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The Very Fast Solution of a Special Second Order ODE
with Exponentially Decaying Forcing and Applications

ALAIN HARAUX

Dedicated to the Memory of Professor Enrico Magenes

Abstract. — Let b, ¢, p be arbitrary positive constants and let f € C(R™) be such that for
some 1 > ¢, F > 0 we have | f(t)] < Fexp(— At). Then all solutions x of

2" + cx' + blx|Px = f(t) (E)

tend to 0 as well as x' as t tends to infinity. Moreover there exists a unique solution y
of (E) such that for some constant C > 0 we have [y®)] + |y ()| < Cexp(— 2t) for all
t > 0. Finally all other solutions of (E) decay to 0 either like e~ or like (1 +1t) > as t
tends to infinity.

1. — Introduction

In this paper we consider the second order scalar ODE
(1) & + cx' + blxfPe = (1)

where b,c,p are arbitrary positive constants. By a suitable scaling in ¢, more
precisely by setting

1

2\ »
x(t) = (%) u(ct)

(2) u +u' + |ulPu = ht)

1
1/b\7 [t
o =5(s) ()
The case f = 0 has been studied for instance in [15]: in this case all solutions
are non-oscillatory, tend to 0 at least as (1 +¢)? and there are, up to time

this equation reduces to

with
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translation, exactly 2 solutions which decay as e~“. In addition if f is bounded,
all solutions of (1) are global on R, bounded on R* and if f tends to 0 at in-
finity, it is classical to verify that

lim (2@)] + /) = 0

The object of this paper is to investigate what happens for (1) when f decays at
infinity faster than e~ In this case we expect the trivial solution to be replaced
by a unique fast decaying solution and it is reasonable to conjecture the existence
of 3 rates of decay: the fast rate, e~ and (1 + t)"s. For results of this type in a
more nonlinear situation but without forcing term, cf. [7]. The case of a linear
restoring force and nonlinear damping

&' + el '’ + oPx = f(t)

has been studied in [6] as an illustration of the role of rapidly decaying solution to
investigate the behavior of general solutions. However this last equation is less
difficult since apart from the special 2solution, the total energy of all other solu-
tions decay at the same rate (1 + )™ ¢. Finally this work has beeen partly moti-
vated by some earlier general studies where a fast decaying forcing term ap-
pears, cf. e.g. [1, 3, 4, 5, 6, 8, 9, 10].

2. — Main results

The first result of this section concerns the existence and uniqueness of a fast
decaying solution

THEOREM 2.1. — Assume that f has the following decay property
(3) A >e¢, FF>0, V>0 |f@)|<Fexp(—4it)

Then there exists a unique solution y of (1) such that for some constant C > 0
we have

() VE> 0, ly®) + 1y 0)] < Cexp (- D).

Our second main result elucidates the behavior of all solutions other than the
fast one. In the sequel the sign ~ written between two positive functions f, g

defined on a half line J = [a, + oo) will be used to mean that g and]% are both

bounded on J' = [A, co) for some A > a. With this convention we have
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THEOREM 2.2. — Under the hypotheses of Theorem 2.1, as t tends to infinity
any solution x of (1) other than y satisfies either

(5) lx@)| ~ e~ and |2/(#)] ~e
or
(6) ) ~t 7 and @@ ~t T

3. — Existence of the very fast solution

This section is devoted to the proof of the first part of Theorem 2.1. We
consider the case of equation (2) and we assume

(M) 3H >0, Vi>0 |h@)| <Hexp(—t)
where y = % > 1. First we show that for H < H; small enough, there is a solution z
of (2) on R such that

sup (|2(0)| + [2'(®)]) exp (yt) < o0

>0

To this end we rewrite equation (2) in the form
(e = e'(h(t) — |u|’u)

which is equivalent to

o0

mw:w4ffwg—wm%@ms
t
which means that we look for

z@:—fw@@
t

where w = 2’ solves the integral equation

o0

8) mw:%%ff

t

w(r)dr)

S

P o©
h(s) + f w(r)dr] ds

We introduce

X ={f € CRM, sup | )| exp (yt) < 00}
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endowed with the norm defined by
vieX, |fl= sup | f®)] exp (t)
t>

setting

o0

9) (Twm)z—e¢f68h@y+

t

P oo
f w(r)dr} ds

foo w(r)dr)

it is not difficult to check that 7(X) c X with

|p+1

H ]
vweX, |[Tw| <
177 y—1 yrt(p+ 1)y —1]

In addition one easily checks

max{ o [|”, [|wa[|”} [0 — 2wa]]

Vi e X,Vuwe € X ||[Twy —Tws| <(p+1
1 2 | 77w1 ol < +D PP + Dy — 1]

In particular 7 is a contraction on the ball B, = {w € X,||w| <7} for r <y small
ppH1
L+ Dy—11
for r <1y and setting 1, = min{ry, 71 }, it follows easily that for H < (y — 1) j(r2) =: 7,
7 is a contraction from the ball B,, into itself. The fixed point of 7 is our solution.
Finally, for any H given, we can choose 7" so large that

VE>0 |h(t+T)| < nexp(—t)

enough. Choosing now 74 small enough so that j(r) .= r»

and applying the result to the translated equation we obtain a solution starting
for t > T. The corresponding maximal solution is global on R and fulfills (4).

4. — A non oscillation result

Theorem 2.2 implies in particular that the solution x(¢) has a constant sign for
t large. In this section we prove some preliminary results in this direction. These
results rely on the following simple property

LEMMA 4.1. — Let J = [ty, 00) and a € C(J) be such that

1
(10) sup a(t) < ~
ted 4

Then the solution p of
(11) P4 p+pt=—al)

with p(ty) = f% exists globally on J.



THE VERY FAST SOLUTION OF A SPECIAL SECOND ORDER ODE ETC. 237
. . . 1
PROOF. — Let p € C'[ty, T*) be the maximal solution of (11) starting from — 5
We set
1
vt €[0,T" —to), q) := p(t+to) + 3

Then ¢(0) = 0 and
1
q’+q2=1—a(t)2n>0
we establish that
vt e [0,T" —t), q)>0

Indeed since ¢'(0) = # > 0, q is positive near 0. Assuming first that ¢ does not
remain nonnegative throughout [0, T* — {,), let

t=inf{t € [0,T" —ty), q®)<0}

Then clearly = € (0, T* — ty) and we have ¢(z) = 0,¢'(xr) > 5 > 0. But then ¢ <0 on
(t — &, 1) for some ¢ > 0, contradicting the definition of 7. Therefore

On the other hand by the equation

t
. t
vel0. T —t), q)< ;- Of a(s)ds

Finally

t
. 1 1t
vt € [to, T7), —2§p(t)§—2+—!a(8)ds

W~

Hence T = . O
LEMMA 4.2. — Let a € C(R™) be such that

(12) lim sup a(t) < %

t—o0

Then any solution v € C2(R") of
(13) VY +alt =0

18 such that either v = 0 or v has a constant sign for t large.
Proor. — First we select ¢y and # > 0 such that

Ve =00, a <
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We set v(t) = e“Dw(t), so that (13) becomes

w// + (2ﬂl 4 l)w’ + ('u// “l‘ﬂl +,U/2 + a(t))w =0

t
We select u(t) = [ p(s)ds defined for ¢ € J and given by lemma 4.1, therefore we

find fo
(14) Vi€ J = [ty,00), W'+ @+ =0

Then either w’ = 0 or «' has a constant sign and never vanishes. In the second
case w has at most one zero on J and so is v. In the first case w is constant. if the
constant is not 0, it follows that v has a constant sign, otherwise v = 0. This
concludes the proof. O

5. — Proofs of the main results

The existence part of Theorem 2.1 was established in Section 3. The un-
iqueness part of Theorem 2.1 and the result of Theorem 2.2 will both follow from
Lemma 4.2 and the following simple preliminary result

LEMMA 5.1. — Let ¢ € CY(J) be such that

vted, ¢@)+pl) >0
Then ¢ € C'(J) has at most 1 zero in J.

PROOF. — The function w(t) = e'¢(t) is increasing and therefore has at most 1
zero in J. O

PROPOSITION 5.2. — Under the hypotheses of Theorem 2.1, any solution x of
(1) other than y is such that for some 6 > 0 and T > 0

(15) Vt>T, inf{|2'@®)|, |x@)|} > de™

ProOF. — Let z be the fast solution of (2) and » = z + v any other solution.
Then v satisfies (13) with

o4affo+2) — |2z

a(t) : @

whenever v(t) # 0 since
la®)] < @+ D= + [u”)

it is clear that a tends to 0 at infinity. Applying Lemma 4.2, we find that » has a
constant sign for ¢ large and in addition av = |v + 2|’ (v + z) — |2’z does not
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vanish for the same values of t. Now by using Lemma 5.1 with ¢ = ¢/ or ¢ = —v/,

we can see that v/ has a constant sign for £ large. Since v and v’ tend to 0 at infinity
we obtain

v(t) = — f v'(s)ds.
t

Assuming for instance v <0 on J; = [t;, 00) we have v > 0 on J and since a > 0
we find

vtedi, (EV@R) = —ea®vt)<0
then
Vteldi, evt)<e(t) = —20<0

Vted:, vYt)< —20e”!

and then
Vied, wWt)=vQEt)+7{t)< —20e 4 Ce

Since y > 1 we have for ¢z large enough

Vt>t, wWt)< —oe!

and finally

VE>te, u(t) =— f w'(s)ds > ge”!
t

This concludes the proof of Proposition 5.2 and this implies the uniqueness part
of Theorem 2.1. O

Proor or THEOREM 2.2. — Taking account of the conclusion of Proposition 5.2,
the proof is a simple adaptation from [5], Lemma 5, p. 318-320 in a slightly dif-
ferent case. For completeness we recall here the main steps. We start with the
equation (13) satisfied by v = — z and since v is non-oscillatory we introduce

/

v, . .
w = " which is a negative solution of

(16) w 4w +w+alt) =0
Just as in [5], Proposition 2, p. 300-302 we can show easily that either

—oo < limsupw() < —1

t—o0

or
tlim w(t) = 0.
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The first case implies immediately
[v@®)] < C(v)exp (— vt)

for any v € (0, 1), then by a bootstrap argument using the value of a(t) it is easy to
conclude that

o@®)| + V') < Cexp(—1t)

and the proof is finished in this case.
In the second case we note that as ¢t goes to infinity

a®) ~ @ ~ |lu@®)|?

By integrating (13) we deduce by an easy calculation since |v'| is negligeable with
respect to |v|

(17) )| ~ (@ +1) f o(s)| P ds
t

At this point we note that the upper estimate
()| + L' @] < Kt
follows by a simple differential inequality as in [2]. Therefore the RHS in (17) is
finite and this inequality yields, by letting
y(®) = f o(s)| P ds
t

first the inequality

y > —cyP?

and then
[o()| ~ y@) > Cot

By comparing the already known estimates we obtain

/
v® <Kt 0<at)~t?

—w(t) = o0 | =

By plugging this information in the equation (16) we find since w?() = O(t?)
— +w) ~t!
hence

(dw®)) < — delt™?
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for some ¢ > 0. By integrating on [A,?) for some A > 0 we deduce
Los 0 ! 0
_et > ¢ > Sds = — (¢ —
ew(t)—i—e“w(A)_é!sds_t;[eds t(e )

Hence in particular

Vvt > A, —wt) > ? —eted <§ + w(A)>

therefore for ¢ large enough we have
0
/ > .
@) > 5 o)

and the last inequality follows.
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