BOLLETTINO
UNIONE MATEMATICA ITALIANA

MICHELE COTI ZELATI, ROGER TEMAM

The Atmospheric Equation of Water Vapor with
Saturation

Bollettino dell’Unione Matematica Italiana, Serie 9, Vol. 5 (2012), n.2,
p. 309-336.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2012_9_5_2_309_0>

L’utilizzo e la stampa di questo documento digitale é consentito liberamente per mo-
tivi di ricerca e studio. Non ¢é consentito I’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim. eu/


http://www.bdim.eu/item?id=BUMI_2012_9_5_2_309_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2012.



Bollettino U. M. 1.
(9) V (2012), 309-336

The Atmospheric Equation of Water Vapor with Saturation

MicHELE COTI ZELATI - ROGER TEMAM

This article is dedicated to the memory of Enrico Magenes
with deep respect for the man and the mathematician

Abstract. — We analyze the equation of water vapor content in the atmosphere taking into
account the saturation phenomenon. This equation is considered alone or coupled
with the equation describing the evolution of the temperature T. The concentration of
water vapor q belongs to the interval [0, 1] and the saturation concentration qs € (0,1)
18 the threshold after which the vapor condensates and becomes water (rain). The
equation for q (as well as the coupled q-T system) thus accounts for possible change of
phase.

1. — Introduction

The equations describing the motion of the atmosphere, also called
Primitive Equations (PEs), are the classical tools used in the study of climate
and weather prediction when the hydrostatic assumption is enforced, see e.g.
[7, 10, 11, 16]. To the best of our knowledge, the mathematical study of the
PEs was initiated in [15]. The equations considered in [15] and in the pre-
viously quoted references are the equations of the general dynamics of the
atmosphere, for the whole atmosphere or for midlatitude regions. When
studying the climate dynamics around the equator, the humidity equation,
which describes the ratio of vapor in the air, g € [0,1], becomes very im-
portant and it is necessary to account for the possible saturation of vapor
leading to condensation and rain.

In this article we study the equation of concentration of vapor accounting for
saturation. Note that the equation considered in [15] (see also [8, 9]) does not
account for saturation and thus it is just a transport equation. The saturation
concentration ¢; € (0,1) usually depends on the temperature 7', but for simplicity
we take it constant; introducing its dependence on the temperature would only
add minor technical difficulties.

In Section 2 we consider the equation for the specific humidity ¢, assuming
that the temperature is given. We first study an approximated problem in
Section 3. Then, passing to the limit, we derive the existence of solutions for
the specific humidity equation. We also establish, using the maximum prin-
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ciple, that ¢ € [0,1]. Uniqueness is proven under an additional physically
reasonable assumption. In Sections 4 and 5 we study the coupling of the
specific humidity equation with the temperature equation, only emphasizing
the new points. Note that uniqueness is not guaranteed in this case and that,
in both cases, the fluid velocity field u is assumed to be given. The coupling
with the fluid equations (PEs, as in [15]) raises additional difficulties which
will be addressed elsewhere [2].

2. — The equation of specific humidity

In this section and the next one, we will concentrate our attention on the
equation ruling the evolution of the specific humidity, establishing existence
and uniqueness of weak solutions. In order to simplify the presentation, we
will consider a slightly simpler form of the problem. We will assume that
M c R?is a bounded domain with smooth boundary M. Given 7, > 0 and a
velocity vector field u : [0,7,] — R®, we consider the equation

O0q — A3q +ut) - Viq € H(g — q5)f 1), in M,
(2.1) g=0, ondM,
q@,y,p,0) = qolw,y,p), (@, y,p) € M,

where f is a general time-dependent forcing term. In what follows, we will only
keep track of the time-dependencies of f and u. Here, we have adopted the
(x,y, p)-coordinate system typical of the three-dimensional PEs of the atmo-
sphere, for which 43 = 82 + 82 + 81% and V3 = (9, 0y, 0p). Lastly, the Heaviside
multivalued function

0, r<0,
H(r)=410,1], r=0,
1, r >0,

depends on the saturation specific humidity ¢s;, which we impose to be a
constant value.

2.1 — Function spaces

Let H be the real Hilbert space L?(M) with the usual scalar product (-, -) and
the induced norm | - |. Setting A = —43 with Dirichlet boundary conditions,

A:DA) — H with D@A) = H\(M)NH*(M),
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we define the Hilbert space V to be
V =DA?) = Hy(M),

denoting by ((v,w)) = (A'/?v, A1?w) its scalar product and by ||v|| = |[AY/?v) its
norm. The dual space V* of V is endowed with the dual norm || - ||,, and the
symbol (-,-) will indicate the duality pairing between V and V*. If 4; > 0 is the
first eigenvalue of A, then we have the well-known Poincaré inequality

il < ol?, wweV.
Moreover, for ¢ € (0,1), we define the scale of Hilbert spaces
H' =DAP), (), = AP0, APw), o], =A%),

We denote by L2(M) = {L2(M)}* and H (M) = {H*(M)}? the usual Lebesgue
and Sobolev spaces of vector valued functions on M. Setting

D= {uecCrM,R%: divu =0},

we consider the usual Hilbert spaces associated with the Navier-Stokes equa-
tions [19],

H = closure of ® in L* (M),
V = closure of ® in H'(M),

which will serve us as the natural spaces for the vector field u.

2.2 — Notation

For any function v : M — R, we define
vt =0"(x,y, p) = max{v(x,y,p),0} and v =v (x,y,p) = max{—v(r,y,p),0}

to be the positive and negative part functions, respectively. If v € H (resp.
v € V), then v" and v~ are in H (resp. in V), with [vt| < |v| and |v~| < |v] (resp.
lo* ]| < [[o]l and o~ < [[o]p.

Given any normed space X other than the ones already defined, we denote by
| - ||l x its norm. Moreover, the Lebesgue measure of a set ¢ is indicated by the
symbol |a|.

Throughout the article, C and Q(-) will refer to a generic positive constant
and to a generic increasing positive function, whose values may change even in
the same line of a certain equation. In the case of a specific constant or function,
an index will be added (e.g. Ci, Q1), and the respective value will be explicitly
computed.
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2.3 — The trilinear form b

Givenu € V and ¢q,q* € V we set
b(u,q,q") :f(u -V@)gdM.
M

It is easy to check that b is well-defined for such u, q, ¢* and
(2.2) b, q.q)| < Cllullylglllgl,  Yg.¢"€V,ueV,

so that b is a continuous trilinear form on V x V x V, and we infer the existence
of a bilinear continuous operator B : V x V — V* sometimes called the coupling
operator, defined by

(Bw,q),q") =bw,q,q"), Vq,g"cV,ucV.
Moreover, from the calculation

1

1 1
N = = . 2 = = 2 . —_ = 2di =
f(u Vq)qd/\/lfzfu V(g*)dM 2fq u-vdom 2fq dive dM =0,
M M oM M

we obtain the orthogonality property

(2.3) bu,q,9) =0, Vge H(M)ucV.

Notice also that this implies the skew-symmetric property

(24) bu,q,q") + bu,q*,q) =0, Vg,¢* e H(Q),ueV.

Finally, from the Sobolev embedding H'/? c L3(M) in dimension three, along
with the interpolation inequality

lg*lly2 < lg* 121172, V" eV,
we obtain the useful estimates
25)  |b,q,q)| < Cllulylql*|Aq?lq*|, Vg D@A),q¢ cHueV.
and
26)  [b@,q.q)| < Clulylelqglllg*ll,  Yg.q" €V.ueV.

REMARK 2.1. — Due to the structure of the physical problem, we will be in-
terested in the case in which the vector field u is time-dependent. In this case, the
trilinear form b(u(?), -, -) and the coupling operator B(u(t),-) will be time-depen-
dent as well. If we fix 7, > 0, from (2.6) we deduce that

T, 7.
[ 1B, qFat<c [ ik ooilood
0 0
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Since the function ¢+~ Bu(),-) is measurable, and, equivalently, so is
t — b(u(t),-,-), we can conclude that

B(-),q(-) € L*0,T,;V*)

whenever u € L*0,7,;V) and q <€ L*0,7,;V)NL>(0,7,;H). Therefore,
both the trilinear form and the coupling operator will be defined for a.e.
tel0,7,]

2.4 — The abstract problem

We are now ready to rephrase problem (2.1) in an abstract way. Fix 7, > 0,
feL?0,7,;H) and ¢, € (0,1). For t € (0,7,], we examine the evolution equa-
tion in the unknown ¢ = ¢q(¢):

P) 0iq +Aq + Bu(t),q) € H(q — q.)f (®),

with initial datum q(0) = qp € H. We give the following definition of a weak so-
lution.

DEFINITION 2.2. — A function q € L*(0,7,;V)NC([0,7.]; H) is a solution to
(P) if oyq € L*(0,7T,;V*) and

27) (9q,q) + (q,q) + but), q,q) = (hyf(),q*), ae.tc(0,7,], Vg€V,
for some hy € L®(M x [0,T,]) which satisfies the variational inequality
28) (Ig" —¢s1". D)~ (lg = ¢:I", D) = (hg,¢" — q), ae.te(0,T.] Vg€V,
and q(0) = qo.

REMARK 2.3. — The variational inequality (2.8) expresses the fact that &, is
an element of the subdifferential of the positive part function ¢ — ([q — ¢s]*, 1),

which is clearly a lower semicontinuous convex function from V into R.
Moreover, we have

5([11 - q.s‘]+; 1) = H(q - (13)~

At first glance, (2.8) seems a complicated way to simply say that i, € H(q — gs),
but, as it will be clear in the Paragraph 3.2 below, this formulation is much
handier when passage-to-the-limit operations have to be performed.

REMARK 2.4. — A priori, H(q — g5) is a nonempty closed convex set in V*, but,
in fact, it is a subset of the unit ball of L>(M). Indeed, if &, € H(q — g;) and
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q(xayap) 7& qS’ then

9@, y,p) — gs
2.9 ho(e,y,p) = ——— 1%
(29 I 4@y, p) — g
while if g(x,y,p) = ¢s, we have
(2.10) hq(x, y, p) € [0,11.

3. — An approximated problem

In this section, we construct a family of problems which approximate problem
(P) in a suitable sense. In this way, the limit of such approximated solutions will
be shown to be a solution to (P), in the sense made precise by Definition 2.2. The
proofs are based on a priori estimates and compactness arguments, and the
variational inequality (2.8) plays an essential role.

3.1 — Problem (P,)

For ¢ € (0,1], define the real functions

0, r <0, 0, r <0,
H.(r)= < r/e, r e (0,¢], K.(r) =< 722, r € (0,¢el,
1, r> e, r—¢/2, r> e

It is straightforward to check that K] = H,,

(3.1) |H(r1) — H.(1r2)| < %W’l — 12, Vr, e € R
and

(3.2) |K:(r1) — Ke(rp)| < |11 — 73], vri,re € R
Moreover,

(33) K@) —r<5.  vr=o.

We then consider the following family of problems, depending on the parameter ¢,

) g +Aq+ Bu®),q) = Hq — ¢)f®),
q(0) = qo,

in order to establish an existence result for the limiting situation described in
problem (P). The proof of the following theorem can be deduced by a standard
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Galerkin approximation procedure, together with the subsequent Lemmas 3.2,
3.3 and 3.4.

THEOREM 3.1. — Let T, > O and f € L*(0, T ,; H). For every ¢ > 0, there exists
a unique solution

g € C([0,T.1; H) N L*(0,T,; V)

to (P,), such that
Ag: € L*0,T 5 V).

We start by proving uniqueness and continuous dependence on the initial
data.

LEMMA 3.2. — Let ¢ > 0 be fixed. If qg(t), q?(t) are two solutions to (P,) with
wnitial data q',q% € H, we have

1) — B < ST gt — @5, Vtel0,7T.],

where

2
Co =20z

Proor. — The difference g.(t) = ¢}(t) — ¢3(¢) solves the system
3.4 { &g + Aq. + Bu(t),q.) = [H.(q} — q5) — HAq? — q9)] f),
2.00) = ¢' — ¢

Multiplying the above equation by ¢, in H and using the orthogonality property
(2.3), we see that

1d _ _
53 @] + 1G] = ([Hq! — g5) — HAG — ¢9)] f D), ).

Hence, (3.1) entails
d

1

2 _ 2
<z

thsl < 8\f(t)\|qa| ,

DO —

d
and the conclusion follows from the Gronwall lemma. O

The following two lemmas provide bounds on g, and on its time derivative
0,q.. Unlike the previous continuous dependence estimate, it is now crucial that
such bounds are independent of &.

LEMMA 3.3. — Let g, be the solution to (P.). Then
(3.5) l:OF < lgoPPe ™+ ¢y,  Vtel0,T.],
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and
7,

(3.6) [ la6)1Pas < a0,
0

where Cy 1s a positive constant and Q1( - ) is a positive increasing function, both
mdependent of e, which can be explicitly computed.

ProOOF. — Multiplying the first equation of (P) by ¢. in H and exploiting (2.3),
we obtain the energy identity
1d 2 2
E &|Qs| + HQS” - <H6(q6 - qS)f(t),Qs>~

A quick estimation of the right hand side gives

1 1 s 1 2
Hs e Us t7 & S t & S— t & S— t o ell »
(Ho(q: = g)f ), qe) < [f@)]ge] \/ﬂ\f()\l\q Il < 55 [FOF +35 llg:l
and, consequently,
d 2 2 1 2
(8.7) gilae” + el < 517 @)

By the Poincaré inequality, we can write the above expression as
d 1
g%l + Alal” < - LfOF,

and the standard Gronwall lemma entails
(3.8) . < |go[’e ™! + C1,

where
1 2
Ci = o 1 F 1 207,20

To obtain the second estimate, we integrate (3.7) on (0, 7,), getting

T,
[ lao1kds < @aob.
0

where
1(qo]) = Cy + |qof*.

In particular, estimate (3.5) implies that g, € L>(0, 7 ,; H), with
(3.9) 19:ll 0.7 < Q1(|qo))-
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LEMMA 3.4. — Let q. be the solution to (P,). Then
T,
(3.10) [ 12912 < Qx(lao)
0
where Qu(-) is a positive increasing function independent of &, which can be
explicitly computed.
Proor. — Let ¢ € V with ||¢*|| < 1. From (P,), we have
(019:, @) = (Hq: — ) D), ") — (qe, ¢) — b@(®), g, 7).

Owing to (2.6) and using the uniform bound (3.9), we infer that

(0025, )| < [F O]+ llgell + CQ1goD[u®]ly llg: >,
which implies

10gel? < (IF D] + llge]l + CQ1(qoDllu® ]y llg:12)

3 1
< (1F®) + 3] +5C* Qg lu®)})’

27 3
<BIFOF + 7 llg:] + 750" Qi goD* [u®]ly-

Using the integral control (3.6) and the fact thatu € L*(0, 7 ,; V), we easily obtain

T,

27 3
[ 10a.@I2ds <31 fzo .00+ 5 Q90D+ 5 C* Qa0 ullfuor.v) = Qellao
0

concluding the proof. O

3.2 — Passage to the limit (I)

According to the above lemmas, we see that the sequence {q.} is bounded in
L%0,7,;V) and {9:q.} is bounded in L?(0,T,;V*). Consequently, there exists a
subsequence, which we do not relabel, and a function ¢ € L?(0,7,;V) with
oq € L*(0,T,;V*) such that

e ¢, — q weakly in L?(0,7,;V),

e 0,q, — 0yq weakly in L?(0,7 ,;V*),

e ¢, — q strongly in L0, 7 ,; H), as the embedding

W={q:qeL*0,T,;V),dq e L*0,T,;V*)} c L*0,T,;H)

is compact (see e.g. [14]).
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Notice also that g € C([0,7,],H), establishing the regularity required by
Definition 2.2. If we multiply the first equation of (P,) by any ¢* € L*(0,7,;V)
and integrate in ¢, we find

T, T, 7.
[ 0a.arat+ [ @uanat+ [ bw,q. g
(3.11) 0 0 0

7,
= [ (Hq. — qr®.q)at.
0

Now, since H.(q, — qs) is bounded in L*(M x [0,7,]), we see that

o H,(q, — q5) — hy weak-+ in L¥(M x [0,7,]),
for some hy € L>°(M x [0,7,]). Since in particular fg* € LY(M x[0,7.,]) , we
can pass to the limit as ¢ — 0 in each of the terms of equation (3.11), finding

7. T,

7. 7.
[ wa.gat+ [ @anat+ [ bad,g.qat= [ hfo,q)a
0 0

0 0
This equality holds for all functions ¢* € L?(0,7,;V). Hence in particular
(0, ") + (g, ¢")) + b @), q,¢") = (he f@),q"),

for each ¢* € V and a.e. t € (0,7,]. Notice also that ¢ € C([0,7,], H), estab-
lishing the regularity required by Definition 2.2. It remains to show that A,
belongs to H(q — gs) in the weak sense specified by the variational inequality
(2.8). To this end, notice that, for every ¢ > 0, the following approximate varia-
tional inequality holds

T, 7, T,
(312) [ (g —q). 0t — [ Kl — ). 0> [ (Hig. — ), q" — gt
0 0 0

for each ¢* € L?(0,7,;V), since H,(q, — qs) is the Giteaux derivative of the
convex function

T,
f (K,(),1)dt : L20,T,;V) — R
0

at the point ¢;—gqs;. From the weak-x convergence H.(q: —gs) — hy; in
L>*(M x [0,7,]) and the strong convergence ¢, — ¢ in L?(0, 7 ,; H) we find that

T, 7,
f (H{q: — qs5),q: — ¢")dt — f (hg,q —q*)dt,  Vg* € L*0,7,;V),
0 0
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as ¢ — 0. Moreover, owing to (3.2) and (3.3), we observe that

T,
g0, Ddt— [ (g —q.", Dat
0

7. *
< f (|K:(q: — q5) — K.(q — 9], DAt + f (IK.(q — q5) — [q — qs]7], Ddt
0 0

&
< MM T g~ @llizo . + 5 IMIT.

Therefore,
7, 7,
: _ ERPUR TS
lim [ (g, — g Ddt = [ (g —q,1" Dt
0 0
From the calculation above, it is also clear that
x 7,
lim [ (Kq a0 Ddt= [ ("~ a1 DAt " € LAO, T V).
0 0

Consequently, we can pass to the limit as ¢ — 0 in (3.12), concluding that

7, T, T,
g —qornat— [(g— a1 Ddt > [ (hyq = qdt. Vg€ LAO.T.5V).
0 0 0

Again, in particular this implies that
([¢" — ¢s1". D) — ([g — ¢517, 1) > (hg,¢" — q),
for every ¢* € V and a.e. t € (0,7,], as desired. We have proved

THEOREM 3.5. — Let u € L*(0,7,;V) and f € L*0,T,; H) be given. For any
qQ € H and any T, >0, the problem (P) admits at least one solution
q € L*0,7,;V)NC(0,7,]; H), such that 6,q € L*(0,7,; V*).

3.3 — A uniqueness result

Without any further assumptions, uniqueness of solutions is available only for
the approximated problem (P.). It is known (cf. [5]) that even in the one-di-
mensional case with u =0 and f = A > 0, uniqueness of solutions may fail in
general. On the other hand, considering stronger notions of solution (e.g. C*
solutions and C! initial data satisfying certain symmetries and monotonicity
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conditions) may help in this sense [4, 5, 6]. The biggest issue here is that problem
(P) fails to be in the class of the so-called evolution problems associated to
multivalued monotone operators, as the operator H( -) is not monotone, as its
monotonicity depends on the sign of f. One way to recover uniqueness is to re-
quire the forcing term to be negative almost everywhere in M x [0, 7 ,].

THEOREM 3.6. — Let f < 0 a.e. in M x [0,7,]). Then there exists at most one
solution to (P). Moreover, if q1(t), q2(t) are two solutions to (P) with initial data
q1,q2 € H, we have the continuous dependence estimate

') - B < l¢" — ¢, VE€l0,T.].
Proor. — The difference q(t) = q1(t) — qa2(f) solves the system

{ g + Aq + Bu(®),q) = [hy, — hy,1 (),

3.13
(3.13) q0) = q1 — q2.

Taking the scalar product in H of the above equation by ¢, we find that
1d
2 dt
From the characterization (2.9)-(2.10), we obtain that
lhg, — g, )lq1 — q21 > 0
a.e.in M x [0, 7,]. It follows that
—([hg, — hg, 1 f(®), ) > 0.

g + 111* — (g, — h,1£),9) = 0.

Hence,

1d,._ _

5 &MZ +llgl* <o,
and the Poincaré inequality together with the Gronwall lemma entails the de-
sired result. |

REMARK 3.7. — The above assumption on f seems to have been adopted ad hoc
to obtain uniqueness of solutions to (P). Actually, this assumption reflects the
physics of the problem under study, as it will be clear below.

3.4 — A bound in L>*(M)

In a system of moist air, the specific humidity is the (dimensionless) ratio of
the mass of water vapor to the total mass of the system. One therefore expects
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that, if the initial distribution of specific humidity g, is such that
qo € [0, 1], a.e. in M,
then also the resulting solution ¢ to equation (P) will enjoy the analogous

property
q €10,1], a.e.in M x[0,7,].

Exploiting the truncation method of Stampacchia, we now prove that this is in
fact the case.

THEOREM 3.8. — Let f < 0 a.e. in M x [0,7,], and suppose that gy € L>*°(M)
with
0<qgy <1, a.e. in M.

Then q(t) € L*(M) for a.e. t € [0,7.,] and
0<qg<1, a.e. in Mx[0,7,].
PRroOF. — The result will be proved once we show that ¢~ = 0and [¢ — 1]" = 0.
We preliminarily notice that if g is negative, then ¢~ hy = 0, since k, = 0if g < g

and ¢, € [0,1]. Analogously, if ¢ is positive, then again ¢~ h, = 0, being g~ =0
itself. A multiplication of (P) by ¢~ in H leads then to

1d

2dt
If we write g as the difference gt — ¢, we can use the orthogonality property
(2.3) and the fact that Vg™ = 0 whenever ¢ <0 to deduce that

bu(t),q,q7) = bu),q",q") — bu),q ,q) =0.

g+ g IP - ba®). g,q7) = 0.

Hence,
d _»
— g1 <0
dt|q I” <0,

which implies, together with the assumption ¢; = 0, that ¢~ = 0. To prove the
upper bound ¢ < 1, we proceed in a similar way. We multiply (P) by [¢ — 11" in H
and use the fact that bu(t),q,[q — 1) = bu(t),q — 1,[q — 1]7) = 0 to infer the
energy equation

1d

5 q e~ TP+ lllg = 117* = (hof@®).[g — 117).

As g and [q — 117 are positive functions, the assumption f(t) < 0 forces the right
hand side of the above equation to be negative. Thus,

d +2
— — <
gle-1u <o,

and therefore [¢ — 11" = 0, concluding the proof. O
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4. — The coupled system

We now deal with the full coupled system temperature-specific humidity.
After introducing the physical model, we proceed with the mathematical setting
for weak solutions in a similar way to the one exploited for the equation of
specific humidity alone. In this section, we also collect all the assumptions on the
data and on the nonlinear terms.

4.1 — The physical model

Let
M =M x (po, p1)
be a cylindrical domain, where M’ C R? is a bounded domain with smooth
boundary M’ and 0 < py < p; are real numbers. Given 7, > 0, a velocity vector
fieldv : M x [0,7,] — R? and a function w : M x [0,7,] — R, we consider the
system of equations

4y Linriew vre w(t)% _ R T € o OHG - g0,

ot CpP
q oq _
(42) o+ Lag+ o) Vo + w(t)% € —w ()H(q — q)F(T),

describing the evolution of the temperature T and the specific humidity ¢ in large
scale dynamics models of the atmosphere [7, 10]. In order to keep the notation as
simple as possible, we will again highlight only the time-dependencies of v and w,
and omit the others. As customary in the PEs of the atmosphere, equations (4.1)-
(4.2) are written in the (x,y,p,t) coordinate system, in which the pressure p is
used as the vertical coordinate. In the physical problem, u = (v, w) is the velocity
of the fluid, where

dp
(4.3) ="
is the corresponding vertical velocity in the (x,y, p) coordinate system, and we
here assume it is a given datum. We set V = (9., d,) and 4 = 9> + 8; to be the
horizontal gradient and Laplacian operators, respectively. In this way, the heat
and vapor diffusion operators L,; and L. are defined [7, 10, 15] as

0 gp>28
4.4 Li=—d—vm—|(Z£) 2,
( ) 1 My Vlap (RT ap

0 gp 2y
45 Lo = —pd—vo— | [ Z2) 2,
45 2RI, (RT) ap
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where yu;,v;,9,R,c, are positive constants and T =T(p) is the average tem-
perature over the isobar with pressure p. Concerning the right hand side of
(4.1)-(4.2), p and F' are nonlinear functions of the temperature field, o~ refers
to the negative part of w, while the Heaviside graph H(r) produces different
behaviors whether we consider condensation (¢ > ¢;) and upward motion
(w<0) regimes or not.

We partition the boundary of M as

= {@y,p)e M:p=p1},
Iy={@@ypeM:p=p},
Iy={@y,p)eM: @y €M, pp<p<m},

in order to equip system (4.1)-(4.2) with the following physically reasonable
boundary conditions [15]:

oT dq
[ =T, —T), “L=p@q. —q),
on o a( ) ap B — @)
oT
(4.6) onFu:%—O, q=0,
aT aq
Oan.%_, %_

Here, 7 is the outward normal vector to I/, the functions 7. (x, %) and q.(x,y) are
typical temperature and specific humidity distributions at the bottom surface of
the atmosphere, and «, § are given positive constants. Finally, we supplement our
system with the initial conditions

(47) T(ac,y,p,O) = TO(%7y7p)a Q(W%p’o) = 00(9072/7]9)-

4.2 — Mathematical setting

As in the previous sections, H will denote the space L*(M) with scalar pro-
duct (-, -) and norm | - |. Due to our boundary conditions, it is convenient to equip
the natural space for T'

Vi = H'(M)
with the scalar product

(T, Ty = (VT,VT*) + (0,T,0,T") + f TTdr;.
F.

i
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In the same fashion, we define

Vo={qe HM): g=0o0n Iy},
equipped with the inner product

(q,9") = (Vq,Vq") + (9pq, 9pq").

It is worth noticing that the above scalar products are equivalent to the standard
H'(M)-inner products thanks to the Poincaré inequality and its generalizations,
and with the norms

T = (7. THr, gl = (q.9),

the spaces Vr and V, are closed subspaces of H!(M). Finally, we define the
product spaces

H=HxH, V=VrxV,.

With some abuse of notation, we will keep the symbols (-,-) and | - | (resp.((-, )
and | - |]) also for the norm and the scalar product on H (resp. V), as no
confusion will arise throughout the article. In the same way, the symbol (,-)
will indicate the duality pairing between any of the spaces Vr, V, and V and
their duals.

4.3 — Weak formulation

Having in mind the set of boundary conditions (4.6), we observe the following.
If T, T* € Vp, then an integration by parts yields

(T, T*) = 1 (VT, VT + f ( gp ) 9,T0,T*dM
M

-~ f (ﬁ) oT — T,)TAT;.

i

In the same manner, if ¢,q* € V,, we obtain

2
. gp . gp1 .
(L2q,q") = 15(Vq, V") + VZM[(RT) OpqOpq dM + sz<RT) Blq — q)g"dr;.

ForT\T* e Vp,q,¢ €V,, U=(T,q), U =T",¢) e Vandu = v,w) € V, we
define the bilinear and trilinear forms
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ar(T, T = 1 (VT, VT + f ( Igp ) 0,T0,T*dM + va f (ﬁ;) TTdr;,
M r;

2
aq(q, ") = 115(Vq, V) + vzf (}%%) 0,0, " AM + v ﬁf (gp1> gq*dr
M
aU,U")=ap(T,T") + (){,q(q7 qQ),

br(u, T, T%) = f @ - VT + 0d,DT*AM,
M

by, q,q") = f - Vg + 0d,q)g*dM,
M
b, U,U") =br,T,T*) + by(u,q,q°),

dp(w, T, T") = f B orram.
i PP

Analogously, we define the linear functionals

0r(T*) = vy f @p;) 7,7+dr;,

I;
(@) =2 f (gpl) qdr,

uu) = €T(T*) +4(q").

The definition of a weak solution to our problem is then similar to that of problem
P).

DEFINITION 4.1. — Let (To,q0) € H and T,>0 be given. A wvector
U=(T,q) € L*0,7,;V)NC(0,7,]:H) is a solution to system (4.1)-(4.2) if
(T, 0,q) € L0, T ,;V*) and, for almost every t € (0,7,] and every U* € V,

(0T, T") + (Orq,q*) + (U, U*) + bu®), U, U")
= drp(@@®), T, T") + UU") + (@~ Ohep(T), T*) — (0™ OheF (1), q"),
for some hy € L¥(M x [0,T,]) which satisfies the variational inequality
4.9) ([g"—q]", D—(lg—q]", 1) > (hg,q" —q), ae.t€0,T.], Vg eV,
and U(0) = (Ty, qo)-

As before, (4.9) means that i, € H(q — q5) and thus 0 < i, <1 almost every-
where.
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4.4 — The nonlinearities ¢ and F

According to [10], we can define the nonlinearities ¢ : R — Rand F' : R — R by

s RL() — c,R,
FO) = ‘% (&—;@) ,
and
O = %?F@,
where

L) =c¢1 — ¢,

with ¢1,¢2, R, ¢y, R, strictly positive constants (see Remark 4.2). From direct
calculations and the fact that p € [po, p11, we see that F' is a globally Lipschitz
bounded function, namely

(410) ‘F(gl) *F(£2)| < C|§l - C2|a VgvaZ € Ra
and
(4.11) FOI<C,  WeR

Moreover, ¢ is globally Lipschitz as well, i.e.

(4.12) lp(1) — ()] < ClG — &, V(1,6 e R,
As F(0) = 0, we deduce that ¢(0) = 0 and therefore
(4.13) lpOI <CLl,  VY(eR.

REMARK 4.2. — A concrete realization of 7' and ¢ can be found in [10]. We have

Fery = 7 ( DR = RT )
P \epRyT? + ¢, L(T)

In the equation above, R is the gas constant for dry air, R, is the gas constant for
water vapor and c, is the specific heat of dry air at constant pressure, while

L(T) = 2.5008 x 10° — 2.3 x 10°T

is the latent heat of vaporization. Notice that F(T) > 0 whenever L(T)R —
cpRyT > 0, and the latter is an affine decreasing function of 7. Moreover,

2.5008 x 10°R
23 x 10°R + ¢,R,

F(T()) =0 for T() =
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For usual values of the above constants, namely (see [7])
R =287TJK kg™, R,=46150JK 'kg™!, ¢, =1004JK 'kg™!,

it turns out that 7y ~ 638K. Hence, F(T) > 0 for T < 638K, which is a very
reasonable upper bound on the temperature in the atmosphere. This jus-
tifies the hypothesis f < 0 a.e. in Theorem 3.6. Indeed, assuming that T is
known for the first equation in (2.1), the forcing term may be written in
terms of F' as

f=—Fo.

Therefore, if we assume T to be bounded from above by T, it turns out that
F(T) > 0. Consequently, f < 0, and uniqueness of solution to the specific hu-
midity problem (2.1) is then assured.

4.5 — Assumptions on the data

Throughout the paper, the boundary data appearing in (4.6) will be assumed
to satisfy

T.,q. € L*(I';).

Concerning the average temperature T(p) appearing in (4.4)-(4.5), we will re-
quire the existence of two positive constants 7',, T such that

(4.14) T,.<Tp)<T.

As in the previous sections, the velocity vector field u will be given, time-de-
pendent and satisfying

(4.15) uel*0,7,;V)nL¥0,T,, H).

5. — Existence results for the coupled system

In this section, we prove the existence of solutions to problem (4.1)-(4.2). Since
the idea of the proof is similar to that of Section 3, we will only highlight the main
differences. The main result reads as follows.

THEOREM 5.1. — Let u € L*(0,7,;V)NL>0,7,,H) be given. For any
(To,q0) € H and any T, > 0, problem (4.1)-(4.2) admits at least one solution
U=(T,q) € L*0,7,;V)NC(0,T.];H), such that ;U € L*(0,T ,; V*).
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5.1 — Preliminary estimates

We start by the usual estimates on the (tri-,bi-)linear functionals defined in
the previous section. We report the following lemma without proof.

LEMMA 5.2. — Let (U,U*) €V and u € V. There exist positive constants
ic;, K; such that the following hold.

ar(T, T < Kl T| 1T s
ar(T,T) > || T|7
lag(q,q")| < Kzllqllllq" |,
aq(q,q) > r2)lq|f,
br(u,T,T) =0,
by, q.q) =0,
b, U, U")| < Cllully|UM" U207,
oo, T, T < Ksloof 71V T4 T4 e | 7,
[0p(T)| < Ky|T™,
144(q)| < K5|q".
In particular, we infer the existence of positive constants K, x such that
(5.1) U, U9 < K|U|\U*|  and  aU,U) > x| U,

for any U, U* € V.

5.2 — The approximate solutions

We aim to approximate the singular problem (4.8)-(4.9) in the exact same way
as we did for problem (P). The corresponding e-approximation then reads

<atT, T*> + <atQ7 q*> + CL(U, U*) + b(u(t)7 Uv U*) = dT(CU(t), T7 T*)

(5.2)
+UU) + (0~ OH(q — g)p(T), T*) — (0~ (OH,(q — ¢)F(T), ¢,

where we no longer need any variational inequalities, as the map H,(-) is now
well-defined and continuous. We then have
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THEOREM 5.3. — Let (T, qo) € H and T, > 0 be given and u satisfying (4.15).
For every ¢ > 0, there exists at least one solution

U, = (T,,q.) € C([0, T.J; H) N L*(0,T s V)

to (56.2), such that
atUa = (atTw atQa') S L2(07 T*; V*)

Unlike before, we will only prove an existence result, as uniqueness seems
more complicated, and, in fact, not needed at this stage. Indeed, once a solution
U, is proved to exist and it satisfies analogous bounds as those of the solution to
(P,), we will be able to implement the limiting procedure in the exact same way as
we did in Section 3. One more time, we will only show how to obtain the usual
energy estimates needed to set up the standard Galerkin procedure used to
prove Theorem 5.3.

LeEMMA 5.4. — Let U, = (T, q.) be a solution to (5.2). Then

(5.3) U@ < e“T(|Uol* +CT,), Vtel0,T.],
and

7,
(5.4) f 1U(s)[%ds < Q(|Us)),

0

with Q(-) independent of .

Proor. — Setting U* = U, in (5.2), we obtain
1d

2 dt

+ <w_(t)HS(QP - qa)CD(Ts)» T£> - <a)—(t)H€(QF - Q5)F(T€)a q€>

U2 + a(U,, Uy) = dp(o®), Ty, Ty) + (U,

From (5.1) and using Lemma 5.2, we then deduce that

Ld
2dt
+ (0~ OH(q. — 4)p(T2), T.) — (0~ OHAq. — q)F(T2), q.)-

(U + x| U\ < C|UP + C + dp(et), Ty, Ty)

The trilinear term dy can be estimated taking advantadge of Lemma 5.2 and
Young inequality:

K
Ar(®, 7., T,) < Kolo®| T T < Clu@ gl T + 5 IT.I7-
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Using (4.13), it follows that
(0" (OH(q. — 49T, T2) < Co®)], |T.P) < Clox®l| T2 Fac)

< Clo®)| [T,/ 2| T, < Clo)|*|T,P +§HTHH?"

< Cllu®)[ UL + g |1U:|P,
where we took advantage of the inequality

| Zellauny < CITL ATl
The second nonlinear term is easy. Indeed, from (4.12), we have
~(@ (OH.(q, = )F(1),4.) < Clo®|g.| < Cllu)| +5 |U.IP.
Therefore, we obtain the inequality
(6.5) %\Uelz +ul| U < CA + Ju® )| U + CQA + lu®)|3).
On one hand,
SO < CO+ [T + 00+ ulf),

so that estimate (5.3) follows from the Gronwall Lemma, together with the as-
sumption u € L*(0, 7,; H). With (5.3) at hand, it is a standard matter to deduce

(5.4) from (5.5). |

Again, estimate (5.3) implies that U, € L>(0,7 ,; H), with
(5.6) 1Uell =0.7,20 < QUU),
with Q(-) independent of e.

LEMMA 5.5. — Let U, be a solution to (5.2). Then
T,
(5.7 [ 1av.eias < oqui),
0

with Q(-) independent of e.
Proor. — Let U* € V with |U*|| < 1. From (5.2), we have
<atUS7 U*> = _a(US7 U*) - b(u(t)7 US; U*) + dT(w(t)7 Té:7 T*) + K(U*)
+ (wi(t)H&(q(r - (]s)(ﬂ(Té)y T*> - <w7(t)H€(q€ - QS)F(TJ, (]*>
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Now, Lemma 5.2 and (5.6) ensure that
| — a(U,, U") = bu@®), U, U*) + (U")| < C|U,|| + QU u® |y | U|["* + C
< C||UI| + Q(Uouly + C

Concerning the other terms, we have

|dr(@®), Te, TH| < Cllo®l| s | Tel T | sy < QUUoDI®lly,
Also, in view of (4.12), (4.13) and (5.6), we infer the bounds

(0™ OH(qs — q)p(To), T*)| < Cllw®|| s Tel I T | sy < QUUD @y,

and
(o~ OH(q. — ¢)F(T.),q")| < Cllu®)||g.

Collecting the above inequalities, we end up with
(U, U*)| < ClU|| + QUUoDIe®[3 + Cllu®) ] + C,
which implies that
10U, < CIU] + QU u®y + Cllu®)| g + C.

Thus, (6.7) is then a consequence of the assumption u € L*>(0,7,;H) N
L*0,7,;V) and the previous Lemma 5.4. O

5.3 — Passage to the limit (1)

The procedure to pass to the limit as ¢ — 0 in the approximate equation (5.2)
is now very similar to that of Section 3.2. The main difference consists in handling
the nonlinear terms, as the convergence of all the linear terms and the ver-
ification of the variational inequality (4.9) for the L*(M) weak-x limit of
H.(q. — qs) goes through in the exact same way as for problem (P,).

From the previous paragraph, the sequence {U,} is bounded in L*(0,7,;V),
{6,U,} is bounded in L*0,7,;V"), and {H.(q.—qs)} is bounded in
L>®(M x [0,7T.,]). Therefore, up to subsequences, we obtain the following con-
vergences:

e U, — U weakly in L%(0,7,; V),

e 0,U, — 0,U weakly in L%0,7T,; V"),

e U, — U strongly in L?(0,7,;H), and therefore (up to a subsequence) al-
most everywhere on [0, 7,]. Since U, € C([0,7,]; H) for every ¢, by the domi-
nated convergence theorem we deduce strong convergence in L?(0,7 ,; H) for
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every p € [1,c0), namely

(5.8) }133 1T = Tl o1 = 0, Vp € [1,00).

o H.(q: — q5) — hg weak-x in L>(M x [0,7,]),
for some function U = (T, q) € L*(0,7,;V) satisfying 6;U € L?(0,7,;V*) and
some hy € L>(M x [0,7,]). Notice that, as before, U € C([0,7,];’H). We want
to show that

T, *
[ (o @~ a)p@). Tt — [ (o (D), Tt
0 0
for all T* € L?(0,7,; Vr). Let us first write
7.
[ (@ OHG. — 00T, T — (& Ohyo(T), Tt
0
7.
= [ (o OHq — 4)[0(T) — (D)), T)at
0
T,
+ [ (o O — 0 — b)), Tt
0
On one hand, using (4.13) and (5.8) we have

7.
[ (o 0Hq ~ a)[pT) - D), )t
0

T,
f f @l |p(T:) — ()| T*|dMdt
0 M

7.

Cff|w(t)|\T 7||7*|aMdt

N‘O

< C [ 0@z /T = TIT |scrpdt

<C

IMWWMWWW T/||7*||d¢t

OS'\] o

1/2 1/2
< ClluliZo 7.l 7 v I Te = Tllzo 7.0 | T |20 7.7
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On the other hand, since T € C([0,7,]; H),

T, .
ff\w’(t)l|f/)(T)|lT*|det§ Cff|w*(t)||T||T*|det
0 M 0 M

7,
< C [ 10Ol TINT lzscan
0

<C

Hw(t)llvlTlllT*llrdt

o%ﬂ

< ClT ozl a0z, I T 20,7, v

we see that o~ p(T)T* € LY(M x [0, T ,]). Therefore, the weak-* convergence of
H.(q. — q5) is enough to pass to the limit. Hence, the required convergence is
proven.

The trilinear form dy can be handled similarly, while the second nonlinear
term is even easier, as the nonlinearity F' is a uniformly bounded and globally
Lipschitz function. Thus, the proof of Theorem 5.1 is achieved.

5.4 — Positivity of solutions

As in Paragraph 3.4, we establish the positivity of 7' and ¢, provided the initial
and boundary data are assumed to be positive.

PROPOSITION 5.6. — Suppose Ty, qo, Tx, q. are positive functions. Then U®t) =
(T@),q@)) >0 forallt €[0,7,].

Proor. — Setting U* = —U~ =(—T",—q") in (4.8), we obtain

U +aU,U)

Q-|Q

1
2

= dp(w®), T, T7) —UU") — (& Ohgp(T), T ) + (0 OhF(T),q").
From the nonnegativity of T, and ¢q. we readily see that /(U~) > 0, while Lemma
5.2 ensures that

dr(o(t), T, 77) < Clo®* TP + 5 |77
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The first nonlinear term can be estimated as before as
(@ Ohyo(T), T7)| < C [ 1o@| T|IT-|aM = C [ |o®)| T~ [2am
M M

< Clo®||I T |Fsnp < Clo®I| T [V2|T (13
< Clot)"| T~ +§||T-||% < Cllu)||| U P +§HU-||2.

As in the proof of Theorem 3.8, the second nonlinear term is identically zero, in
view of the fact that ¢~ ; = 0. Therefore, a further application of Lemma 5.2
provides us with the differential inequality

d
T U+l U |° < CA+ u@))|U .

Since u € L>(0,7,;H) and U (0) =0, the Gronwall inequality allows us to
conclude the proof. O

5.5 — Concluding remarks

REMARK 5.7. — We were unable to use the maximum principle to derive an
upper bound for the temperature T < M. Although we might be perhaps able to
overcome this technical difficulty, it appears, after further investigation, that the
model that we consider has a fundamental limitation. Indeed, although this model
plays an important role in studies on humidity [10, 11], it is a simplified model, the
first one (simplest one) accounting for saturation. The water (rain) which is
formed “quits” the system and condensation is not accounted for. In particular,
the system seems to keep adding energy, because the loss of energy corre-
sponding to the transformation of vapor into water is not taken into account. A
more satisfactory model will, at least, involve three components, air, vapor and
liquid water or a suitable mechanism of loss of energy. Such systems will be
studied in a subsequent work.

REMARK 5.8 (On the coupling with the fluid equations). — In a future work we
intend to couple the equations above with the fluid equations for u given by either
the Navier-Stokes equations or the PEs. The main question is then whether the
assumption made on u in Theorem 5.1, namely u € L*(0,7,; V)N L>(0,7,,H),is
consistent with the estimates actually available. As said, two cases are of interest.

1) Coupling with the Navier-Stokes equations. Since we are in space di-
mension three, we can only expect estimates and existence of u € L*(0,7,;V) N
L>0,7,,H) on a small time interval [0,7,]. On that interval though
u e L>0,7,,V) (strong solutions) and our hypothesis is satisfied.
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2) More interesting for us is the case where we couple these equations with
the three dimensional PEs [15, 18]. From the results of Cao and Titi [1] and
Kobelkov [12], we infer that the first two components of the velocity vector field
u = (v, w) satisfy v € L?(0, 7 ,; H*) N L>(0,T,, H'), for general domains. A de-
licate calculation reproducing that in Lemma 3.1 of [18] then shows that
w € L40,7T,; H'). Again, u is seen to fulfill our assumptions. Note also that, in
the space periodic case, a solution v to the primitive equations can be found in
any space L%(0,7,; H")NL>(0,7,,H™) for every m > 0, provided natural
assumptions are made on the initial data. Hence, the whole vector u belongs to
such spaces as well (see [17, 18]).

The remarks above are only meant to show that the hypothesis made on u are
realistic. It does not mean that it would be an easy exercise to couple the equa-
tions for T and ¢ with those for u, as several challenging additional terms actually
appear in the coupling. We intend to address this question in a future work [2].
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