectively
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for . =0,1,...,n. We refer to elements of Q) as to fields of h-vectors and to
elements of Q" as to h-forms and to (2%, d) as to the de Rham complex.

We denote by @”" the basis {0y N---NO 1 <iy<--- <y, <n}of /\h g.

The dual space A' (A, 8) of A\, @ can be naturally identified with A" g.

The inner product (-,-) extends canonically to A\; g and to /\h g making the
bases X; A---AX;, and 0; A--- A0;, orthonormal.

DEFINITION 2.3. — We define linear isomorphisms (Hodge duality: see [8]1.7.8)

A AL e N N

forl < h <, putting, forv,w e A\, gand ¢,y € /\h a
vAsw = (v, w)X1 A AN Xy, oA sy = {p,y)01 N\--- N\ Oy.
From now on, we refer to the n-form
dV =0 N--- N0,

as to the canonical volume form in G.
If d is the usual de Rham exterior differential, we denote by ¢ = d* its formal
adjoint in LA(G, Q).

DEFINITION 24. — Ifa € /\1 g, o # 0, we say that o has pure weight k, and we
write w(e) = k, if its dual vector o® is in V. More generally, if o € /\h a, we say
that o has pure weight k if o is a linear combination of covectors 0; A --- N 0;,
with w0;) + - - - +w0;,) = k.

REMARK 2.5. — As shown in [3], if o, § € A" g and w(x) # w(f), then («, f) = 0,
and we have ([3], formula (16))

M;Z""”‘
(8) Na= D N7"s

p= M;{un

where /\h“p @ is the linear span of the &-covectors of weight p and M }fi“, M7 are
respectively the smallest and the largest weight of left-invariant Z-covectors.
Keeping in mind the decomposition (8), we can define in the same way several
left invariant fiber bundles over (3, that we still denote with the same symbol
AP g. Notice also that the fiber /\z a (and hence the fiber /\Z‘p @) can be endowed
with a natural scalar product (-, -),.
We denote by 2" the vector space of all smooth h-forms in G: of pure weight

p, i.e. the space of all smooth sections of \"” q. We have
M
9) Q"= 2
p:lein
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The following crucial property of the weight follows from Cartan identintity:
see [19], Section 2.1:

LEMMA 2.6. — We have d(\"? g) c NP g, e, if a e N'Pq is a left in-
variant h-form of weight p with do # 0, then w(do) = w(w).

DEFINITION 2.7. — Let now . = . oy 0? € Q" be a (say) smooth form of

pure weight p. Then we can write %<0’

do = dooe + dyo + ... + de,

where
dor =Y odb}

/i,
0reoh?

does not increase the weight, and

dim= " > Xu)0; A0},

greetr XieVi

increases the weight by ¢ for ¢ =1, ..., «x. In particular, dy is an algebraic op-
erator.

LEMMA 2.8. — d2 =0, i.e. (2, dy) is a complex.
Moreover, let o € Q" be left-invariant. We have:

1) do = dyoy
ii) doo is left-invariant.

The following definition of intrinsic covectors (and therefore of intrinsic
forms) is due to M. Rumin ([19], [18]).

DEFINITION 2.9. — If 0 < h < n we set
El .= kerdyn(Im do)" c Q"

The elements of E’S‘ are intrinsic h-forms on (5. Since the construction of Eg' is
left invariant, this space of forms can be seen as the space of sections of a fiber
subbundle of A" g, generated by left translation and still denoted by El. In
particular Eg inherits from /\h g the scalar product on the fibers.

Moreover, there exists a left invariant orthonormal basis = = {&} of E that
is adapted to the filtration (8).

Since it is easy to see that E(l) =span{0y,...,0,}, without loss of generality,
we can take & = 0; for j =1,...,m.
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,
If we set By ? := Ei 0 Q" then

B, =PE;".
p

We define now a (pseudo) inverse of dy as follows (see [3], Lemma 2.11):

LemMA 2.10. - If f € /\h+1 a, then there exists a unique o € /\h ankerdy)"
such that doo — B € R(do)". We set o := dy'f. Notice that dy' preserves the
weights.

The following theorem summarizes the construction of the intrinsic differ-
ential d, (for details, see [19] and [3], Section 2) .

THEOREM 2.11. — The de Rham complex (2%, d) splits in the direct sum of two
sub-complexes (E*,d) and (F*,d), with

E :=kerd,' nker(dy'd) and F :=R(d,")+ R(ddy").
We have
i) Let Ilg be the projection on K along F (that is not an orthogonal pro-

Jection). Then for any o € E'g’p , if we denote by (I1gw); the component of Igo of
weight j, then

(g, = «
(10) (ITgo)y ps1 = —dy* ( Z de(HEd)p+k+1é>-
1<i<k+1
ii) I1g is a chain map, i.e.
dllg = Hgd.
ili) Let ITg, be the orthogonal projection from Q on Ej, then
(11) Mg, = 1d — dy*dy — dody?, Hﬁo =dytdy + dody .
Set now
de =g, dlg:El — EFY h=0,....n—1.
We have:

iv) d2=0;

V) the complex By := (K}, d,) is exact;

vi) with respect to the bases Z*, the intrinsic differential d. can be seen as a
matrixc-valued operator such that, if o has weight p, then the component of weight
q of d.o is given by an homogeneous differential operator in the horizontal de-
rwatives of order ¢ — p > 1, acting on the components of o.
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From now on, we restrict ourselves to assume G is a free group of step «. The
technical reason for this choice relies in the following property.

THEOREM 2.12 ([11], Theorem 5.9). — Let G be a free group of step k. Then all
forms in E} have weight 1 and all forms in E3 have weight r + 1.

Moreover, if &€ /\2”’ q with p # x+1, then IIg,¢=0. Indeed, IIg,¢ has
weight p, and therefore has to be zero, since Iy, ¢ € Ay

We denote by 6. = dc.c = d; = d;‘ ¢ the formal adjoint of d. in LA(G, Ej). The
following assertion holds.

DEFINITION 2.13. — If Q C G isan open set, 0 <h<n,keNand1l < p < o0,
then we denote by W’IC P(Q,E) the space of all forms in E& with coefficients in
Wfi’p (Q), endowed wzth its natural norm. It is easy to see that this definition is
mdependent of the basis of /\ a we have chosen. The spaces LP(L2, Eh) and
D(Q, EY) are defined analogously starting from LP(Q) and from the space of test
Sfunctions D(Q), respectively.

3. — Space-time Carnot groups and Maxwell’s equations

From now on, we denote by « a “space” point in the Carnot group G, and by
s € R the “time”, and we choose in R x G the canonical volume form ds A dV/,
where, as above, dV = 01 A - - - A 0, is the canonical volume form in GG. Moreover,
we denote by (2f;,d:) and (.Q kx(3» Arxc) the de Rham complex of forms on G and
on R x G, respectively. Notice that, in general, even if G is a free group, then
R x (G may fail to be free. For sake of brevity, we write

Q=05 and Q=0 .,
d = d(:} and (’i = dRX(‘)

0:=di, and 0:=dp;.

When dealing with intrinsic forms, we denote by (&j,d.c) and
(EaJRx(:;’ d¢rxc:) the complex of intrinsic forms on Grand on R x G, respectively.
Again, we write

Ey:=Ey; and Ej:=E; g,

as well as
de :=de and dg = de e,

. S g%
O¢ i= dc([ and o, := dc,RX@.
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Denote by S the vector field 2 The Lie group R x G is a Carnot group; its

ds’
Lie algebra § admits the stratification
(12) i=VieVa---aV,,

where V; = span {S, V1}. Since the adapted basis {X1, ..., X,} has been already
fixed once and for all, the associated orthonormal fixed basis for g will be
{S,Xi,...,X,}. Consider the Lie derivative Lg along S. When acting on /-forms
o in G, without risk of misunderstandings, we write So for Lgo.

We point out that S commutes with d. Thus, if « € Q" and its coefficients
depend on s and «x (and is identified with a 2-form in f)h’), then

(13) doc = do + ds A (Sa).

Let us state preliminarily a structure lemma for intrinsic forms in R x G. The
proof can be found in [4] and also in [11].

LEMMA 3.1. — If1 < h < n, then a h-form o belongs to E’é‘ if and only if it can
be written as
(14) a=dsAp+y,

where f§ € Eg*I and y € ESL are respectively intrinsic (h — 1)-forms and h-forms
m G with coefficients depending on x and s.

As in special relativity, the space-time R x G can be endowed with a
Minkowskian scalar product (-,-),,in A, g and A" §. For a precise definition see
[11], Definition 4.1.

DEFINITION 3.2. — If1 < h < n, we set
(dsAP+y,ds B+ )y = 7)) — (B, ).

for BB € EiLand y, y € Eb. In addition, we denote by +y the Hodge operator
st NG — A" § associated with the Minkowskian scalar product in \* 4,
with respect to the volume form ds A dV, by

oA sy ff = (o, ) ds AdV.
REMARK 3.3. — If o = ds A f + 7 € El', then
s = (— 1'ds A sy — f.

RROPOSITION 3.4 ([11], Proposition 4.7). — If 1 <h <mn, and o =ds A+
y € EL, then

(15) deor = ds A (Sy — de ) + doy.
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Let J be a fixed closed intrinsic #-form in R x G (a source form). We can
write J =ds A*xJ —p, where J =J(s,-) is an intrinsic 1-form on G and
p(s,+) = py(s, ) dV is a volume form on G for any fixed s € R.

IfF e E%, we call Maxwell’s equations in G the system

(16) d.F=0 and d(syF)=J

(for sake of simplicity, we assume all “physical” constants to be 1). This system
corresponds to a particular choice of the so-called constitutive relations. We refer
to [4], [11] for further comments (in particular for invariance under suitable
contact Lorentz transformation).

If F' is a solution of (16), then it is in particular a closed form. Therefore it
admits a vector potential

(17) A:=As+g¢dseE} suchthat d.A=F.

If F satisfies (16) and A is a vector potential associated with /" as in (17), then A is
a stationary point of the functional

(18) [ (@A nsyded—an).

G

4. — The main I'-convergence results

We recall briefly the definition of sequential I"-convergence. For an accurate
and exhaustive study of I'-convergence, we refer to the monograph [7].

DEFINITION 4.1. — Let X be a separated topological space, and let
F., F: X—[—o00,4+00]

with & > 0 be functionals on X. We say that {F.},., sequentially I"-converges to
F on X as ¢ goes to zero if the following two conditions hold:

1) for every u € X and for every sequence {u, },.o.n; with & — 0 as k — oo,
which converges to u in X, there holds

(19) liminf 7, (u,,) > Fu):

2) for every w € X and for every sequence {ey} ., with g — 0 as k — oo
there exists a subsequence (still denoted by {ey},cn) such that {us, }.cn con-
verges to u in X and

(20) lim sup F,, (u;,) < F(u)

k—o0
To avoid cumbersome notations, from now on we write systematically lina to
e

mean o limit with e = &, where {&;}.cx s any sequence with &, — 0 as k — oc.
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DEFINITION 4.2. — We set
wo(N'g) ={a=4s+gpds,
with Ay € L2 (R, WE (G, A" a)) n W2 (R, LG, A\ q))
and g e L(R, WG, N\ )},
endowed with the norm

0As

, 9 1/2
||A (Sa )” 10,2 1 ds + 7(87 ) . 1 ds)
(! x WA\ @ ! H Os (e \'a)

) 1/2
+< Rf 06 M po) ds) .

We set also
W) = {A = As + pds € Wo (' 8), with As € B} }.

Suppose now J = ds A xJ — pydV, where J € L*(C, E}) and p, € LG, EY),
so that J ¢ LZ(G,E’(}). Consider the functional

21) f (@ AN ydeA—ANT),

G

introduced in (18), that is finite for A = Ay + ¢ ds € W(,:(E'(l)).
It is easy to see that, up a factor ( — 1)", (21) can be written also as

(22) [ (1deAsP — 1545 — degl? + (A5, T) + ppo)ds A aV.

G
For sake of simplicity, from now on we denote by £;(A) the source term
Li(A) ::fds f((A;,J) +opy)dV.
R G

Eventually, if A=As+¢pds¢€ W(;(/\1 d), we can define a functional in
Wa(A' §) as

f (ldAs? — |SAs — dep[*)ds AdV + L1(A) if A € Wi (ED)

LA) =

+ oo otherwise.
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Let now ¢ > 0 be given. If A € WG(/\1 q) we set,

1 2 1 2
L) = f d,AP ds AV — f 6SAs — dypPds A dV + L1(A),
G G

where
d. =do+edi +---+d,

(notice £1(A) is independent of ¢).
We stress that £.(A) is always finite, since WQZ(G, /\1 a) C WG, /\1 q) and
LXR, WG, N @) € LR, WH(G, A\ ).

DEFINITION 4.3. — We say that a sequence (A")yex = (A% + ¢"dS)yen 0
Wa(A §) M-converges to A == As + ¢ ds € Wa(\' §) (briefly A" 4 if

o A — o weakly in L2(R, Wi(G, A\ g));
o AL — o strongly in W"2(R, L2(G, \' q));
o " — ¢ weakly in L2(R,WZ(G,\’g));
o ¢ — ¢ strongly in L2(R, W52 (G, A" g)).

LEMMA 4.4. — Suppose J € LZ(G,E})) and p, € LZ(G,ES). Then Ly is con-
tinuous with respect to the M-convergence.

THEOREM 4.5. — Let G be a free Carnot group of step k and consider the
Carnot group G = R x G. Suppose J € LX(G,E}) and py € LA(G, EY). Then
L. sequentially I'-converges to L in the M-topology
ase— 0.
Proor. — Without loss of generality, we can take £; = 0, by Lemma 4.4, ar-
guing as in [7], Proposition 6.21.

Let A% := A% + ¢fds Ma—A >+ pds as ¢ — 0. First, keeping in mind that
dog® = 0, and that d, = d; on functions, we notice that

812 f 6SA% — dyg?2 ds A dV
G

(23) :f ISAS — dig* — edag® — - — &P ds A dV

G

—>f|SAz —depPdsAdV  as e— 0.
G
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Thus, in order to show that

(24) £(A) < liminf £,(4°).

we are left to prove that

2 oo 1 e 12
(25) f dcAsPds A dV < liminf f \d,A% 2 ds A dV.
B Gi

Without loss of generality, we can assume that

(26) liminf £,(4%) < oo,

and therefore, also by (23), we can assume that the right hand side of formula (25)
is finite. In particular, it follows that A € Wg (E' ).
Keeping in mind (9), we write

AL =A5h + -+ Ay,

with (45%); € Qll . = 1,...,x. Arguing as in [1], Theorem 5.1, we can write
-1
%{fldsA}IzdsAdV: Y f > edi(AL),- ds/\dV
é G 2<psic i 1i=0
27) + & f 1A% + -+ + & d (A5, [P ds A dV
G
K+2<p<21c G i=p—K

Assumption (26) impliesﬁthat the three terms in the right hand side of (27) are
uniformly bounded in L2(G, A® g). In particular, from the boundedness of the
first term, it follows that

p—1

(28) do(A5), + &Y & di(AS), s — 0
i=1
as ¢ — 0. On the other hand,
(29) do(A%), — do(Ax), weakly in L3(C, /\ Q,

since dy is algebraic and (4%), — (4x), weakly in LZ(G, /\ g) for p > 1.
Combining (28) with the boundedness of {45} in L3(R, WKZ(C A' @) and
with (29), it follows that

(30) do(As), =0 forp=2,... k
Hence Ay € kerdy = E\.
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We consider now
chZ = HEOdHEAZ-

We can replace dITg(As) by (dIIgAxs).i1, since, by Theorem 5.9 in [11], I1g,
vanishes on 2-forms of weight p # x + 1. In other words,

(31) d.(As) = g, < Z dZ(HEAZ)1c+1—I(> .
=1

A slight modification of the arguments used in the proof of Theorem 5.1 in [1]
yields

(32) di(ITgAs)ci1-0 = 11_{% & (AL 10

in D'(G,\¥qg)for £ =1,...,%,j=0,...,L
By (32), we get

(33) = (dl(A ok NAAD ) — Zd,(ﬂ,pcxz),‘+1 .

as ¢ — 0 in the sense of olistributions. We want to show that the limit in (33) is in
fact a weak limit in L?(G, /\2 a). Indeed, again by (26),

{ o (A, + - s“dx(Azh)}
>0

is equibounded in LZ(G /\2 q) as ¢— 0. On the other hand, the limit

ng(HE(AZ))KH ¢, belongs to Lz(( /\2 q) (since X — dy(ITgAs).41_¢ 18 an

homogeneous differential operator in the horizontal derivatives of G of order x).

Thus, by (31), (27) and taking into account that /7, is an orthogonal pro-
jection, we obtain eventually

f dAs2 ds A dV = f 115, (Z dg(nEAz)H”) 2ds AdV
G G =1

2
_,‘ ds ANdV

<liminf 2170 [ |dy(A5), + -+ + &l (A [ ds ndv

.1 9
< — é .
_llrilglf 2 f|dgAZ| ds \NdV

G

This proves (25) and eventually (24).



SOME REMARKS ON VECTOR POTENTIALS FOR MAXWELL’S EQUATIONS ETC. 353

We prove now that, if A € WG(E%), then there exists a sequence (A%),.( in
W@(/\1 @) such that
i as M A
i) L£.(A%) — L(A)ase— 0.
By a pretty standard reduction argument, without loss of generality we may

assume A € D(G,E’})).
We choose A? := A5 + ¢ ds, where

(34) AL = Ays + e(IlgAs)s + -+ - + & L gAy),.
As above, it is easy to see that

f|ESA* — dypf? ds/\dVef|SAL —deol? ds AdV

G
as ¢ — 0, since
eSAL —d.p = 8<SA2 —dep + Z J1 [UTESAx); — d,(p])
=2
On the other hand,

2

K

f|dA 2 dsAolV_7 (f HEO< ( Sil(HEAZ)i)> ds AdV
i—1
(3) l
2
+f’HE'i< Z I(HEAz) )) dS/\dV)
-1
Gathering the terms of weight p = 2, ..., 2k, we can write
K p—1
dg(zsl—lmEAz)i) = > @Y dilTpAs),.
-1 2<p<r =0

+ & (di(TgAs), + - - - + di(ITgA5)1)

+ Z &t Z diIIgAyx)y—i =1 + 12 + I3.

K+2<p<2Kk i=p—K

First of all, notice that, by definition, e *IIg Is = I, dIIgAs = dAs.
Now, by Theorem 2.12,

g1 =0.
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On the other hand, by the recursive formula (10) and Lemma 2.10, we can argue
as in [1], Theorem 5.1, to prove that

(36) My I = 5 I = 0.

Coming back to (35) we get,

) 1 1
[1a.45 ds ndV = = f|HE012|2ds/\dV+82—Kf\13|2ds/\dV
G G

G

- f g, (dy (T gAs) + -+ d(ITgAL), ) P ds A dV
G

1

2
+E dS/\dV;

> & i diTgAs)y—i

K+2<p<2k i=p—K

observing that the second term in previous expression goes to zero as ¢ — 0, we
get

lim f Id,AL 2 ds A dV = f A ds AdV.
G G

This achieves the proof of the theorem. O
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