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On a Homogenization Effect for a Two-Dimensional
Diffusion Plus Transport Equation

Luc TARTAR

In memory of Enrico Magenes

Because I consider that inducing students and researchers in error is the
worst possible sin for a teacher, I wondered for many years why it is so often
done in the academic world, and since I felt isolated on this question, I attributed
my difference in approach to my religious training: although I first rejected what
I had been told in my youth, I later decided to keep the good principles of all
religions, and it is my interpretation of the parable of talents that part of my duty
is to transmit what I have understood about the defects of models in continuum
mechanics and physics, and to develop new mathematical tools for going further
on the path of understanding how the universe functions, but since I met with
discrimination, slander, and threat, one may say that I was trying to swim
against the current: it suggests that I was right, of course.

It is natural that mathematicians influenced by their own religion follow a
different path than mine, more adapted to their own personality, and if on the
occasion of his seventieth birthday, I had written in [Ta93] that in the warm
atmosphere around Enrico MAGENES in Pavia, I felt as if there was an Italian
branch on my family tree, I could have added that since I had been rejected by
my mentors in France, and it was already clear that I had not found the friendly
and peaceful environment which I had hoped for when I crossed the Atlantic, it
looked as he was my only uncle left. I regret not to have told him that he was a
model for me, although I was too limited by my lack of administrative abilities to
try to follow his own path of action.

During my sabbatical semester at Politecnico di Milano, in the fall of 2007, I
tried to advance as much as I could on the writing of my fourth book in the
Springer lecture notes series of Unione Matematica Italiana, on homogenization
[Ta09], and I hoped to see Enrico MAGENES each time I went to a meeting
(adunanza) of Istituto Lombardo Accademia di Scienze e Lettere, but as when I
saw him for the last time in Pavia, my pleasure to see him again was limited by
the sadness of finding him a little weaker each time.

When I shall soon retire, I plan to often use the train connection from
Neuchatel to Milano for resuming going to the adunanze dell’Istituto Lombardo
Accademia di Scienze e Lettere, and besides remembering that I certainly owe to
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Enrico MAGENES having been elected Membro Straniero, I shall regret not
having discussed with him about my future plans, like trying to help develop the
study of science (which includes mathematics) in parts of the world where it was
neglected in the past, or where it never really existed, and to teach how to avoid
some of the indoctrination which developed in many places. Part of my general
plan is to review the historical evolution of mechanics and physics for discussing
which errors were successively made, and check if one already knows a way to
correct each of them, or if one needs a theory beyond partial differential
equations which I have tried to develop.

Here, I shall quickly describe some general ideas before discussing a
homogenization question which seems promising, although its precise relation to
turbulence is uncertain at the moment.

1. — Learning mechanics and physics

Problems in mechanics/physics played an important role in the past for in-
ducing mathematicians to create new mathematical tools, but learning me-
chanies/physics is difficult for mathematicians, and they are easily lured in wrong
directions: lacking basic knowledge in mechanics or physics is often the reason
why many mathematicians fall prey to fashions, whose leaders play with terms
from mechanies, physics, or engineering, but show a deluded level of under-
standing of these fields.

Since I was interested in doing something useful with my mathematical
ability, I preferred in 1965 to go study at Ecole Polytechnique (then in Paris on
the Montagne Sainte Genevieve) instead of at Ecole Normale Supérieure, and
besides giving me the opportunity to learn analysis from Laurent SCHWARTZ
(1915-2002) the first year, and “numerical analysis” from Jacques-Louis LIONS
(1928-2001) the second year, I also learned some thermodynamics in the first
year from Paul Mary Ferdinand Maurice Roy (1899-1985) and classical me-
chanics in the first year and continuum mechanics in the second year from Jean
MANDEL (1907-1982), and I learned the various aspects of physics (classical,
relativistie, quantic, and statistical) from many different teachers over the two
years of study, and some chemastry.

In the fall of 1966, having already understood that I could not pursue a career
of engineer because of my lack of administrative ability, I decided to do research
in mathematics, choosing J.-L.. LIONS as advisor since he was supposed to be
more applied than his own advisor. Although L. SCHWARTZ had developed the
theory of distributions which is the language for linear partial differential
equations in continuum mechanics and physics, and I learned from J.-L. LIONS
the mathematical tools known in the late 1960s for attacking the linear and
nonlinear partial differential equations in continuum mechanics and physics,
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which include technical results concerning the spaces introduced by Sergei
L’vovich SOBOLEV (1908-1989), I understood after a few years that my mentors
were not really interested in developing a mathematical understanding of con-
tinuum mechanics or physics in the style of what I was looking for. Nevertheless,
I could not have found a better environment for studying mathematies and doing
research, since no mathematician from the preceding generation had developed
the interests and knowledge which I acquired myself later.

Although I was never exposed to a description of how some ideas in mathe-
matics, mechanies, and physics evolved along the centuries, I find it important to
explain how the points of view in mechanics differed in the 18th, 19th and 20th
centuries.

2. — Historical developments

Velocity was an easy concept, but acceleration was not, even to Galileo
GALILEI (1564-1642); however, his experiments on falling bodies (from the top of
the leaning tower in Pisa or along an inclined plane) or on what influences the
period of a pendulum may have helped Isaac NEWTON (1643-1727) understand
that force is mass times acceleration; for defining velocity and acceleration in a
mathematical way, he had to invent differential calculus, which Gottfried
Wilhelm voN LEIBN1Z (1646-1716) made more efficient.

The mathematical development of differential calculus opened the way for the
study of differential equations, the language of classical mechanics, which is the
18th century point of view in mechanics, dealing with rigid bodies (a natural
simplifying assumption in celestial mechanics, for example), and Giuseppe Luigi
LAGRANGIA (1736-1813) stands as one of its pioneers. M

Differential calculus also opened the way for the study of partial differential
equations, the language of continuum mechanics, which is the 19th century
point of view in mechanics, although Leonhard EULER (1707-1783) pioneered it
in the 18th century, introducing both the physical Eulerian point of view and the
mathematical “Lagrangian” point of view for fluids; (%) putting him aside, it was
the work of Augustin Louis CAUCHY (1789-1857), Gabriel LaME (1795-1870),
Gabrio Prora (1794-1850), and Adhémar Jean Claude BARRE pe SAINT-VENANT
(1797-1886), who set up the basic notions for elastic solids, while Claude Louis
Marie Henri NAVIER (1785-1836), SAINT-VENANT, and George Gabriel STOKES

(M) Since one always uses the French form of his name, Joseph Louis LAGRANGE, one
usually forgets to mention that he was Italian.

() If LAGRANGIA rediscovered the “Lagrangian” point of view after EULER, he
discovered “Hamiltonian” systems much before William Rowan HaMILTON (1805—1865).
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(1819-1903) set up the basic notions for viscous fluids. This deseription of 19th
century subjects would not be complete without mentioning the work of James
CLERK MAXWELL (1831-1879) for unifying electricity and magnetism, but one
usually forgets to say that it was Oliver HEAVISIDE (1850-1925) who wrote the
system of partial differential equations which one now calls the Maxwell equa-
tion, so that I call it the Maxwell-Heaviside equation.

The point of view of classical mechanics was somewhat wrong, since rigid
bodies do not exist and real materials are slightly elastic (under a threshold): one
may consider a rigid body as a limit when some elasticity coefficients tend to
infinity, but this has the effect of replacing the speed of sound by + oc.

Actually, there were various hints that the point of view of continuum
mechanics is somewhat wrong too, but there seems to have been an un-
scientific habit of hiding the discrepancies of the models which one uses.
Mathematicians were probably too busy trying to prove the results postu-
lated in mechanics/physics during the preceding century for taking the time
to point out at least the errors in reasoning which are usually made by
practitioners: since an engineering approach is used most of the time, of
inventing games which give results similar to what is observed, mathe-
maticians should explain that A implies B is certainly not the same as B
implies A4, (®) so that it is silly to pretend that nature plays those invented
games, and practitioners should be warned that they just put in their hy-
potheses what they want to find in their conclusion, which is certainly not a
scientific attitude!

(®) The referee thought that I should make this point more clear to the reader. One
may imagine that various games Aj,..., A, each have in their conclusions something
resembling a particular pattern B which nature produces in some situations, and one
should analyse if some of these games are consistent with nature’s laws (which physicists
are supposed to find), and this should be done when finding a first game A; which seems to
imply B (instead of adopting the naive belief that it “must” be the game played by nature).
In the first paragraph of a review (in The Times Higher Education Supplement, March 23,
1984) of a book by John C. POLKINGHORNE The Quantum World, Roger PENROSE wrote
“Quantum theory, it may be said, has two things in its favour and only one against. First, it
agrees with all the experiments. Second, it is a theory of astonishing and profound
mathematical beauty. The only thing to be said against the theory is that it makes
absolutely no sense.” It means that the quantum mechanics game (which I find silly) is
such a game A; which one uses by default, because one has not yet found better games
Ay, ..., A, for shedding more light on how nature functions. When (physical) quasi-
crystals were discovered, and physicists started playing a game of (mathematical) quasi-
crystals based on Penrose tilings, R. PENROSE should have told those theoretical
physicists that they lacked physical intuition, for there are around one million atoms in
the small direction of a ribbon which is about a tenth of a millimeter thick, and it is silly to
assume that the way they rearrange for evacuating heat and releasing stress during the
cooling process is a two-dimensional problem.
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The speed of light ¢ was first deduced from delays appearing in the mea-
surements of the position of Io (a moon of Jupiter), by Ole Christensen RgMER
(1644-1710), who completed his measurements as an assistant to the first director
of the (newly founded) observatory in Paris, Giovanni Domenico CASSINT (1625-
1712), who had previously proposed the finite speed of light for explaining the
discrepancies, before looking for another explanation.

The reason why MAXWELL used a complicated mechanistic framework for
unifying electricity and magnetism was that he believed in a “solid” aether. (*) He
also noticed that perturbations in his model travel at the speed of light ¢, but he
could not understand why, since the idea that visible light is but an electro-
magnetic wave (of wavelength between 0.4 and 0.8 microns) was difficult to
imagine at that time.

The experiments which Albert Abraham MICHELSON (1852-1931) and Edward
Williams MoORLEY (1838-1923) performed around 1887 made obsolete the ideas
about aether: they measured the speed of light in various directions, and, per-
haps unexpectedly, the measured speed of light had the same value ¢ in every
direction. The proposition in 1889 of a contraction of physical objects in the di-
rection of their movement by George Francis F11z GERALD (1851-1901), made
more precise in 1892 by Hendrik Antoon LORENTZ (1853-1928), who also added a
change of time, forced upon Jules Henri POINCARE (1854-1912) to consider the
transforms which send any solution of the wave equation to another solution of
the wave equation, (°) and a consequence of the change of time is that there
cannot exist any instantaneous force acting at a distance (like gravitation!),
since the notion of instantaneity makes no sense, because there is no universal
time, which is what Poincaré’s principle of relativity is about.

A consequence of Poincaré’s principle of relativity is that “particles” cannot
know where the other “particles” which interact with them are “at the same
time”, and they just feel various fields which propagate with the speed of light
¢, and with which all “particles” interact: in mathematical terms, one should be
dealing with systems of partial differential equations of hyperbolic type,
probably semi-linear and only having the speed of light ¢ as characteristic
speed. However, the experiments concerning light had been interpreted as
laws concerning matter, although most physicists were (and still are) stuck
with 18th century ideas of “particles”, i.e. they had not understood the 19th
century point of view that continuum mechanics deals with waves and hyper-

(*) For reasons which I do not understand, electricity and magnetism were thought to
produce transverse waves, which supposedly could not be propagated through a liquid.

(®) This is how the Lorentz group appears. Since real light is polarized and described
by the Maxwell-Heaviside equation, and not by a scalar wave equation, one should study
the transforms which send any solution of the Maxwell-Heaviside equation to another
solution of the Maxwell-Heaviside equation, and I believe that POINCARE did that.
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bolic systems, and that it is only by letting some of the characteristic velocities
(like the speed of light ¢) tend to infinity that one obtains some simpler para-
bolic systems, which one should then not believe to be the exact laws followed
by nature. )

Albert EINSTEIN (1879-1955) had probably read POINCARE’s earlier article on
(special) relativity, and there were aspects which he obviously did not under-
stand for having proposed his ideas about gravitation, which I find silly.
EINSTEIN had probably seen the 1900 work of Louis Jean-Baptiste Alphonse
BACHELIER (1870-1946) for modeling the buying and selling at ‘La Bourse’, the
Paris stock exchange market, (") before he presented a similar game of random
jumps (in position) as a model for the real Brownian motion, which I find silly
since what Robert BROWN (1773-1858) had observed under his microscope could
only have been jumps in velocity due to interactions with “particles” too small to
be seen, and it should have made real physicists question EINSTEIN’s physical
intuition, and wonder if he understood the basic law of conservation of linear
momentum. EINSTEIN had also probably seen the formula e =mc? which
POINCARE wrote in 1900, or which Olinto DE PRETTO (1857-1921) wrote in 1903.
Thanks to his friend Marcel GROSSMANN (1878-1936) who introduced him to the
work of Gregorio R1ccI-CURBASTRO (1853-1925) and of Tullio LEVI-C1viTA (1873-
1941), EINSTEIN impressed his fellow physicists by using mathematics which
they did not know, like tensor calculus and differential geometry, and such a
behaviour is probably related to the classification of sciences of Isidore Auguste
Marie Francois Xavier COMTE (1798-1857), who had ranked mathematics above
astronomy and then physics.

Still today, most people do not dare mentioning EINSTEIN’s curious lack of
physical intuition: that rays of light may be bent by changes in the index of
refraction had been “understood” since the 17th century, so that imagining
that a ray of light could feel something which is not on its path (like the total
mass of the sun) does not make any sense, and Hannes Olof Gosta ALFVEN
(1908-1995) pointed out in the 1970s (after having received the Nobel Prize in
Physics) that a few observations in the cosmos have an electromagnetic origin
and not a gravitational origin. In those days, and may be so in the beginning
of the 20th century too, every physics student learned that electromagnetic
forces are a few order of magnitude greater than gravitational forces, and
that light is but electromagnetic waves of particular wavelengths, so that a

(®) In a model with “c = 4 o0”, it is not surprising that perturbations may travel faster
than the real speed of light c.

(") Economic agents buying or selling stocks is not related to any known conservation
laws like those governing the physical world, so that there was nothing obviously wrong in
what BACHELIER had done, and he was not claiming anything about physics, as EINSTEIN
did with his “fake Brownian” motion.
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grazing ray could only feel the electromagnetic conditions at the boundary of
the sun. (%)

The basic refraction effect which occurs at the interface between two
(transparent) materials with different indices of refraction is actually about so-
lutions of the wave equation (or the Maxwell-Heaviside equation) with dis-
continuous coefficients, a question which was only understood mathematically in
the mid 20th century with the theory of distributions of L. SCHWARTZ.

I believe that it was only in the late 1980s with my introduction of H-measures
in [Ta90] that there appeared a mathematical explanation of what light rays are
for the wave equation, or for the Maxwell-Heaviside equation, with smoothly
varying (anisotropic) coefficients, and how light rays transport energy and mo-
mentum, because one must emphasize that the classical (formal) theory of geo-
metrical optics is about distorted plane waves, and not about light rays! Actually,
there is a mid 20th century improvement by Joseph Bishop KELLER, called GTD
(geometrical theory of diffraction), which formally explains questions of grazing
rays in computations for distorted plane waves (away from caustics), but it has
not been explained mathematically yet.

3. — Homogenization

Maybe what bothered physicists was that they were used to a scalar index of
refraction, and they did not see how a symmetric positive definite tensor could
appear instead, apart from playing with differential geometry in the way
EINSTEIN had done. Indeed, mathematicians could not explain this effect until
some work in homogenization started, in Pisa in the late 1960s with the work of
Sergio SPAGNOLO on G-convergence [Spl]-[Sp2], and with his collaborators Ennio
DE GIoraI (1928-1996) and Antonio MARINO afterward, and in Paris in the early
1970s with the work of Francois MURAT and myself on H-convergence [Ta74],
[Mu], motivated by an academic problem of optimal design posed by J.-L. LIONS,

(®) The referee found that readers may find my comments questionable, and that
physicists would maintain that rays of light feel a field, but since one attributes to
EINSTEIN the idea that it is the gravitational field created by the sun which bends light at
its surface, it seems to me that he considered the wrong field, and that his followers forgot
to learn about electromagnetism, as ALFVEN had already suggested. Of course, EINSTEIN
could hardly know what kind of plasma one finds at the surface of the sun, and it was after
his death that physicists claimed that the sun functions by thermonuclear fusion, and
although they started boasting in the mid 1950s that they were going to control fusion, it is
still to be seen when they will succeed: the main reason why one does experiments with
powerful lasers seems to be for discovering the physical laws governing plasmas at
millions of degrees, since the postulated laws used by physicists seem inappropriate,
although they do not hesitate to use them in their big-bang game at billions of degrees!
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and thanks to the work of Enrique Evariste SANCHEZ-PALENCIA (for periodically
modulated materials), it became clear (at least to me) that most 20th century
mechanics and physies is about homogenization, often in difficult settings which
mathematicians have not put under control yet, but which force to go beyond
partial differential equations.

There are no restrictions of periodicity, or use of probabilities in my definition
of what homogenization is, of course, since no such restrictions are present in the
general mathematical approach which came out of the pioneering work of the
Italian school in Pisa (S. SpAGNoLO, E. DE GIORGI, A. MARINO) or the French
school in Paris (FF. MURAT, L. TARTAR), as I presented it in the beginning of 1977
at College de France in six lectures associated to the name of Claude Antoine
Peccot (1856-1876), where I considered the subject intimately related to the
theory of compensated compactness which I had started to develop with F.
MURAT, since what homogenization is from a mathematical point of view is de-
veloping a nonlinear microlocal theory for dealing with partial differential
equations with small scale effects (in space or/and time): the basic fields of ap-
plications in continuum mechanics are turbulence for fluids, plasticity for solids,
correcting the defects of equations of state and more generally of (the so badly
named) thermodynamics, so that one could develop better mathematical models
from phase transitions and materials science to meteorology and climatology,
and understand better the connection with smaller scales from physics, where
the basic fields of applications are atomic physics, spectroscopy and scattering,
and the waves named after Felix BLoCH (1905-1983), for example.

Spectroscopy is about sending a monochromatic electromagnetic wave in a gas
whose properties vary on a length scale comparable to the wavelength of the
wave, but also on other length scales which certainly interact with it. Of course,
one expects resonance effects, but since what one knows about the microscopic
scales involved is questionable, at least for serious mathematicians who can
hardly believe in the silly games which physicists invented and which nature most
certainly does not play, it is definitely a problem of homogenization in an hy-
perbolic setting for which the actual mathematical knowledge is not sufficient. (%)

(®) As Graeme Walter MILTON pointed out to me, 3-point correlations about oscilla-
tions are necessary for quantifying scattering phenomena, and he said that my H-
measures describe the part of 2-point correlations which is scale invariant. When I
introduced parametrized measures in partial differential equations of continuum me-
chanics in the late 1970s, it was for pointing out that my theory of compensated
compactness (partly developed with F. MURAT) goes further, and at that time I did not
know that what one now calls Young measures were introduced by Laurence Chisholm
Youna (1905-2000) [Yo]; fortunately, my name is not linked to the wrong and quite silly
idea that Young measures “characterize” microstructures, since the deluded people
writing such nonsense also seem eager to attribute all my ideas to their friends.
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Although Leonardo Da VINcI (1452-1519) had some interest in turbulent
flows, nothing quantitative about instabilities was imagined before 1851, when
STOKES introduced what one now calls a “Reynolds” number, about which
Osborne REYNOLDS (1842-1912) only wrote in 1883, and by then it was clear that
turbulence is created by spatial (or temporal) fluctuations of the velocity field.

Tm"bulence 1s then a question of homogenization, for a first order operator

Z% o, , (19 so that when I first considered this question in the late 1970s, I

Wondered what kind of effective equation would appear in the limit if one uses a
sequence of velocity fields v" which only converges weakly. Since a first order
scalar equation can be considered as a degenerate elliptic equation, does one
obtain an effective equation which is a partial differential equation of some de-
generate elliptic type? However, a first order scalar equation is hyperbolic, and
since the spectroscopy experiment is also about homogenization in an hyperbolic
setting and physicists explained what they observed by rules of spontaneous
absorption or emission, I guessed that it was their way of saying that an effective
equation contains a memory effect, (*!) so that I expected to find effective equa-
tions containing integral terms. In very special situations (chosen for applying
convolution operators) it is indeed the case that some nonlocal terms appear in the
effective equation, and a few examples include convolution in time, in space, or
both, (*?) but there is not yet a theoretical understanding in more general situa-
tions for these effective equations which go beyond partial differential equations.

Classical weak (or weak x) convergence is only adapted to quantities which
mathematically are coefficients of differential forms and physically are related to
extensive quantities: the density of mass p, the density of linear momentum p u,

8(7)] W) (in the sense of

a( ]'//)

(*9 Tt is natural to assume that div(w) = 0, so that Z ]g!// S—"
J

distributions) for smooth functions y, and then use the form ) P which has a
j

meaning without much smoothness assumptions, i.e. in cases Where] some term v; 8!// may

not necessarily make sense.

(*1) Of course, there is no need to invent a probabilistic game for explaining the form of
an effective equation. Since the introduction of probabilities in physical problems has
usually been a mistake in the past, because it destroyed physical reality for replacing it by
postulated games, and not by games which had been shown to result from a logical
reasoning about what was already known, it seems better to warn against introducing
probabilities when they are not needed, which is most of the time.

(*?) They were studied with a method which I developed, based on representation of
functions now associated to the name of Georg Pick (1859-1942), or sometimes Rolf
Herman NEVANLINNA (1895-1980) or Thomas Jan STIELTJES (1856—-1894), mostly by my
students, Maria Luisa MARTINS MACEDO FARIA MASCARENHAS, Kamel HAMDACHE,
Nenad ANTONIC, and their collaborators.
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2
[l

the density of total energy p % + pe are extensive quantities, but not « (unless

p is constant), and other quantities may require different topologies of weak
type. Usually, weak topologies restricted to bounded sets are metrizable, and
identifying the topology of weak type adapted to a particular quantity is then just
a way to explain what it means for two instances of that quantity to be near,
usually for one having small scale variations and the other having none.

4. — G-convergence and H-convergence in an elliptic framework

The basic idea for S. SPAGNOLO’s G-convergence is to consider a sequence of
(elliptic) partial differential equations

— dw(ay grad(u,)) =f in Q C RY,

4.1)
u, € H)(Q), with f € H1(Q) given,

where a,, € L*>(Q) satisfies

4.2) O<o<aple) <f<ooae x e

then, there exists a subsequence a,, independent of f, and a%. e L>(Q) for
1, =1,..., N, satisfying

N
2| <> af &g < BlEf ae w e @, forall & € RY,
i,j=1

4.3)
aj‘i’{f(x) = af]ﬁ(ac) ae.xcQ fori,j=1,...,N,
such that
Uy — Uoo 1N Hé(Q) weak, solution of
4.4)

N
0 ﬁcﬁum r

S. SPAGNOLO proved more, that if a sequence of measurable symmetric matrices
A" = (Ag‘)i, j=1,...n satisfies the analog of (4.3), then there exists a subsequence A"™
and a measurable symmetric matrix A%, also satisfying the analog of (4.3), and
such that for every f c H1(Q) the sequence u, € HL(Q) of solutions of
—div(A™grad(u,,)) = f in Q converges weakly in Hj(£2) to u.(2) solution of (4.4).
The convergence of A™ to A% is equivalent to the convergence of Green kernels,
hence its name of G-convergence, and an important property is that it is local.
In dimension 1, one has 1 o in L weak «, and there is an explicit

m
formula in dimension N > 2 in the case of layered material (i.e. A" only de-
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pending upon (x,e) for a direction e € SN~1), which uses the weak « limits of
precise quantities depending upon e, since the Young measure of the sequence
A™ alone cannot characterize A% in dimension N > 2, and some geometric in-
formation on the microstructures used is necessary: it then is silly to imagine
that a finite number of parameters can describe all possible micro-geometries,
except in one dimension, where this is no geometry.

In the non-symmetric case, studied with F. MURAT (and he chose the name
H-convergence in relation with the term homogenization), the operator
—dwv (A gmd-) does not characterize A, and (4.3) is replaced by A" € M(x, 5; 22)
defined as

o €% < (AM@)E, &) ae. x € 2, for all & € RY,

4.5) 1 ) N
ﬁ |[A"(@)é|]” < (A"@)E,¢) ae. x € Q, for all & € RY;

then, there exists a subsequence A™, and an effective limit A% € M(a, f; Q), i.e.
satisfying (4.5), such that

U — U in H},, weak, and

(4.6)

— div(A™grad(uy,)) = f — fr in Hjn(Q) strong
imply
4.7 A" grad(u,) — A grad(us,) in L2(Q; RY) weak,

so that u,, satisfies an equation like (4.4) with data f.., independently of which
boundary conditions are used (which one then must check), (*3) but also

4.8) (A" grad(uy,), grad@u,)) — (A7 grad(us.), grad(u.)),

weakly in L} () (i.e. with test functions continuous with compact support in ),

an example of the div-curl lemma (first instance of the more general compensated
compactness theory developed with F. MURAT). (**) The existence of correctors

(*3) The independence with respect to boundary conditions had already been proved
by S. SPAGNOLO in the case of G-convergence, so that F. MURAT and I were only observing
how to extend his results to our generalized framework of H-convergence.

() In using the div-curl lemma, the approach which I followed with F. MURAT differed
from that of S. SPAGNOLO, whose proof relied on a regularity theorem of Norman George
MEYERS; this same regularity result permits to use test functions in L* in the div-curl
lemma when the fields £ and D™ come from solving an elliptic equation like in (4.8), but
in the general case the div-curl lemma is not true for piecewise continuous test functions
with a discontinuity along a smooth hyper-surface; using fine results from harmonic
analysis (namely a commutation theorem of Ronald Raphaél CoirMAN, Richard Howard
ROCHBERG, and Guido Leopold WEISS) one may use test functions in L> N VMO.
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P e L*(Q; L(RY; RY)) (depending only upon the sequence A™) satisfying
P —Iin L2 (Q; L(RY, RY)) weak,

loc

4.9 AP A i [}

loc

(2; L(RY, RN)) weak,
grad(u,) — P"grad(us.) — 0 in L}, (2; LRY, RY)) strong,

permits to describe the effect of adding lower order terms to the equation, (**)
and to identify the Young measure of grad(u,,) in a local way, using grad(u..) and
the Young measure of P™.

For E™ = grad(u,,), satisfying curl(E™) = 0 and for D™ = A™grad(u,,), sa-
tisfying div(D™) = f,,, the weak convergence is natural; for A™, the natural
convergence is H-convergence.

5. — Optimal bounds

The obtention of “optimal bounds”, i.e. the identification of what A%’ can be
in terms of the Young measure of A", corresponds in the symmetric case
(which up to now was the only physically relevant one) to characterizing the
effective properties which one can obtain for mixtures by playing in the best
possible way upon the proportions of the various materials used and the
choices for micro-geometries, i.e. the geometrical arrangements of the various
pieces at a fine scale: it is essentially a theoretical question, prior to won-
dering about the cost of creating efficient mixtures using intricate micro-
geometries. (*)

For finding constraints on A%, I developed in the late 1970s a general
method based on compensated compactness [Ta77] (which I later made more
precise by the use of my H-measures [Ta90]), which extends the initial
method based on the div-curl lemma which I used with F. MURAT in the early

(*®) T introduced correctors because of a remark of Ivo M. BABUSKA about (linearized)
elasticity (in a periodic medium), that the knowledge of an effective stress is not sufficient
for telling when a material may break, and one needs a multiplying factor for deducing the
local stress. I then noticed that the correctors permit to find the effective equation when
lower order terms like (b,, grad(u,)) are added, and F. MURAT completed this observation
by considering also terms like div(c,u, ), where one uses the correctors associated to (A’”)T.

(*%) Engineers are trained to develop an intuition for finding reasonably efficient
designs much before a complete scientific understanding of a question is attained.
However, despite the successes of the engineering approach, it is important to continue
thinking about a problem until a scientific understanding is achieved. One of my
complaints about physicists is that they consider any efficient engineering model as if it
is an exact law followed by nature.
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1970s [Ta74]. One should not be lured by various ad hoc minimization argu-
ments which one finds in the literature, and which are not about the question
of homogenization which I consider: mentioning questions of global “energy”
stored in Q is certainly not finding bounds on A% (x) valid for almost every
x e Q.

The other side of the picture is to construct particular mixtures and hope that
the external constraints and the internal constructions match.

Fortunately, one often does not need to identify the exact set of all possible
A but only a projection of it: for example, for a vector E one wants to identify
the exact set of all possible A% E, i.e. instead of characterizing a symmetric
matrix, one wants to characterize what one of its column may be: if A" = a,,/ with
(4.2) and

(5.1) a, — OLDO,i — bi in L*(Q) weak x,

n (o]

then if a subsequence A™ H-converges to A%, one has
(5.2) D = ATE satisfies (D — b E,D — aE) <0 a.e. in Q,

for all E € RY,ie. D belongs to the solid ball of diameter [b..E, a.E], and this
characterization is optimal. More generally, if

(5.3) O<oa < by(x) <ayx) <f<ooae. xcQ;
1 1 .

(5.4) ay, — awb— — . in L>(Q) weak x,
n o0

E" — E*® D" — D* in L*(Q; RY) weak,
(5.5) (E",D") — (E®,D™) in LY(Q) weak *,
(D" — b,E",D" — a,E™) <0 a.e. in Q,

then
(5.6) (D*® = b E*,D* — as E™) <0 a.e. in Q.

If D" = A"E™, with A" symmetric, then the third line of (5.5) follows from the
hypothesis that the eigenvalues of A" are in the interval [a,, b,]. Although the
proof uses the method which F. MURAT and I devised in the early 1970s, where
the div-curl lemma served for ensuring the second line of (5.5), I only noticed
such a geometrical result in the early 1990s [Ta95].

However, I was unable to imagine a natural type of question of this kind in the
non-symmetric case.
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6. — A new question for the non-symmetric case

In the Fall of 2010, I heard my young colleague Gautam IYER describe some
joint work [INRZ], related to “diffusion and mixing in fluid flows”: *in previous
work [CKRZ], it had been observed that if v is a (smooth enough) divergence free
velocity field in a smooth bounded open set @ ¢ RY, then

—du+ Znggi =f in Q,u € Hy(Q) satisfies
6.1) J '
N
ull L) < CQ,0) || fl o) for p > 5
with C(®, p) independent of v, (*) and looking for a possibly optimal v gave numerical
simulations suggesting the appearance of homogenization effects, as in my work
with F. MURAT, summarized in [Ta98] for the occasion of a CIME (/CIM) course.
For N = 2, assuming that Q is simply connected and introducing a stream
function y such that v = (y,, —y,,), I observed that

62)  —Au+ s — yu, = —div(A grad)) with A = (fw "1’>

so that it explains the similarity with the problem which F. MURAT and I studied:
assuming that w € H'(Q) N L>(Q) (and normalizing y by adding a constant so

that in!f2 w(x) = —supw(x) for example), if one considers a sequence y,, which
xe reQ

stays bounded in L>°(Q) but not in H(Q), then A" may H-converge to an ef-
fective matrix A%’ having a different form, or having the same form but with a
non-smooth y, in which case the left side of (6.2) may not make sense, while the
right side of (6.2) still keeps a meaning.

(*) Since one too often relies on the “fake Brownian” motion ideas when talking about
diffusion, either of heat according to the initial ideas of Jean-Baptiste Joseph FOURIER
(1768-1830), or of matter according to the initial ideas of Adolph Eugen F1ck (1829-1901),
I prefer to be cautious about the physical relevance of such ideas.

(*8) Tt is important to notice that such estimates rely on the maximum principle, which
plays no role in the general theory of homogenization. This type of result may have been
known to those who extended the work of Guido STAMPACCHIA (1922-1978) on the L4
regularity of solutions of scalar second order equations with discontinuous coefficients;
since I have promised to write down my own method (devised in the mid 1980s) which
permits some improvements using spaces named after George Gunther LORENTZ (1910-
2006), I shall soon do it and show a more general result, and I shall check at that time who
was the first to notice such a bound independent of the size of v, which needs the
hypothesis that it is a divergence free field, and is then not covered by some results of
Giorgio TALENTI and his collaborators, who have compared the radial non-decreasing
rearrangements of solutions in an open set Q with the radially symmetric solutions of
adapted problems in the ball having the same volume than Q.
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One should be cautious about the physical relevance of models: for fluids, (6.1)
corresponds to the transport of a scalar quantity « by an incompressible (and sta-
tionary, i.e. time independent) flow v, so that if one considers a situation where there
is no bound for the H' norm of the stream function y it means that there is no bound
for the L2 norm of v, proportional to kinetic energy, and since 4y = curl(v) which is
the vorticity of the flow v, the use of discontinuous y corresponds to a limiting si-
tuation where the vorticity may be quite singular. Of course, one difficulty for un-
derstanding the 3-dimensional uniqueness or regularity of weak solutions of Navier-
Stokes equation, a problem initialized by the work of Jean LERAY (1906-1998) in 1930,
is that one does not know how to bound the vorticity, but kinetic energy should
certainly stay bounded. Also, considering a sequence of stream functions y,, con-
verging only in L weak *x authorizes quite unrealistic choices, since the velocity
field v" should also satisfy an equation like Navier-Stokes equation.

Nevertheless, I shall say that this model provides a second “physical” ex-
ample of H-convergence for non-symmetric matrices, the other one being the
treatment by G. MILTON of a classical effect named after Edwin Herbert HALL
(1855-1938), also a 2-dimensional situation, (*°) but here one may also consider
the 3-dimensional version, with u = curl(y), where y is a vector field defined up
to addition of a gradient, and since

(curl(y), grad(u)) Z (Z & 3%) ou

_Zam ( Ua ) thBlj_Zg7’Lkl//k7

the following matrix A appears in 3-dimension

(6.3)

1 VY3 Y
(6.4) A= w3 1 -y |, ie Aé=¢4yxEforée R
VY2 Y1 1

For H-convergence of non-symmetric matrices, F. MURAT and I introduced
the notation M(a, fi; Q) for matrices satisfying (4.5), (*°) which is compact for the
topology of H-convergence;(*!) since the matrices A of (6.2) or (6.4) satisfy

(*®) The (classical) Hall effect is observed in a metallic ribbon (considered a 2-
dimensional domain) in which an electric current goes through: if one applies a
perpendicular magnetic field, it induces a difference of potential between the two edges
of the ribbon.

(®% Notice that M(a, [f, Q) is a closed convex set of matrices, and that it means

A(x) > ol and (A(ac)) I (for the usual pre-order on matrices) a.e. in Q.

B

(Y In the non-symmetric case, if 0 < & < y < oo, the set of A satisfying A(x) > ol
and |A(x) &| < y|¢] for all & € RY ae. & € Q is not closed for H-convergence.
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(A¢,8) =0, one has

(6.5) A€ M@, Q) with 1+ |y < B ae. in Q.

For N = 2, the normalization inf,co w(x) = — sup,o () consists in minimizing
the L*> norm of y, hence the value of § > 1. Given f > 1, then

(6.6) A=1-yRy» e M, Q) means |y ~q < V-1,

where R, is the rotation of 4, and for a sequence y,, a subsequence A™ H-
converges to A4 € M1, ; Q). For M € M, ) (i.e. no « dependence) the skew-
symmetric part of M is —y R, 3, independent of the orthonormal basis, and the
symmetric part of M can be diagonalized in an orthonormal basis in which

_ 3! "4 22
M_(—V/ b),and()

N

A2
det(M) = Jalz + oy < f min{iy, Ao}
The “H-closure” of the matrices of the form I — w Ry 2 with ||y~ < /f — 118
a subset of M(1,;Q) of the form A (x) e Kp a.e. x € Q, for a particular
Kp € M(1, p) [Ta07], which has not been characterized yet, but for a given vector

E € R? the general theory says that the set {AE | A € Ks} is a closed convex set
of RZ. (*®) However, I want to characterize such a set in a more precise situation

for HW%”L“(Q) < \V ﬁ -1
if Vi — VYo l//;zz - Eoo in LOO(.Q) weak *,
A" =1 —y,R,» H-converges to A,

A a
( 1 l//> M(17ﬁ) means /117/12 > 1’ and

6.8)

then, by a convexity lemma which F. MURAT and I proved in 1970, the possible
pairs (v, ¢~) are characterized by

(6.9) Y </ly <f—1lae. inQ,
and for the question of H-convergence one has
E™ = grad(u,,) — E™ in L*(Q; R?) weak,
(6.10) D" = A"grad(u,,) — D™ in L*(Q; R?) weak,
(E™ D™) — (E>,D*) in L}(Q) weak ,

)M >1 means J;,lg>1, and the condition M~ !> % I means %,
2 1. . , 9 RS 1z Ty
— >, 1le. L > = 114 < .
R ﬂ,le min{y, Ao} > 1 and det(M) = 2142 + = < f min{y, Ao}

(®) Tt results from the formula for layered materials written in an arbitrary basis
[Ta83].
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the third line following from the div-curl lemma, and my first question is to
characterize D> in terms of £, v, and /.

THEOREM 1. — With the preceding notation, one has

(6.11) D>* = B —y R, .E* +C~,
with
6.12) = — %0 E*| < %‘” B a.e. in Q, with & = (s — Y.

ProOF. — In the subset v where /., = l//io, i.e. &, = 0, one has strong con-
vergence of y,, to w_, i.e. in L? for every q € [1, c0), hence

inw={recQ|l,=y~}, one has

D> =~ l//ooRﬂ/Q)E =E> - l//ocRn/ZE .

On Q\ o, one has y% </, < f — 1, and for applying our convexity lemma, one
proceeds as follows: for vectors v,w € R% one considers the weak * limit of
(D™, E™) 4 2(v, E™) + 2(w, D™), which is (D>, E*) + 2(v, E*) + 2(w, D*), and
one notices that

(D™ E™) 4 2(, E™) + 2w, D™)
= |E"P + 20, E™) + 20w, E™ — y,, Ry /2E™)

(6.14) = |E™[? + 2(E™, v+ w + y,, Ryyt0)

> —[v+ W+, R 10

= —o+wf - 2y, (v, B jow) — l//fn|w|2, a.e. in Q,
and taking the limit one obtains

(D>, E*®) + 2(v, E*) + 2(w, D*>)
(6.15) > [+ wl® — 2y (v, Ry jow) — oo 0]
= v+ W+ Yo Rrppw]® — (los — w2 w0, ace. in

which is true for all v,w € R?; using z = v +w+ w_R, /2w instead of v, one re-
writes (6.15) as
(D®,E®) + 2B,z — w — y Ry pw) + 2(D®, w) + |2

(6.16) ) )
+ (Us — y/io) |lw]* >0, a.e.in Q, for all w,z € R",

and for minimizing the left side, one takes z = —E*°, so that
(D> — B>, E>) 4+ 2(E™, —w — y Ry pw) + 2(D>, w)

6.17)
+ (loo — ¥2) |w|2 >0, a.e. in Q, for all w € R?
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one transforms (6.17) by defining the correction C* by (6.11), so that (6.17)
becomes

(6.18) (€, B + 2w, C) + (o — v ) [w]? > 0, ae. in 2,

for all w € R%: on w, where (o, = w2, one has C* =0, and on Q\ w, where
s >y, one minimizes the left side by taking (/. —y? )w + C>® = 0, which
gives

(6.19) (C*,E>®) — ﬁ

— w2
0 00

|C®[ >0, ae. in 2\,

which localizes C* in the closed disc defined by (6.12), noticing that (6.12) is true
on w, where ¢,, = 0.

For constructing particular cases, one first uses the formula for layers in the
direction x1, and in an arbitrary direction by rotating the result; one then uses
information from the general theory of homogenization, that a set which one is
looking for is convex, that the topology of H-convergence is local, and that its
restriction to any set M(«, f5; 22) is metrizable.

THEOREM 2. — Given f>1, y.,ly € L¥(Q) satisfying (6.9), i.e w2 <
loo < B —1ae. m Q, and given a measurable function O from Q into the unit
circle S, there exists a sequence y,, such that ||y,,|| 1~@ < VB —1and (6.8) holds,
i.e. y, — W i L¥(Q) weak *, y? — (o in L(Q) weak x, and A" =1 — y, R
H-converges to A%, with the particular value

. sin® 0., sin 0,,cos O, .
6200 AY =1—y R+ e a.e. in Q,

Sin 0.,c0s O c0s? O

where ey, = Lo, — Y2..

PROOF. — One starts by approaching (v, 4., 0s) by a sequence (y°, ¢, )
converging “strongly” (i.e. in L>(Q) weak * and L'(Q) strong) by cutting R? in
small disjoint open rectangles of sides < J, plus their boundaries of zero measure,
as introduced by Henri Léon LEBESGUE (1875-1941) and, for each such rectangle
w which intersects 2 in a set of positive Lebesgue measure, replacing each
function v, £, and 6, by its average on w N , observing that (i, ¢~) takes its
values in a (closed) convex set, and paying attention to choose the representation
of 0, taking values in [0, ) for also having a convex set (since one only needs 0,
modulo 7). Since ¢ is an average of ., which is > (y__)?, and the average of (y_)*
is > (%)%, one deduces that £ = (y)* + & with &° > 0.

One first proves the theorem for (y°, ¢, 05), showing the existence of a se-
quence w9 having the desired properties: for a given 6, one works separately on
each w N Q having positive measure, taking advantage of the local character of
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H-convergence, (%) and then one uses the formula for the effective matrix in the
case of layered materials: for example, if 0° = 0, one uses a sequence of smooth
functions y,,(x1) which converges to y° in L* weak %, with w2 converging to
0 =) + ¢ in L™ weak *, and (6.9) is the characterization of which con-
straints result from |y, |;~ < +/f — 1; the formula (valid for functions of x;
alone) tells that

L is the L™ weak x limit of here Ai{f =1,

Al Ay
eff
—12 5 the L™ weak + limit of Ay here A% = y°
A Af . 7
621) AL AL ‘
2D An 0 the 1< weak « limit of 2 here A — —y°,
A Aﬂ 21
11
Aeff eff An A%
AL — % is the L™ weak * limit of A, — %,

11
here Agg =140 P =1+¢,

ie.

. . 1 g
(6.22) using y, (x;) gives A% = (—WS ) ‘i P ),

so that using v, (00595901 + sin@éacg) gives

6.23) A ] ” ip oy 5 sin?0° sin@®’cos(’ '
sin@cos®®  cos26’

One then deduces the theorem by the argument of Georg Ferdinand Ludwig
Philipp CANTOR (1845-1918) for choosing a diagonal subsequence, which is valid

(Y T choose the rectangles w to be open since F. MURAT and I first used open sets for
proving the local character of H-convergence (by applying our div-curl lemma), but the
result is true for w any measurable set, by following the original proof of S. SPAGNOLO for
the local character of G-convergence, which uses a regularity theorem of N. MEYERS,
whose proof relies on more technical results: it uses the famous convolution theorem of
Alberto Pedro CALDERON (1920-1998) and Antoni Szezepan ZyGMUND (1900-1992) for
proving regularity in the constant coefficient case (with data in W17 with p #2), a
perturbation argument valid in the spaces now named after Stefan BANACH (1892-1945)
although their use had been advocated earlier by Frigyes RiEsz (1880-956), followed by an
application of the (real method) of interpolation in those spaces, developed in particular by
J.-L. LioNs and Jaak PEETRE, following ideas of Emilio GAGLIARDO (1930-2008) and
extending an original method of Marcel R1ESZ (1886-1969).
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here because the topology of H-convergence is metrizable (since one restricts
attention to M(1, f; )), and the strong convergence of ¢° and y° (toward 0> and
w>) implies the H-convergence of A4

One can construct a larger set of matrices A%’ than those given by (6.20), by
layering materials obtained in this way in other directions, and then one will have
to address the question of whether the set obtained is optimal or not; I have not
studied this question, and my interest here is to show that Theorem 1 is optimal,
in the ways stated in Theorem 3 and Theorem 4.

THEOREM 3. — Given E € R% and D € L>(Q; R?) satisfying

(6.24) D =E — y Ry sE + C with ]C - %” E] < %“ E| a.e. in Q,

With W, é0 € LX(Q) satisfying w2, < lo =y% +6x <f—1 ae n Q (and
B > 1), there exists a sequence y,, such that ||y, ~q < VB —1 ¥, — ¥ in
L>(Q) weak «, l//i — Lo 10 L*(Q) weak x, and A" = I — y, R, /> H-converges to
A with

(6.25) ATE =D ae.in Q.

PROOF. — One approaches y__ by a sequence y° which is constant in each small
rectangle w intersecting Q, by taking averages, but it is now &,, which one ap-
proaches by a sequence ¢’ by averaging, and one then defines ¢ by ()% + &,
noticing that ¢ > 0 and (y%)? + & < § — 1 by convexity. One also defines C° and
D? by averaging C and D on each wN £, so that these sequences converge in
L>*(Q) weak x and L!(Q) strong, and one has

(6.26) D’=E - y/‘SRWE' + (? in every rectangle o intersecting Q,

because E is constant, and then one notices that one also has
S 85 85
(6.27) ‘Cb 5 E’ < 3 |E| in every rectangle w intersecting Q,

because the set of (c,¢) € RZx R satisfying ‘c — % E ‘ < g |E| is convex, since the

function (c, &) — ‘c - % E” —% |E| is convex in (c, &).

For a given w intersecting 2 one can then apply Theorem 2 and create a
sequence y, s converging to w’ with 1//72% s converging to WY +& and
A" =] —yoR,» H-converging to various A%™’ given by the analog of (6.20)
using y° and ¢°, but one has the choice of which value 0., to use. One actually
chooses two different values 0% and ¢, which give Afﬁ and A;ﬁ ; then one
chooses a unit vector e € R? and one uses an iterated homogenization result
consisting in using in w N Q2 the two new materials Aiff and A;ff in layers per-
pendicular to e and in proportions #; and #, (non-negative with sum equal to 1),



ON A HOMOGENIZATION EFFECT FOR A TWO-DIMENSIONAL ETC. 301

and this uses the local character of H-convergence and the metrizability on the
set M, f; w N Q) for using a Cantor diagonal subsequence. The effective result
is given by a formula, which says the same thing than the formula for layering
already used, but which I expressed in 1983 in arbitrary directions for the
purpose of reiterating the process, and the formula (first written in [Ta83]) is

e@e
nz(Aiﬁe, e)+n1(Agﬁe, e)

©628) AT = A 1, AY — A - AT @Ay’ —A),

so that
629  if (AL — AY)E,e) =0, then one has ATE = n ATE + n, AV E.
Since (6.20) gives
(6.30) AYE =E —y’R,E + c(0x)
with ¢(0..) belonging to the circle ‘c - ;_6 E“ - ; E|,

and one obtains all the circle when 6 changes from 0 to 7, one can then choose 6
and Hio and the proportions #; and #, for obtaining

(6.31) me(@) + nae(0>) = C°,

since C? is inside the circle, because of (6.27). This proves the particular case
of the result for the piece-wise constant functions indexed by J, and letting o
tend to 0 and extracting an adapted Cantor diagonal subsequence proves
Theorem 3.

One can be a little more precise, and generalize Theorem 3 in the following
way.

THEOREM 4. — Given E € LA(Q; R?) and D € LA(Q; R?) satisfying
(6.32) D=E —y_R,;E + C with ‘c_%mE‘ g%‘” E| a.e.in Q,
with y., e € L(Q) satisfying y?. <l =y2 +éex <f—1 ae n Q (and
B > 1), there exists a sequence y,, such that ||y, ||~ < VB—1 v, — Wy 0

L>(Q) weak x, 2 — €y in L®(Q) weak x, and A" =1 —y,R, /2 H-converges to
A with

(6.33) AYE =D ae. in Q.

PROOF. — One approaches E by E° by averaging on w N  for each rectangle »
intersecting Q on a set of positive Lebesgue measure, but since one wants to keep
&~ for applying Theorem 3, one defines D? by

(6.34) D’ =E° —y R, E° + C° ae. in Q,



302 LUC TARTAR
where one has to choose C? in a compatible way, i.e. satisfying

<& |E°) a.e.in Q:

(6.35) 5

0 o 1o
ey
¢ 2

because |C| < ex|E| a.e. in Q, C vanishes (a.e.) where &, = 0 and one may con-

sider y = 8£ by defining it to be 0 where &, =0, and on w N2 one defines

(% = &,.7°, where j° is the average of y, so that the desired inequality is a con-
sequence of convexity as before. C° may not be constant on each rectangle, but it
satisfies (6.35), and Theorem 3 applies, hence there exists a sequence y,, ; such
that [jy,, sllz~@ < VB — 1 Wus — Vo in L(Q) weak %, y2 5 — (s in L>(Q)
weak %, and A" = I —y, sR,» H-converges to A%, with

(6.36) AR — DO ge. in Q.

One will then let J tend to 0 and extract a Cantor diagonal subsequence, and the
proof will be complete if one observes that C° converges strongly to C in
LA(Q; R?), so that D? converges strongly to D in L2(Q2; R®) by (6.34): indeed, one
has y € L2(Q; R?) since |y| < |E| a.e. in , so that )° converges strongly to 7, and
since ey, € L®(Q), C? = &,.)° converges strongly to e,y = C.

We have now a way to answer a natural question, but I have not studied the
question whether the inequalities obtained in Theorem 5 are the best possible
or not.

THEOREM 5. — If a sequence w, such that ||y, ~q < /B —1 satisfies
W, — Yoo in L¥(Q) weak *, w2 — by =y> +éx in L¥(Q) weak *, and
A" =1 —y,R, s H-converges to AT, with

(6.37) AT = MU — y TRy with MU symmetric, with i1 < Js,

then one has

(6.38) 1< <2 <1+ey ae in 2,
and
(6.39) W —y P <A +és—Ao)0h—1) ae. in Q.

PRrOOF. — For a symmetric 2 x 2 matrix M with eigenvalues 4; < Ag, one looks
at the relative position of a unit vector e and its image M e, which are known once
one knows the length |M e| and the cosine of the angle 6§ € [0, 7] between e and M e
(when M e # 0), for example by considering (M e, e), which is cosd |M e| |e|. If one
represents this configuration in a plane with an orthonormal basis by plotting
(|M e| cosO, |M e sind), it is easy to see that when the unit vector e varies one finds
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M+

Ao — 21 95
the whole upper part of the circle centered at and with radius 22— 1. *)
When a unit vector E varies, (6.38) then implies that A% E lies on a circle with
M+ 4 . Ao — A
center at P = (% w7 ) and radius p = 2 5 ! and one must write that this

circle falls inside the disc described by (6.12), with center at Py = (1 + %o ) l//oo>

and radius p, = %O This gives a first condition 1 < 4; < A <1+ &4, which is

(6.38), and then one wants to write that |P — Py| + p < p,, but since (6.38) implies
p < po, one writes [P — Py|* < (py — p)?, which gives a second condition

(6.40) (l//eﬁ _ WOO)Z < (W)2 B (1 N %o _ M —giz)z,

which after factorizing the difference of squares is (6.39).

Another natural question is to identify the union of the discs defined by (6.24)
when y__ and £, = y? + & vary, i.e. satisfying (6.9): of course, it is a subset of
{ME|MeMQ,p)}.

THEOREM 6. — The union of the discs defined by (6.24) when w, and
loo = W2 + & vary, i.e. satisfying (6.9), is exactly {M E | M € M(1,p)}.

Proor. — Choosing £ as a unit vector and completing the orthonormal
basis, and denoting (&,#) the coordinates in this basis, the image by

2
M e M@1,pB) of E is a vector (£,7) such that £¢>1 and &> Sl
E 4+ <& a disc centered at g and radius g For —\/f—-1<y </ -1
the value of ¢, can be any value between 0 and f —1 — y2 | (*%) so that the
dise increases with ., and for the maximum value ¢,, = f — 1 — w2, the disc is
tangent to both the line & = 1 and the circle & + 72 = ¢, and one way to see

, le.

it is to compute the distance from the center of the disc (1 + %,Wm) to the
B

center (g , 0) and check that it is 5~ %; one then wants to convince oneself
that by an argument of continuity, this family of bi-tangent discs sweeps the
whole region defined by & > 1 and & + 2 < B¢, one way is to show that the

segment joining the two points of tangency sweeps this region, and for doing

®) For a symmetric # x n matrix M with eigenvalues /; < ... < 4, (and n > 3), if
A;j = (4;,0) for j =1,...,n, the set obtained for (|M e| cos0, |M e| sin0) is the whole upper
part of the closed disc of diameter A;A4,, in which one has removed the open discs of
diameter A1Ag, A2As, up to A, _1A4,.

(*%) For y,, = ++/f — 1, the disc is degenerate and reduced to a point.
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this one uses |t|<+/f — 1 and the following 3 points

B /)’t).

(6.41) o= (0.0).Pi=0.Py = (Ep s

2 k)
Obviously, P; and P are aligned with the origin O, P; is on the line £ = 1 and

inside the disc & + 72 < B¢, Ps is on the circle & + 72 = f¢ and inside the half
space ¢ > 1. Moreover, for ¢ = f# — 1 — t* (which is > 0) the point

1+¢ B Bt B—1—1 (B
(6.42) S Bl et e Ry e 1)

- <1+§,t) — 0Py + (1 — ) Py with 6 —

1+
B

is the center of the desired disc, at distance § of P; and at distance W =4of
Py, and since the segment PP, is just the continuation of OP;, it obviously
sweeps the correct domain.

One should notice that Theorem 6 does not say that g coincides with M(1, §),
but only that these two sets of matrices have the same projection obtained by
taking their value on any given vector E € RZ.

7. — Conclusion

If something related to turbulent flows could be deduced from such a study, it
would certainly be better not to consider an equation for a scalar unknown, but
an equation for a velocity field » of an incompressible fluid, so that besides an
added constraint div(u) = 0, the equation would also contain the gradient of a
“pressure”. One should certainly consider a time dependent problem, but also a
3-dimensional situation, since turbulence is known to be a specifically 3-dimen-
sional effect.

The original approach of Andrey Nikolayevich KoLM0GOROV (1903-1987), who
had considered developed and isotropic turbulence, had at least two defects.

Even if one could guess a good equation for developed turbulence, it would
not tell much about the evolution of turbulent flows. It suffices to witness how
popular the “fake mechanics/physics” of gradient flows is for wondering why
so few mathematicians insist in correctly describing the physical phenomena
which some pretend to be interested in, and in explaining the silly character of
many studies: knowing the evolution equation governing a physical phenom-
enon permits to deduce its stationary solutions, as well as the stability of such
stationary solutions, but knowing about a principle (often not so physical)
which gives the stationary solutions does not permit to deduce either the
stability of such stationary solutions, or what the evolution equation for such a
phenomenon is.
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The defect of considering only isotropic materials comes from a lack of
mathematical understanding about what nature produces, but homogenization
permits to deduce in a mathematical way what nature may produce at a larger
scale if one knows which equations to use in small homogeneous (isotropic)
materials, and which interface conditions one should use at an interface between
two different materials, so that, knowing about a scalar index of refraction, one
may infer a question about the wave equation and the existence of anisotropic
materials, whose index of refraction is a symmetric positive definite matrix.

However, Christiaan HUYGENS (1629-1695) was unable to explain an effect of
double refraction (one incident ray, but two refracted rays) through a crystal of
Iceland spar (calcite), which had been discovered by Rasmus BARTHOLIN (1625-
1698). Although Etienne Louis MALUS (1775-1812) published a theory of double
refraction of light in erystals in 1810, one year after publishing his observations
about polarized light, it is probably not clear to everyone that these effects are
not related to a scalar wave equation, but to Maxwell-Heaviside equation, and
that anisotropy for such an equation is different from what happens for a scalar
wave equation. cD)

It is then important to have an open mind, for the case where the traditional
equations used for describing a phenomenon might not be the good ones, and it is
useful that mathematicians consider more general equations than those which
have appeared in applications: in inventing H-convergence, F. MURAT and I did a
typical work of mathematicians, and such a generalization of the work of S.
SPAGNOLO was not mandated by physical considerations, but it was important
that we had thought about such a general case, so that the analysis which I have
shown above had become almost natural to me.

Qualitatively, it is important that the symmetric part M% may have different
eigenvalues, since the usual ideas about “turbulent viscosity” suffer from the
precise defect than I mentioned above, i.e. one should avoid being stuck on the
idea that viscosity is a scalar.

Although I have worked above with stream functions y which are much too
irregular for classical physical interpretations, I find interesting that y may be
different from w__: in some way, one should expect that in turbulent flows the
constitutive equations may have unexpected forms.

It is also important to recall that one defect of continuum mechanics is that
equations of states are only approximations, and one should then stay open

(") The constitutive equations D = ¢E for a scalar dielectric permittivity ¢, and
B = uH for a scalar magnetic susceptibility u correspond to an isotropic material with

1
waves propagating at speed T and by homogenization both ¢ and x become positive

definite symmetric matrices, but if they do not have a common basis of eigenvectors, the
effects of propagation of waves are not like those of a scalar wave equation.
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about the idea that materials may change their microstructures, and that per-
mits some variations of physical quantities at a macroscopic level, and one should
then express that a physical quantity belongs to a set, which one may want to
think as smaller and smaller the more information one has about micro-geo-
metries (or mesoscopic arrangements).

Of course, a lot more should be done than what I described here, but one
should realize that very few “optimal results” are known, so that there is still a lot
of clarifying work to do.
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