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Viscosity Solutions of Two-Phase Free Boundary Problems
for Elliptic and Parabolic Operators

SANDRO SALSA

To Enrico Magenes, a great master

1. — Introduction

The obstacle problems, the Stefan problem, variational inequalities and, in
general, free boundary problems were among the main research topics of the
group of mathematicians in Pavia whose leading figure was Enrico Magenes. In
this brief survey we present some recent results concerning free boundary
problems, for both elliptic and parabolic operators, strongly connected with some
of the results achieved by Magenes and his school.

These kind of problems arise in several context and range from constraint
energy minimization to phase transitions, from Finance to flow in porous media.
We will be mainly concerned with problems in which the state variable can as-
sume two phases and the condition across the free boundary is expressed by an
energy balance involving the fluxes from both sides. Among the several concepts
of solutions we use the notion of viscosity solution introduced by L. Caffarelli in
the seminal papers [9], [10], which seems to be the most appropriate to study
optimal regularity of both solutions and free boundaries. Our aim is to describe
some of the main results, obtained in the last two decades.

At the same time, we shall single out some questions that are still open, also
adding some clues about the typical difficulties one has to face trying to get an an-
swer.

2. — Elliptic Free Boundary Problems

Starting from the elliptic case, we are interested in the following free boundary
problem (f.b.p. in the sequel) and in its weak solutions in the sense of viscosity.

In the unit ball B; = B1(0) C R" we are given a continuous function u sa-
tisfying

i)
(1) Llu=0 in Q" (u) = {x € By : u(x) > 0}

@) L20=0  inQ (u)={xeB; :u@) <0}’



264 SANDRO SALSA

Here, £! and £? are uniformly elliptic operators with ellipticity constant 4 > 0,
ie.

Al < Al(x) < A7 Vo € By,
of one of the following type (j = 1, 2):

Ll = Tr(A(x)D?u) + b/ (x) - Vuu

or
(3) Ll = & (x, Vu, D*u)
or
Llu = div(A7 (x)Vu) + b/ (x) - Vau,
where

Al@) = (ah@).b' () = (b](@), .., b} ()

and D?u is the Hessian matrix of .
1) Along

F(u) = 0Q%(u)N By
(the free boundary), the following condition holds:
a) if at xp € F'(u) there is a ball B such that

Bc Q" (u), BNQ"(u) = {x}
then, near x,
(4) wh(x) > aw —x9,0)" +o(x—x0[) in B, (x> 0),
(5) u () < ple—wo,v)” +o(fr—xol) inCB,  (f20),
with equality along every nontangential domain in both cases, and
(6) o < G(f,v,x);
b) if at 2y € F'(u) there is a ball B such that
BcCQ (w), BNQ (u) = {xo}
then, near x,
(7) w (@) > ple—ao) +olle—a)) B (f>0)

(8) () < ol —x,)" +o(jx—a9|) inCB (x>0)
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with equality along every nontangential domain in both cases and
9) x> G(B,v,x)

where v is the interior unit normal to 9B at x,

The conditions (4)-(9), express the free boundary relation u; = G(‘u; ,V, ac)
in a viscosity sense; in case a) (resp. b)) we say that xy € F'(u) is a right (vesp. left)
reqular point. In particular, conditions (6) and (9) correspond to a supersolution
and subsolution condition, respectively. Accordingly, we call u a wviscosity so-
lution of our f.b.p. (see [13], Ch. 4).

The main hypotheses on G are:

2) The function
2— G =G(z,2,v)

is continuous, strictly increasing on [0, + co);
1) for some N > 0, the function

2— 2 VG(z,2,v)
is decreasing in (0, + 00).
Typical examples come from constraint minimization problems as
min [{ag@), + @100 )
By

over u € g + H}(By), with ¢ > ¢ > 0 a.e. Here the free boundary condition takes
the form

()~ (uy) = q()

where v* denotes the conormal derivative in the direction of the positive phase.
Other examples arise from singular perturbation theory, e.g. as a limiting
problem when & — 0 for

M, + b(x) - Vu, = f,(u)

where

supp(f) < [0,1], [ =1, B,(s) =& (s/2).
R

Here the free boundary condition of the limiting problem takes the form
(=2,

The main issues arising in a f.b.p. are existence and optimal regularity. Due to
the highly nonlinear nature of the problems, uniqueness has hardly to be ex-
pected (see [1]).
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Clearly, given the jump of the gradients across the free boundary, the optimal
regularity of the solution is Lipschitz continuity.

The real challenge, not only from a purely mathematical point of view, is the
analysis of the free boundary, also in order to establish how classical the viscosity
solutions are. By a classical solution % we mean a C'-function up to the free
boundary F'(u) from both sides, satisfying the free boundary condition in a
classical pointwise sense. We may split the analysis of F(u) according the fol-
lowing scheme.

a) Existence/uniqueness, comparison

of the solution

. weak
b) Regularity § of the free bdry {

strong Lip = C'
“flatness” = more reg.

By weak results we mean the basic geometric measure properties, such as
F(u) to be a set of finite perimeter or some density properties of points on #'(u).

Strong results refers to improvements of the regularity starting from certain
assumptions, in the spirit of minimal surface theory. Typically in stationary
problems one proves that if we assume that #'(u) is locally a uniformly Lipschitz
graph then actually, F(u) is locally a C'* graph. We will refer to this kind of
result as Lipschitz implies C1*.

Another reasonable and sometimes necessary (e.g. in obstacle problems)
starting assumption is the flatness of F'(u). This kind of condition may be given in
several ways. For instance, a surface is e-flat in a neighborhood of one of its point
if after a blow-up can be trapped within two hyperplanes at distance e. This
happens for example near a differentiability point. Another way to state a flat-
ness condition appears in Theorem 3 below.

Improvement of flatness of the free boundary leads usually to its Lipschitz
continuity or directly to its C1* regularity. One can then apply the classical result
of Kinderlehrer and Nirenberg to get C* or even analytic regularity under the
same hypotheses on the data.

3. — Existence and weak regularity of F'(u)

Let us consider now the existence theory and weak regularity. In [11]
Caffarelli considers the case
L= 2 = div(A(x)V)

with A Holder continuous and the non-degeneracy condition G(0,v,x) > ¢ > 0.
His main result is the following
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THEOREM 1. — Given a Lipschitz domain Q and g € C(0Q), there exists a
viscosity solution u € C(Q) with u = g on 9Q. Moreover, u is Lipschitz in &,
QF(u) is a set of finite perimeter and
u'(x)

(10) 0<a1 §m§a2.

Note the linear growth of the positive part of the solution, expressed by the
left inequality in (10). Caffarelli uses a Perron method constructing a minimal
solution given by

u(x) = 7i}relgv(%)

where S is a class of continuous supersolutions v in Q such that » > g on 2 and
that F'(v) is regular from the left. Similarly one can construct a maximal solution
with analogous properties. From a philosophical point of view, this result implies
the existence of universal regularity and nondegeneracy properties for these
kind of problems. This cannot be expected for instance in parabolic two phase
problems as we will see in the sequel.

This existence result has been extended by P.Y. Wang in [31] to the case
£ = £? = F(D?u) with F concave.

Here is one open question.

OPEN PROBLEM 1. — Ewistence and weak regularity for L' = £* = F (D*u, Du),

with F mon concave in the Hessian matrix and even for the linear case
L' = £ =Tr(A(x)D?u) + b(x) - Vau.

Let us see what constitutes the main obstruction in extending Caffarelli’s
method. The key tool is the following monotonicity formula of Alt, Caffarelli and
Friedman (see [2]).

THEOREM 2. — Let u = u" —u~ be such that div (A(x)Vu*) > 0 in By, with
wt(0) = u~(0) = 0. Assume that A is Holder continuous with exponent o. Then
for, say, 0<r < 1/2, and some constant c(n) > 0, the function

Vut[? Vu|?
D(r) = r~te " | : | dxf' | da
J |90|)%2 J |x‘n72
r r

18 increasing and

B(r) < c(n)|[ull7g,)-
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Observe that if the supports of 41 and u~ where separated by a smooth surface
with normal v at = 0 then, by taking the limit as » — 0, we could deduce that

(uf (0))? (u; (0))*< @(1/2)

so that, “morally” &(r) gives a control in average of the product of the normal
derivatives of u at the origin.

It seems hard to extend the above theorem to non-divergence form operators.
It can be proved in some special cases under additional hypotheses; for instance,
one can prove the following result ([22]):

THEOREM 8. - For 1/2<f<1 and k=12 let wu < C™(B1(0)N
C2(B1(0) N Q" (uy,)) be non negative functions satisfying the following conditions:
urug = 0, u1(0) = u2(0) = 0

n
Lue = ag@)Dyux) > 0
ij=1
in Q" (uy) = {x € B1(0) : u; > 0}.
Suppose a;; € CY*(B1(0)), 0 < a < 1 and moreover that w;, enjoy the estimates:
wi(y)

) "l Pu) <6 D) < 6 M

Y

in Q" (uy), k = 1,2, where d,, is the distance from the zero set. Then for 0<r< %

f | Vua(y) |2

|712

y

1s bounded. In particular &(r) < C ||u1||20_/;(1 2) ||u2\|200‘,~,(1 J2) and &(r) is monotone
ncreasing.

The main assumption in the above theorem is really the first inequality in
(11). For instance, if u, uz were solutions (instead of just subsolutions) and their
supports were separated by a Lipschitz surface, then (11) is true. If no in-
formation on F'(u) is available, In view of the applications to free boundary
problems, one should be able to use the free boundary condition itself, but so far
no proof is available.

Thus:

OPEN PROBLEM 2. — To prove a monotonicity formula for nonnegative sub-
solutions to nondivergence form operators with Holder coefficients.
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Some related results concerning questions of uniqueness in two-phase pro-
blems are proven by Guozhen Lu and P.Y. Wang in [24]. In particular, via a very
interesting comparison theorem, uniqueness of a viscosity solution is established
in singular perturbation problems for a class of fully non linear operator of the
form F(D*u, Du), including for instance the p-Laplace operator.

4. — Regularity: strong results

The regularity theory for the Laplace operator has been developed by L.
Caffarelli in the two seminal papers [9], [10].

In particular the “Lipschitz implies C**” part is contained in [9] while the flat
implies Lipschitz part is shown in [10]. In these papers Caffarelli sets up a
general strategy to attack the regularity of the free boundary through an
iterative procedure, based on interior and boundary Harnack inequalities.

Briefly the strategy of the proof in [8] consists of the following main steps.
Starting from a Lipschitz graph, one shows that in a neighborhood of F'(u) the
level sets of u are still Lipschitz graph, locally in the same direction. Then one
improves the Lipschitz constant of the level sets of u away from the free
boundary. Here Harnack inequality applied to directional derivatives of u plays a
major role. Then the task is to carry this interior gain up to the free boundary. To
this aim, Caffarelli introduces a powerful method of continuity based on the
construction of a family of continuous subsolutions, on which we will came back
later on. Finally, by rescaling and iterating the last two steps, one obtains a
geometric decay of the Lipschitz constant, which amounts to the C'* regularity
of F(u).

After 10 years M. Feldman (see [17]) considers anisotropic operators with
constant coefficients and extends to this case the results in [8].

P. Y. Wang manages to extend the results both in [8] and [9] to a class of
concave fully non linear operators of the type F’ (Dzu) (see [W2]). One year later
Feldman (see [18]) considers a class of non concave fully non linear operators of
the type F(D?u,Du). He shows that Lipschitz free boundaries are C* thus
extending to this case the results in [8].

The first papers dealing with variable coefficient operators are by Cerutti,
Ferrari, Salsa (see [12]) and by Ferrari ([16]). They consider respectively, linear
elliptic operators in non-divergence form and a rather general class of fully
nonlinear operators F(D?u,Du,x), with Holder continuity in w, including
Bellman’s operators. One of the main difficulty in extending the theory to vari-
able coefficients operator is the fact that directional derivatives do not satisfy
any reasonable elliptic equation.

A refinement of the techniques in [12] leads to the following results (see [19]),
where the drift coefficient is merely bounded measurable.
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THEOREM 4. — Let u be a weak solution of our free boundary problem in By,
where Lu = Tr(A’(x)D?u) + b (x) - Vau, j = 1,2. Suppose 0 € F (u) and that
i) A7 € C*Cy),0<a <1,b) € L*(By).
)
~ dist(x, F(u))
i) G(0,v,x) > ¢ > 0.

i) 0<og < olo.

There exist 0<0<m/2 and & > 0 such that, if for 0<e <%, F(u) is contained in
an e-neighborhood of a graph of a Lipschitz function x, = g(x') with

. T -
Lip(g) < tan (E - 9)
then F(u) is a C**-graph in By s.

Condition 7i) expresses a linear behavior of ' at the free boundary while
being trapped in a neighborhood of two Lipschitz graph with small Lipschitz
constant is another way to express a flatness condition. Thus, flatness plus linear
behavior of the positive part imply smoothness.

Under the same hypotheses on the operators, one can also prove that
Lipschitz free boundary are smooth. Namely ([19]):

THEOREM 5. — Let u be a weak solution of our free boundary problem in By,
where Liu = Tr(A’(x)D?*u) + bI(x) - Vu, j = 1,2. Suppose 0 € F(u) and that
i) Al e C*Cy),0<a <1,b/ € L™(By).

i) Q" (w) = {(@,xy) : 2y > f(@)} where f is a Lipschitz continuous func-
tion with Lip(f) < L.

iii) G = G{) is continuous, strictly increasing and for some N > 0,
2 NG(2) is decreasing in (0,4 o0). Then, on B} 12 C R™, fisa CY function with
y=7yn,N,L,A,a).

This theorem has been recently extended to the same class of fully nonlinear
operators considered in [16] by Argiolas and Ferrari (see [3]).
We draw two consequences from the above theorems.

COROLLARY 6. — The conclusion of Theorem 5 holds if L'=L?=
div(A(x, u)Vu) with A Lipschitz with respect to all its arguments.

The other application is to the minimal solution constructed in [11]:

THEOREM 7. — Let u be the minimal viscosity solution constructed in
Theorem 1. Assume A = A(x) is Lipschitz. Then, if €y € Oreq Q*(u) N By2, F(u)
s a CY*-graph in a neighborhood of xy.
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Thus, the theory of viscosity solution of general free boundary problems for
divergence form operators can be considered quite satisfactory, at least in the
case of Lipschitz coefficients.

Naturally, we pose:

OPEN PROBLEM 3. — Regularity of the free boundary in the case of divergence
form operators with Hélder coefficients.

Let us examine what is the main difficulty in dealing with divergence form
operators with Holder coefficients.

Let us go back to the continuation method used by Caffarelli in [8] to carry up
to the free boundary the interior decay on the Lipschitz constant. The key point
is the construction of a family of deformations, constructed as the supremum of
an harmonic function over balls of variable radius. Here is the main question: let
u be a given non negative function, harmonic on its support. Let g be a smooth
function, 1 < g < 2, and define the sup-convolution

vy(x) = sup wu.
By (@)

Under which condition on g is v, subharmonic on its support?
The answer is given by the following differential inequality:

(12) 949 > C(n)|Vg[*.

The situation in the variable coefficient case is much more involved. For instance,
if we have a non negative function « such that Lu = Tr(A(x)D?u) +b(x) - Vu =0
on its support, the condition that g has to satisfy in order to make v, an L-sub-
solution on its support takes the following form:

\
(13) £g > Cln, A) {%+ ||b|Lx}

where o is the modulus of continuity of A computed at max g/ A.

There are two main draw-backs in condition (13) with respect to its constant
coefficient counterpart.

The first one is fact that it is not homogeneous with respect to g; this causes
the need of a delicate balance between rescaling and decay of the Lipschitz
constant of the level sets of « in the iteration procedure to carry the interior gain
to the free boundary.

The second one is that the proof has an intrinsic non-divergence feature and
so far any attempt to find a proof for divergence form operator with Ho lder
continuous coefficients has failed (see [[F'S2] for a more divergence form oriented
proof).
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A recent quite interesting result of De Silva ([14]) deals with one phase
problems with right hand side. The main feature of this paper is that presents a
new approach in order to improve the flatness of the free boundary and achieve
C'* regularity. The novelty with respect to Caffarelli’s method is that it avoids
the use of the sup-convolutions and it is based uniquely on rescaling and Harnack
inequality.

There is a strong hope that using a combinations of his method with
Caffarelli’s technique and the perturbation analysis in [12], [19] one should
succeed to prove regularity of flat and or Lipschitz free boundaries, even with
non-zero right hand side, which indeed constitutes a major extension of the
theory.

OPEN ProBLEM 4. — Optimal regularity of the solution and analysis of the free
boundary for two phase problems with distributed sources.

5. — Evolutionary Free Boundary problems

We now consider evolution free boundary problems. Formally one seeks for a
function in a space-time cylinder Cx = B x (—R?, R?) such that
L' =0in Q" (u) and L*u = 0 in 2 (u)
and

+
Vy=— 1t =-G(u, |u |, v,,t)

on F'(u) = 0Q"% (u) N Cg, the free boundary.

Here
LI =r)— Dy
where
Ll = Tr (A7 (x,t)D?u) + bl (x,t) - Vu
or
Llu = & (x,t, Vu, D*u)
or

Ll = div (A7 (x, t)Vu) + bl (x,t) - Vu

are uniformly elliptic operators. In the free boundary condition v = Vu* /|Vu™|,
so that V, represents the speed of the free boundary in the positive phase di-
rection. Typical example come from the classical two-phase Stefan problem
where G(u;, [uy, |,v,2,t) = u} — |uy|.
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We require that G is Lipschitz continuous with respect to all its argu-
ments, strictly increasing with respect to «;” and strictly decreasing with
respect to u, .

By classical supersolution resp. (subsolution) of the above problem we mean a
smooth function v in both §+(u) and Q (u), £/-supercaloric (resp. subcaloric)
whose free boundary is a smooth surface, satisfying the free boundary condition
Vi, > —=G(u, |u,|,v,2,t) (resp. >) in a pointwise sense. The inequality in the
free boundary condition reflect the fact that for a supersolution (subsolution) the
speed V, has to be smaller (greater) than the one of a solution sharing the same
data on the parabolic boundary 9,Cr of Cg.

We shall deal with viscosity solutions that we introduce below.

DEFINITION. — A continuous function u in Cg 1S a viscosity subsolution
(respectively supersolution) if for every subcylinder @ C Cg and every classical
supersolution (respectively subsolution) im @, w <v on 0,Cr (respectively
u > v) implies u < v i Q (respectively u > v). The function u is a viscosity
solution if it is both a viscosity sub and a super solution.

For an evolution problem we can pose the same questions on existence and
regularity issues, both for the solution and the free boundary. Here other im-
portant questions are related to the asymptotic behavior for { — + oo, for in-
stance. However, the presence of time entails new, serious difficulties. The first
and obvious one is the role of time, already present in the Harnack inequality, in
which the past controls the future only from below. This implies that stronger
hypotheses have to be made on the geometry of the free boundary or on the
starting configuration and that the strong local conclusions achieved in the el-
liptic case cannot be obtained.

6. — Existence and uniqueness

Existence results for viscosity solutions by I. C. Kim and N. Pozar can be
found in [25]. Actually, in this quite nice paper, the authors give a slightly dif-
ferent notion of viscosity solution and also prove a comparison theorem for sub
and supersolution with strictly separated boundary data. If L =4 and
G(a,b) = a — b, which corresponds to the classical two-phase Stefan problem,
they also prove the equivalence of the notions of viscosity solutions and weak
solutions in Sobolev spaces, defined via the so called enthalpy formulation. A
remarkable consequence is the uniqueness of viscosity solutions with continuous
boundary data.

Having a comparison theorem at hand they can use a Perron method to
construct minimal and maximal solutions.
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Another recent important paper is [25], where the authors prove that the
classical two-phase Stefan problem admits a unique local (in time) solution that is
analytic in space and time.

OPEN PROBLEM. — Can one prove weak reqularity results for the minimal/
maaximal solutions, as in Caffarelli’s Theorem 17

This is not a trivial question, given the strong degeneracy of the free
boundary condition.

7. — Regularity

We now come to the regularity questions. Also here the understanding of
the problem is well developed when L’/ =4 —a;D;. In a series of papers
Athanasopoulos, Caffarelli and Salsa obtain the following results.

Optimal regularity of the solution (see [6]). If F(u) is locally a Lipschitz graph
both in space and time then « is Lipschitz across F'(u). Note that there are coun-
terexamples showing that in general the solution in the two phase Stefan problem is
not Lipschitz (see [23]). We point out that, although the heat equation scales
parabolically, the free boundary condition is invariant under Hyperbolic rescaling,
so that Lipschitz continuity in space and time (rather than Lipschitz in space, 1/2
Holder in time) appears as an appropriate hypothesis for #'(u). Basically it amounts
to say that the speed of F(u) is finite. We will come back on this crucial aspect.

Are Lipschitz free boundaries smooth? We observed above that, in general,
additional hypotheses have to be assumed on the geometry of the free boundary
to achieve strong regularity results. A striking evidence of this fact is that
Lipschitz free boundaries could not regularize as two counterexamples show: one
is a one-phase case in dimension 7 = 2, in which = = 0 (see [26]), the other one
is a true two-phase Stefan problem in dimension n = 3 (see [7]). Thus the si-
tuation is quite different with respect to the stationary case.

Let us briefly describe the one-phase counterexample. Consider the function

w(p, 0,t) = p*{cos| g(t)0]}

where p, 0 are polar coordinates in the plane and ¢ is a decreasing function
greater than 2.

If R is chosen sufficiently small, depending on g, then w is a supersolution of
the one-phase Stefan problem in Cg. At the origin, F'(w) shows a persistent
corner with an angle less than /2 , since g > 2, and the heat flux there is zero
(from both sides of F'(w)).
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Let now u be the solution of the one-phase Stefan problem in Cr with u = w
on 9,Cg. Then u < w in Cg forcing F'(u) to have a persistent corner at the origin
as long as the angle stays less than 7/2. Numerical simulations by Nochetto,
Schmidt and Verdi (see [27]) seems to indicate that the critical angle should
actually be greater than /2.

A closer look to the counterexamples reveals that the obstruction to
instantaneous regularization comes from two facts. The first is the simulta-
neous vanishing of the two fluxes from both sides of the free boundary and
the second is the largeness of the Lipschitz constant in space of the free
boundary.

Thus, positive results can be given along two directions. First (see [7]), if F'(u)
is locally Lipschitz and a non-degeneracy condition of the form u;” +u, > m > 0
holds in a suitable weak sense, then F(u) is a Cl-surface, the time sections
F.(u) = F(u) N (t = 1) are Liapunov-Dini domains and the solution is locally
classical. The main strategy follows the lines of the elliptic case: improvement of
the Lipschitz constant of the level sets of u away from F(u), propagation of this
interior gain to F(u), rescaling and iteration. But things are not so simple as we
will see below.

Flat free boundaries are smooth. The same result can be achieved (see [8]) if
we ask that the Lipschitz constant in space is small. Indeed the flatness condition
carries a sort of nondegeneracy through a variant of a Hopf principle at regular
points of the free boundary. As a consequence it is possible to prove an in-
stantaneous regularization from flat initial free boundary and to show a waiting
time regularization phenomenon when the solution evolves in time towards a non
degenerate steady state solution.

While the counterexamples indicates how strongly degenerate the pro-
blem is, another major source of difficulties comes from the rescaling
properties of the problem. In principle, there are three types of rescaling
that one could use: a parabolic rescaling, u,(x,t) = u(pac, pzt); a parabolic blow
up, uy(x,t) = p~u(pw, p?t); a hyperbolic blow up, w,(x,t) = p~tu(px, pt). Here
we assume that p — 0.

All these rescalings have advantages and disadvantages. The parabolic re-
scaling leaves both the equation and (only if G is linear) the free boundary
condition unchanged; on the other hand, it progressively deteriorates the non-
degeneracy conditions.

After a parabolic blow-up, the equation and the nondegeneracy condition
remains unaltered, but the free boundary condition progressively degenerates,
preventing from any gain in regularity.

The hyperbolic blow-up leaves nondegeneracy and the free boundary condi-
tions unchanged. There are two drawbacks. A minor one is that the coefficient of
Dyu, is vanishing, disconnecting more and more the various time levels. However
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this inconvenient is kept under control during the iterations by the space-time
monotonicity properties of . A more serious problem is that every estimate have
to be done in hyperbolic geometry. This forces the use of an intermediate
pseudohyperbolic blow-up, tailored to overcome the above difficulty, which leads
to a weaker than C1* regularity of the free boundary as indicated in Theorem 8
below.

The extension of the above results to variable coefficients runs into extra
complications, much more serious than in the elliptic counterpart. Since direc-
tional derivatives do not satisfy any kind of reasonable equation, one has to re-
sort to a quite delicate perturbation arguments.

In [21] Ferrari and Salsa prove the optimal regularity (Lipschitz continuity)
of the solution under non-degeneracy and flatness conditions. The key point is a
control of u; by the spatial gradient, which is already a quite delicate estimate in
the case of the heat equation and that takes the following form:

(14) [ (2, 2)| < cdgngnu(m, t)

for some a € (0, 1], where d,,; denotes the distance of (x,?) from F'(u). Note that
in the case of time independent operator this estimates carries out as in [8] and
no flatness nor any non-degeneracy condition is needed.

The analysis of the free boundary requires a potential analysis apparatus,
developed in two very nice papers by R. Argiolas and A. Grimaldi (see [4] and
[5]). Among other results, they prove that the L-caloric measure in a Lipschitz
(non cylindrical) domain Q in R™™ is an A, weight with respect to surface
measure on 0%, a crucial fact, assuring a common interior gain in the Lipschitz
constant of the level set of the solution from both side.

In a recent paper, still to appear, Ferrari and Salsa (see [23]) prove that flat
free boundaries are indeed smooth, without requiring an a priori nondegeneracy
condition. Precisely, the following theorem holds:

THEOREM 8. — Let u be a viscosity solution to our fb.p. in Co = B x (—2,2)
and set M = supe, | u |, ut(ey,3/2) =m* >0, u (e,,3/2) =m~ > 0.

Assume that the free boundary F(u) is given by the graph of a function
xy, = f(@',t) such that (0,0) € F(u) and for every (x,t),(y,s) € Co N F(u),

|FQ ) —F4, ) |<L | —y | +Lo | t—s | .

Then, if L is small enough, depending only on n, ||A| cos, by, Lo, 4, 4, m* /M,
the following conclusions hold in C; :

(1) If G = G(a,b) is a linear function, then F(u) is a C* graph in space and
time. Moreover, there exist positive constants cy,ce depending only on n,
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| Al cos, Bl s Lo, 4, A, m* /M, such that, for every (&', 2,,t), (¥, Yn,s) € F(u) :

| Vo f (@ t) = Vo f(y,5)] < er(log |2/ —y') ™
|Dif(2,t) — Dy f(x/,5)| < cr(log |t — ')~

A
() If G is mon linear, the same conclusions hold @f ——1
sufficiently close to 0, depending on wn, o, Ly and cg.

As a consequence u is a classical solution that is € Cl(§ W) NCYR (u))

and on F(u) :

and || b || are

ul > >0

The overall strategy of the proof of Theorem 8 follows the papers [7] and [9]
by using a perturbation technique from the constant coefficients, based on three
key facts. One is estimates (14) which allows to extend Hop{f’s principle at regular
points of F'(u) thus recovering nondegeneracy.

The second one is the construction of a family of continuous deformations as
in the elliptic case, but with the crucial difference that the nf/sup-convolutions

Vg (a,t) (96', t) = sup u(xv t)
Bg(.v.t)(x)

becomes L-super/sub-solutions for a family of operators with close coefficients,
not for a single operator. Precisely, the following theorem holds:

THEOREM 9. — Let u be a solution of our f-b.p. in a cylinder C for the operator
Lpp. Assume that L,y is another operator in the same class. Let & be as in
Lemma and ¢ € C?(Cg) be a strictly positive function. Let o = w($,,,.). Assume
that:

max
y ,
|A—B|§CO<E—1> <o |b-b|_ <o

and that in a smaller cylinder C' C C, with d(C',C) > p > &,

D¢ >0,
and
2 2
(15) P@-aoe =0T o vy 4o

for some positive constants Cy,C, c1,ce depending only on n, i, A, p. Then, in
both Q*(vy,) vy is a Ly y-subsolution and in both QF(ws.) ws is & Ly y-su-
persolution.

A consequence (the third key fact) is a local interior stability result,
which states that under small perturbations of the coefficients flat free
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boundaries remain close and flat. This seems to be a new results for two
phase problems.
Many questions remains open. Here we list some of them.

OPEN PROBLEM 5. — Prove that Lipschitz, nondegenerate (but non necessarily
flat) free boundaries are smooth.

This result would allow nonlinear divergence operators of the type
uy — div(A(z, t,u)).

The next question concern the notion of flatness. For instance assume that F'(u)
is not necessarily a graph but is ¢-flat in the sense that it is trapped between two
flat Lipschitz graphs at distance ¢. This situation occurs for instance under a
blow-up around a differentiability point of the free boundary. We ask:

OPEN PROBLEM 6. — Can we expect further reqularity if F'(u) is e-flat, with ¢
small enough?

As we mentioned in the constant coefficient case, a positive answer could be
useful in establishing waiting time regularization phenomena, in the style of
porous medium equations.

Other questions are related to the extension of the regularity theory to fully
non linear operators or to problems with distributed sources. These questions at
the moment seems to be at another order of complexity and most likely they
require new methods and ideas.
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