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Viscous Incompressible Flows Under Stress-Free Boundary
Conditions. The Smoothness Effect of Near Orthogonality
or Near Parallelism Between Velocity and Vorticity

H. BEIRAO DA VEIGA

Dedicated to the Memory of Professor Enrico Magenes

Abstract. — We consider the mitial boundary value problem for the 3D Navier-Stokes
equations under a slip type boundary condition. Roughly speaking, we are concerned
with reqularity results, up to the boundary, under suitable assumptions on the di-
rections of velocity and vorticity. Our starting point is a recent, interesting, result
obtained by Berselli and Cérdoba concerning the “near orthogonal case”. We also
consider a “near parallel case”.

1. — Introduction and results

In this paper we consider the 3D Navier-Stokes equations

U+ w-V)u—vAu+Vp=0 in Q x 10,71,
(1) V-u=0 in @ x 10,71,
w(x, 0) = up(xr) in Q,

where the unknowns are the velocity # and the pressure p. For brevity we as-
sume that external force vanishes. The symbol v denotes the (positive) kinematic
viscosity. The open, bounded, set 2 C R? has a smooth boundary 9@, say of class
C2“, for some o > 0.

We supplement the initial value problem with the “stress-free” boundary
conditions

@) { u-n=>0 on 02 x 10, T1,

oxn=0 on 02 x 10, T1,

where w = V x u = curlu is the vorticity field, while n denotes the exterior unit
normal vector to the boundary. In the case of flat boundaries, the above condi-
tions coincide with the classical Navier boundary conditions without friction. See
the classical reference Serrin [8].
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In the present paper we consider the problem of global existence of smooth
solutions, under suitable hypotheses which imply, in particular, orthogonality or
parallelism between velocity and vorticity.

We avoid here non strictly necessary references. We merely recall that the
starting point for these kind of studies was Constantin and Fefferman’s paper
[5]. See also [3]. In these two references the vorticity direction alone was con-
sidered.

We denote by LP := LP(Q), 1 < p < oo, the usual Lebesgue spaces equipped

with norm || .[|,. H* := H*(Q), s > 0, are the classical Sobolev spaces. We use
0

the same symbol for both scalar and vector function spaces, and set 0; = ek
i

Moreover,

LX) Y 1o, T, X(Q),

where X = X(Q) is a generical functional space, and 1 < p < 0.
In [4] the following result is proved.

THEOREM 1.1 ([4], Theorem 2.1). — Let u be a weak solution of (1) in (0, T') with
uy € HA(T)and V - ug = 0, where T is the three dimensional 21 periodic cube (a
torus). If there exists a constant c; such that, for all x € Q, and for |y | small
enough, it holds

(3) lu@+ y, 1) - o, )] < |y||u@+ y, O)]|o, )],

fora.a. t €10, T[, then the u is regular.

As remarked by the authors, the above condition implies the orthogonality
between u and w.

The authors also state, without proof, the same result in a bounded, regular,
domain 2, under the boundary condition (2). See [4], theorem 3.1. In the sequel
we give the following improvement of this last claim. Our approach looks easier,
even if the ingredients are similar. In section 2 we prove the following result.

THEOREM 1.2. — Let Q C R® be an open, bounded set with a smooth boundary
09, say of class C%7, for some y > 0. Suppose that ug € HX(Q), V - ug = 0, and u is
aweak solution to (1)-(2) mn [0, T']. In addition, suppose that there is a constant cq
and a positive o(x, t), such that, for almost all t € 10,T[, the following as-
sumption holds.

For a.a. x € Q one has

4) |w@+ y, 1) - o, )| < e |yl (14 |u@+ y, ) |%) |z, D),

Sfora.a. y satisfying |y — x| < o(x, t). Then w is a strong solution i [0, T'], hence
18 sMooth.
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In section 3 we prove the Theorem 1.3 below. For convenience, we will assume
that © is simply connected. We denote by 0(x, t) the angle between the velocity
u(t, ) and the vorticity w(t, 2) at the same point (x, t):

0@, t) < i, 1), e, 1),
where, for each non-null vector v, we define v “ v/ |v|.
Further, we set
M(t) = supsinO(x,t).

reQ

THEOREM 1.3. — Set wy = curl ug, where uy 1is the initial data to the above
mitial-boundary value problem. Assume that

(5) Mo < (- )4,

[leool|

forallt > 0. Then the solution w is strong and unique for all times.

A well know, classical, argument, easily shows that there is a value t* such
that condition (5) is necessary only for ¢ < t*.

2. — The near orthogonal case. Proof of Theorem 1.2

For notation convenience we set

In the sequel the time variable ¢ will be frozen. So, we often drop it from no-
tation. Moreover, in the proof of theorem 1.2, we consider the more stringent

4 . e
case o = . Summation over repeated indices is assumed.

We denote by the same symbol ¢ different positive constants, even in the
same equation. A positive constant is labeled if this helps the reader to follow a
particular manipulation.

We start by the following lemma proved in reference [3] (see [3], equation
(23)). For the reader’s convenience we recall here part of the proof.

PROPOSITION 2.1. — Assume that u is a strong solution to (1)-(2). Then

ld 2 v 2 2
. — <
6) 2dt!|°"| dx+2[[|Vw| dee cv[[|w| dx +

f(w-V)u-a)dac
Q
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ProoF. — By applying the curl operator to (1) we get the well-known equation

0 {a)t—i—(u-V)a)—vAw = (w-V)u in Q x 10, T1,

V.o = 0 in @ x10,T].

By taking the scalar product of both sides of the first equation (7) with w, by
integrating in Q, and by appealing to Green’s formula one gets

1d

9 2 N 8(0
®  a ) dm—i—vaWa) da = vaga—n-wds+gf(w Vu- wd.

Next we appeal to the estimate

' Ow() .
on

9) o@) | < clo@f, Ve,

proved in [3] (see the equation (14) in reference [3]) for divergence-free vector
fields « such that « -7 =0 and w x =0 on 0Q (see also the lemma 2.2 in
reference [1]). So (see [3], Lemma 2.6)

1d 2 2 2
(10) m!m do+ va|le dr < cw@élwl dar+

f(w-V)u-a)dx.
Q

Finally, by appealing to (16), and by tacking into account that
1
elol Vol < 2 Cz loo]|* * o IV ol?,
the estimate (6) follows (for a proof of (16) see the end of this section). O

Our next goal is to estimate the last term in the right hand side of (6). The
following result holds.

LEMMA 2.2, — For for a.a. x € Q,
(11) | (o) - V)u@)) - o@)] < e (1+ [u@)]") |o@) [

In particular,

(12) f| 2+ f\w| de < e(1+ v)f|w| dx+clf|u| o dz

Zdt

ProoF. — By letting in equation 4) y — 0, y+ x € Q, it follows that
u(x) - w(x) = 0. Hence,

(13) | (u@+ y) — u@) - o@]| < eyl (1+ |ul@+ y) ") |ok)],
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where y satisfies |y — x| < Jd(x). In particular, for each fixed index j,

w( + hje) — ul@)

(14) p

cu(ac)‘ < e (1+ |ule+ hje)|") o),

where e¢; denotes the unit vector in the positive j—direction. So, by letting
hj — 0, we show that

ou; o

o 52 < e (14 [ul)] 0]

1
Ow;

for each index j. Equation (11) follows. This last equation, together with (6),
shows (12).

Finally we prove the theorem 1.2. By appealing to Hélder’s inequality, to
interpolation, and to a well known Sobolev’s embedding theorem, it follows that

4 2 3 2 3 4
flu\3|w| dae < [ully oll; < llully lol ol < ¢ llully ol (ol + Vel
2

So,

4 9 4 2 1,0 2V 2
le [P lof" de < cllully lo]” + ev flulilol” + 7 I Vol
)

4 .
=, one obtains

for suitable positive constants c¢. Hence, from (12) written for o = 3

1d

15) = Sl ol
2 dt 4 4

f|w|2dx+£f Volfde <c(1+ v+ |u
Q Q

By interpolation it readily follows that
8 2
leall§ < el el -
Since weak solutions u satisfy
we L0, T; LX(Q) N L*0, T; LY(Q)),

it follows that |lu(t) ||§1 is integrable in [0, 7']. Hence, from (15), we show that
o(t) is bounded in (0, 7) with values in L?(Q), and square integrable in (0, T)
with values in HY(Q). So

we L=0, T; H(Q))n L0, T; H*(Q)),

is a strong solution. A well know argument shows that u(t) is weakly continuous
in [0, 7] with values in H'(Q).

As already remarked, we end this section with the proof of equation (16)
below.
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LEMMA 2.3. — Let Q C R" be an open, bounded, reqular set. There is a con-
stant ¢ = c(Q) such that

(16) loll3.r < ex (ol + [loll [V 21D,

foreach ve HY(Q).

ProOF. — We merely show the basic argument in the proof, by working in the
framework of an unit cube @ = {x: 0< ;< 1,7 = 1,2,...,n } . The extension of
the argument to a regular Q is easy, and left to the reader.

We start by assuming that w(’, 1)= 0, for « €', where now

I'= {x: x, = 0} represents the “effective boundary”, in which we are inter-
ested. One has

1
W@, 0 = 2 [ w, 90,6, Hde.
0
Integration of both sides of the above equation with respect to the «’ variables

easily leads to the estimate

(17) lw 3 r < 21jllz,q 1V 2l q-

1 1
Next define ¢/, x,) =1if 0< x, < 5 and ¢, x,) = 2 — 2, if 5 <ux, <1.

By setting w = ¢v in equation (18) one shows that

2 2
(18) [ollz r < [0l + 20l g IV Vllz.q-

3. — The near parallel case. Proof of Theorem 1.3

LeMMA 3.1. — Assume that u is a strong solution to (1)-(2). Then

1d

ol + v curl @ :fuxw~ curl wdux,
Q

ProoF. — We start by replacing the first equation (1) by the equivalent, well
known, equation

1
g — vAU+ @ X u+V<§|u|2+p> =0.

By applying the curl operator to both sides of the above equation we get

(20) w —vdow + curl(wx w) = 0.
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Next we recall the identity

(21) f(curlj_”). gdac:f]ﬁ. (curlg)dgg+f(@><]_f) . ng.
Q Q T

Scalar multiplication of both sides of equation (20) by w, integration over Q,
plus a suitable integration by parts lead to

(22)

DO —

d. 2 2 _
EHwH + v||ecurl o||* = —bfcurl(w X u)- wdr.

We have appealed to (21), to the identity
—Adw = curl curl w — V div w,

and to (n x curl w) - @ = 0 on I'. From (22), and by appealing once more to
(21), we show that (19) holds, since n x (wx u)- w= 0. O

Next we estimate the right hand side of (19). Note that
|ux o - curl | < M@) |u||o||curl o] .

By Holder’s inequality with exponents 6, 3 and 2, followed by interpolation, we
show that

1 1
< M@) [|ullg l|eol* [Jolf || cur] el

(23) fu x w - curl odw

Q

Since Q is simply-connected, one has

(24) ullg < cllof,
and
(25) loolls < ¢ llearlo] .

See, for instance, [6] equation (1.19), and [7] equations (2.27) and . 29) It follows
that the right hand side of (23) is bounded by ¢ M(t) ||a)\|2 ||curl a)||l So, it is
bounded by

—M4(t)||w|| + = ||cur1w|\
So, by (19),

d 2 Vv 2 C 5 6
— < — .
(26) gilel™ + 5 el o] < 5 M@ ||of

DO| —



232

H. BEIRAO DA VEIGA

In particular, since || curl w|| > ¢||w|?, it follows that

1d
SOl < —c =2 MO o) o]

Since we assume that (5) holds for all £ > 0, a classical, straightforward, argu-
ment shows that the solution is strong and global in time.

(1]
(2]

(3]

[4]

(5]

[7]

(8]

REFERENCES

H. BEIRAO DA VEIGA, Direction of vorticity and regularity up to the boundary. The
Lipschitz-continuous case, J. Math. Fluid Mech., DOI: 10.1007/s00021-012-0099-9.
H. BEIrAO DA VEIGA - L. C. BERSELLI, On the regularizing effect of the vorticity
direction in incompressible viscous flows, Differential Integral Equations, 15 (2002),
345-356.

H. BEIRAO DA VEIGA - L. C. BERSELLI, Navier-Stokes equations: Green’s matrices,
vorticity direction, and reqularity up to the boundary, J. Diff. Equations, 246 (2009),
597-628.

L. C. BERSELLI - D. CORDOBA, On the regularity of the solutions to the 3 — D Navier-
Stokes equations: a remark on the role of helicity, C.R. Acad. Sci. Paris, Ser.I, 347
(2009), 613-618.

P. CoNSTANTIN - C. FEFFERMAN, Direction of vorticity and the problem of global
regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-
789.

C. Foias - R. TEMAM, Remarques sur les équations de Navier-Stokes stationnaires
et les phénomenes successifs de bifurcation. (French), Ann. Scuola Norm. Sup. Pisa
Cl. Sci. (4), 5 (1978), 28-63.

H. KozoNo - T. YANAGISAWA, L"— variational inequality for vector fields and
Helmholtz-Weyl decomposition in bounded domains, Univ. Math. J., 58 (2009),
1853-1920.

J. SERRIN, Mathematical principles of classical fluid mechanics, Handbuch der
Physik (herausgegeben von S. Fliigge), Bd. 8/1, Stromungsmechanik I (Mitheraus-
geber C. Truesdell), pp. 125-263, Springer-Verlag, Berlin, 1959.

Dipartimento di Matematica Applicata “U. Dini”
Universita di Pisa, Via F. Buonarroti 1/c Pisa, Italy
E-mail: bveiga@dma.unipi.it

Received October 31, 2011 and in revised form January 6, 2012



