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Pointwise Gradient Estimates of Glaeser’s Type

ITAaLO CAPUZZO DOLCETTA - ANTONIO VITOLO

Dedicated to Enrico Magenes with deep admiration

Abstract. — In this paper we are concerned with gradient estimates for viscosity so-
lutions of fully nmonlinear second order elliptic equations, generalizing to the
nonlinear setting the results of Yanyan Li and Louis Nirenberg about the so-called
Glaeser estimate and improving the qualitative results contained in one of our
preceding papers.

1. — Introduction

Let B, be the n-dimensional ball centered at the origin with radius R. A few
years ago Yanyan Li and Louis Nirenberg [12] proved that for non-negative
functions u € C2(Br) such that supg, |4u| < M there exists a universal constant
C = C(n) such that

VouOM  if \/ZMT(O) <R

u(0) M . 2u(0)
& Tl TR\

In the same paper [12] the authors proved also the validity of an L? version
of inequalities (1.1), namely that for non-negative functions u € W?P(Bg), such
that ||4ul|;sp,) <M with p > n, there exists a positive constant C = C(n, p)
such that

(1.1) M <

wotmss i (1-1) o <@>—< X
P M -
(1.2) M <

u(0) L n\“FT (u(0)\F
R aid < _ -~
g e s (1-5) 7 (57)
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Their result extend the validity of the interpolation inequality

VoM it 2—3@") <R

u0) M .
— — < -
R 2 kLR < M

(1.3) [u/'(0)] <

established by G. Glaeser in [8] for non-negative C? functions such that |u”| < M
on an interval ( — R, R). Note that, letting R — +o00, inequalities (1.3) imply

[/ (0)] < y/2u(0) [|lw” ||~ ,

aversion of the classical Hadamard-Landau-Kolmogorov inequality, see [9], [10],
[11] and [13], [14] for more recent results.

In a series of papers [3], [4], [5], the present authors proved several extensions
of the results of [12] to non-negative functions u € C(Bg) satisfying, for some
given elliptic function F, nonlinear relations on second derivatives of the form

(1.4) \F(D*u)] < M

in the viscosity sense, see [6]. Let us recall that a mapping F' : S — R, where S”
is the set of symmetric » x n real matrices, is uniformly elliptic, see [2], if there
exist positive constants A < A4 such that

(1.5) NZ| < FX +2)—FX) < A|Z)| ¥vX,ZeS", Z>0.

Note that the special linear case F(D?u) = Tr (D?u) corresponds to the Li-
Nirenberg setting recalled above.

The aim of this paper is to allow zero-order terms in (1.4), that is we consider
functions u satisfying relations such as

(1.6) |F(D2u) —gw)| <M in Bp
in the viscosity sense as well as L” estimates
(1.7) |F(D?u) — g 1,y <M.

Examples of functions satisfying (1.6) and (1.7) are of course, continuous
viscosity solutions or, respectively, W2 strong solutions of the second order
partial differential equation

F(D*u) — g(u) = f(x)

where the right-hand side f € L*> or f € LP.
Concerning the zero-order nonlinear term g we shall assume that

(1.8) g: Ry — R 1is continuous and |g(s)| < Gs foralls >0

for some positive constant G.
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Our most general result is the following:
THEOREM 1.1. — Assume that F' and g satisfy (1.5), (1.8) and let uw € C(Bg) be a
non-negative viscosity solution of
F(D?u) — g(u) = f(x), « € Bg
with f € C(Bg) such that
(L9) 1l < M.

Then there exist positive constants y and o depending only on n, 4 and A such
that

Vu(0)M if R, <min(Rg,R)
“O) MR if R<minB..R
(1.10) x sup [Du| < ¢ = T if R < min(R,, Rg)

Bgy 2

wOVG + \Z/V"@ if Rg < min(R,R,)

where R, = \/w0)/M, Rg = \/o/G and Ry =min (R,, Rg, R).

In Section 2 we perform a direct, elementary approach to the one-dimensional
case; in Section 3 we consider non-negative solutions of

Au = gu) + f(x)

both in the cases u € C?(Bg), with direct calculations for the Poisson equation,
and u € W2P(Bp), using in this case the classical LP estimates for strong solu-
tions in Sobolev spaces.

Finally, in Section 4 we use in an essential way the regularity theory of Caffarelli
[1] for the proof of Theorem 1.1.

2. — The one-dimensional case
Throughout this section we will assume that » : (— r,7) — R is a non-nega-
tive C? function such that
(2.1) w —gu) <M in (—n7)
where g : R, — R satisfies
(2.2) g () <Gs, s>0.

The following mean value inequality can be seen as a weak form of the
Harnack inequality:
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LEMMA 2.1. — If (2.2) holds with G < 3—2, then the following inequality holds

. 1 M
2.3) w<— (u(O) + 2 %)
'{ 1- %Gfr2 6

ProoF. — Taylor’s formula with integral remainder gives
X
(2.4) w(x) = u(0) + u'(0) x —|—f (x—s)u"(s)ds, |x|<r,
0
whence by inequality (2.1),

(2.5) w(@) < w(0) + u'(0)x + % x? +f (x —8)g(u(s))ds.
0

Integrate both sides between on ( — »,7):

r

: 2
f u®)dt < 2u0)r +% ¥+ J g (u(s)) w ds

—r

< 2u(0)r +% 4 ? fy 9" (u(s)) ds

Divide now by 2+ and use assumption (2.2) to get

%fu(t)dt<u(0)+%fr2+g(%fu(s)ds)%,

-r

from which the assertion readily follows. O
As a consequence, we have:

COROLLARY 2.2. — Let G be as in Lemma 2.1, then

w0) M 2672 (w0 M
(7 6 )

1=

PRrOOF. — Assume first that «'(0) <0. Using the positivity of u together with
assumption (1.8), inequality (2.5) with « = r yields
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W <P Ty f ()9 () ds

<@+— r+— f(r—s)u(s)ds
P

u(0) .
<——|—?7'+2G7"f

-7

The case %'(0) > 0 can be treated in an analogous way. At this point the state-
ment follows from Lemma 2.1. O

REMARK 2.3. — If M = 0 and » = R, set Rz = /2/G. The estimate in Lemma
2.2 becomes in this case

1+30 u(O)
l1-0

' (0)] <

where
R if R<Rg+/o
p:
RG\/E if B> RG\/E

2
with 0 = =3 — 1. Indeed, setting » = tR¢ in (2.6) with M = 0 one has

3
o (0)|<@ inf (1+4t )

Rg 0<t<R/RG 1—¢2
0<t<

< “0) inf l—i— A
~ Rg o<t<mirg\ t 1-—¢

0<t§t0

1
where ty minimizes the function { — -~ + —— in the interval (0, 1).

t
t 1-¢
Since R = /2/G, the assertion follows by choosing ¢ = t3. The above for-
mula is true also when %(0) = 0, since in this case %/(0) = 0 (recall that we are
dealing with % > 0).

We are now ready to state and prove the Glaeser estimate in the 1-dimen-
sional case. There are three possible cases for the interplay of the parameters
w(0),M,G, R as indicated in (2.7) below. Observe that the estimates depend
continuously on G as G — 07, so that for G = 0 only the first two cases survive
and the next statement coincides with (1.3).
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PROPOSITION 2.4. — Letu : (— R, R) — R be a non-negative C? function such
that (2.1) holds for every r < R and (2.2) for some G > 0. Then

16 7 2(0) 1
(1+§V)\/W if = <m n<R’ﬁ)
@7) ) <] (1-+4GR) "+ <1+§GR2> Ve ik Smin( % | Z@IEO))
( OVG +2 \1/\{) i % < min ( 2@;‘5[0)’ R>

Gu(0)

where y =

M
2 2
PRrROOF. — As in Remark 2.3 we put Rg = \/g .Also,we set R, = % and

Gu(0) R. \/E
M Re =tRg =t G’ from (2.6) we get
2u0) .. [1/y t 2122 [y ¢
. <=5 (L2 S+,
(2.8) | (0)| . "ifl%f/f‘; [2 (t +y> ti g t+3y
Hence
, u(O) ) 1/y t 22 [y t
< —= f [z (Z4+- — L4+
' (0)] r o2 13 t+y +{ t+3y
0<t<1/V2
2u(0) . 1/y t of7 1t
< nf | (L42) + 4L+ —
- R, 0<t12€/1i( [2( +y>+ t t+3y
0<t<1/v2
. 1 2\ Y 1 4 ,\¢
< Z L 4= Z
< 2u(0)M 0<512£$J(2+4t > ras <2+3 t ) y]’
0<t<1/v2

and the expression in the square bracket is minimized by t = ¢, € [y, +9?].
R V2
Choosing ¢ = min <y, o %) in the right-hand side, the conclusion (2.7) easily
G
follows. u

It is worth to observe that the results of this Section also provide the Harnack
inequality. Indeed, by translational invariance, inequality (2.6) implies

(2.9) /()| < 10<“(y) 5 r)

for every y € (—r/2,7/2), provided » < min (R,1/VG).
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Integrating between 0 and x € (—»/2,7/2) and using the mean value in-
equality of Lemma 2.1, we get the Harnack inequality

(2.10) u(x) <21 <u(0) +% 72)

Combining (2.10) and (2.9) with y = x, and arguing as in the proof of Proposition
2.4, finally we obtain

w0) M
)

for || <7/2. Recalling that »< min (R,1/v/G) and arguing as in the proof of
Proposition 2.4, we obtain

COROLLARY 2.5. — Let u : (— R,R) — R be a non-negative C? function such
that (2.1) holds for every r < R and (2.2) for some G > 0. Then

V2uO)M ifVS\/ZMT(mSmin(R,\/LE>
(2.12) QL)%TEMS v Yk ifrgRgmin<\/La, 2@;&()))
u(O)\/a—i—% ifrg\/iagmir( #7}3)

3. — Extension to semilinear Poisson equations

We consider here a multidimensional extension of the result of the previous
section.
Let B, be the n-dimensional ball {x € R" : |x| <7} and consider non-negative
functions u € C%(B,) satisfying, for some positive constant M, the bound

(3.1) |4 —gw)| <M in B,

The main difference with respect to the one-dimensional case is that here we need
the two-sided condition (3.1) instead of the unilateral inequality (2.1).

As already claimed by Li and Nirenberg [12] for the validity of the Glaeser’s
inequalities for n-variables functions is not enough, even when g = 0, to assume that
Ay < M. This would lead indeed to a contradiction to the fact that there exist non-
constant superharmonic functions in R” for # > 3, as outlined in [5], Example 4.4.

The next Lemma is the n-dimensional counterpart of Lemma 2.1.
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LEMMA 3.1. — Let u be a mon-negative function in C?(B,) satisfying
Au—gu) <M i B,. Assume also that g satisfies condition (2.2) with
G 2(n+2) ' Then

M
(32) ][ u< pme(% <u(0) += ?>

1. e

2 n+2

ProOF. — The divergence theorem and the co-area formula together with our
assumptions yield for p € (0,7) the inequality

p”_ldip (pl_"fudS> f dS = fAudac

gf(M+Gu)dx§ Mconp”+Gfudac

B, B,

where w,, is the volume of the n-dimensional ball. Therefore,

dip (plnfudS) < Maoyp + pru

a8, B,
Taking into account that
lim 4% = nw,uw(0) and lim p f u=20
p—0 p—0
4

and integrating with respect to p in (0, ) with o <7, we have

o fuds < nay,u(0) +— 6> + Gf ][udp,
OB, B,

Multiplying now by ¢"~! and integrating with respect to ¢ between 0 and 7 <7,
we get

j(an”udS)daga)nu(O)r”—kaZ)'(lM_iz) +Gf< n- 1fp]fudp)

Since the volume of B; is w,1", it follows that

1
< -
prél(%zg)][u u(0)+ 2{27'2+2G7’2;&3§) u]

P

whence the assertion for G as in the statement of the Lemma. O
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The next technical Lemma exploits a useful consequence of the second
inequality in (3.1).

LEMMA 3.2. — Let u be a mon-negative function in C?(B,) satisfying
M —guw) > —M in B,. Assume also that g satisfies condition (1.8) with

G< "2
1 G2
2n+2 1 M
(3.3) u(0) < f e 5
n+2 Br _n+2

Proor. — Similarly to the proof of Lemma 3.1, we get

1 M, 1,
> - = -
Bfudac_u(O) P [21"2+2G7” prél(g);)lfu]

p

From this using (3.2), we obtain (3.3). O

LEMMA 38.3. - Let u € C?3(Br) be a mon-negative function satisfying
mequality (3.1) in B with a positive constant M, where g is a continuous

2 2
Sfunction satisfying (1.8). If r < min < (m + ), R) then

G
(3.4) supu < LHM(O)_,_ ﬂ.,.l M 2
' By 16 1P Tn+e
2n+2 2n+2
Proor. — Let u(x;) = supu. From (3.3) and (3.2) we deduce that
Br/Z
1 Gr2
C8n+2 1 M
< ohTa -
e e qu+ 1 G2 8n+e
1-= B,a(1) 1--——
4n+2 4n+2
1 M
< _21171 o
=3 g[@“r 16 8u+e
' 4n+2
< 3.2n-1 (0)+M 72 n 1 % 72
_1 1 G2 2 n+2 _1Gr2 8 n+2
2m+2 4n+2

from which the assertion follows. O
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PROPOSITION 3.4. — Suppose that the assumptions of Lemma 3.3 are satisfied
n Bg. Then there exists a positive constant C = C(n) such that

v 2u(0)M if R, <min(Rg,R)

(3.5) % < “g)) +MR  if R <min(R.,Rg)

w(0)VG + \% if Rg <min(R,R.)

[2u(0 2(n+2)
where R, = %e}%g: a

ProoF. — From the classical gradient estimates [7], see also [3] for the version
below,

1|1 M
(3.6) |Du(0)| < % l_ <4n +7 7-2) ZI;I/I;)’U/ + "

Combining (3.6) and (3.4), and taking into account that Gr* <2(n + 2), we have

9 3.2 1 4(0) 32" M r M
puons 7| (5++1) IR AR e A
2 n+2 2n+2
so that for » < min (Rg, R)
(3.7 [Du(0)] < C(@+M>

Passing to the variable ¢t = r/R; and setting y = %, we get
¢
1 t
[Du(O)] < CV2uOM jinf 3 <Z + —>
0k 2 \E Y
with a (possibly different) constant C' depending only of n.
Finally, comparing R., Rz and R as in Corollary 2.5, from the above
inequality we deduce (3.5). O
4. — L? bounds

In this Section we shall consider Sobolev functions u € W2P(Bg) such that

(4.1) [l Au — g(u)HLP(BR) <M

for some p > 1.
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PROPOSITION 4.1. — Let u € W?P(Bg), p >m, be a non-negative function
satisfying (4.1) with g satisfying (1.8). Then there exist positive constants
C =Cn,p) and o = a(n,p) such that

—n s
wO M " if R. <min(Rg, R)
[Du(0))| .
(4.2) 5 < @ +MRY i R<min(R.,Re)

wO0)GE+ MG~ if R <min(R,R.)
where R, = (1 — n/p) 5 [u(0)/M]%7 and R = \//G.

Proor. — By assumption u satisfies
du = f(@) + g(w)

where ||f||LP(Q) <M and |g(u)| < Gu.
Consider first the case R = 1. By Sobolev embeddings it turns out that

weCH By witha <1— % and by elliptic estimates, see [7], we also infer that

(4.3) |Du(0)| < Cy [(1 + @) supu + M]
By

where C; depends only of n and p. Thanks to the Harnack inequality, see [7],

supu < C [ w(0) + M + Gsupu
Byje Byjs

1
with C depending only of # and p, so that for G < 50 = 0 one has

(4.4) supu < Co (w(0) + M)
By

with Co = Co(n, p). Combining (4.3) and (4.4) for G < o we get
(4.5) [Du(0)] < C (u(0) + M)

where C = C(n, p) is a positive constant.
For an arbitrary R, let » € (0, R). The non-negative function v(y) = u(ry) is a
solution of the equation

A = 7'2f(fry) + rzg(v)

in By, where

n

||72f(7‘?/)||m<31> < My, 2 g)| < Gr*v.
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Using the result of the case R = 1, if G** <o one has
0
(4.6) |Du(0)| < C (”()+M 1--)
with C' = C(n, p). It follows that

\Du(0)] < C inf ( LOMS YRS )
O<r§RG

0<r<R

and comparing R., Bz and R as before in Sections 2 and 3 the statement is
proved. O

5. — Viscosity solutions

Let F : 8" — R be an uniformly elliptic operator with ellipticity constants
A > 2> 0. In this Section we consider viscosity solutions u € C(Bg) of the fully
nonlinear equation

(5.1) F(D?u) = f(@) + g(u)
in B, where f is a continuous function such that
(5.2) 1z~ <M

and ¢ is a continuous function on R, satisfying (1.8).

PRrOPOSITION 5.1. — Let u € C(Bg) be a non-negative function satisfying (5.1)
where f and g satisfy, respectively, (5.2) and (1.8). Then there exist positive
constants C and o depending only on n, A and A such that

Vu(O)M if R, <min(Rg, R)

(5.3) |D@é(°)| < “(O) ")\ MR  if R <min(R.,Rg)

u(O)\@ + \% if R < min (R, R,)

where R, = \/u(0)/M and Bg = \/a/G .

ProoOF. — The proof follows the lines of that one of Proposition 4.1; of course
we have to use here results from the viscosity theory of elliptic equations instead
of the corresponding ones from the L” theory. We start again with the case R = 1.
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. 1
By assumption |g(u)| < Gu, thus for r< 1

f (f@) +gw) de < (M + Gsup u) ",

B, Bij
By the regularity theorem of Caffarelli [1] it turns out that u € C1*(B;) for every
o € (0,1) and, consequently,

(54) [Du(0)| < C1lA + G)supu + M]

By

see [5], where C; depends only of n, 4 and 4.
By the Harnack inequality, see [2], we deduce, arguing as for (4.4), that there
exists ¢ = g(n, 4, A4) such that, if G < ¢, one has

(5.5) sup u < Co (u(0) + M)
Bs)y

with Cy = Ca(n, 4, A).
Combining the above with (5.5) we get the inequality

(5.6) IDu(O)] < C (0) + M)

with C depending only on 7, A and 4.
Arguing as for (4.6), from the case R = 1 we deduce, for » < min (\/0/G, R)
that

(5.7 [Du(0)| < C <u§?) + Mr)

with C = C(n, 4, 4), and we can conclude as in the proof of Proposition 4.1
comparing R,, R; and R. O

Prooror THEOREM 1.1. — Looking at the proof of Proposition 1.1, we start with
1
R =1 and let |xy| < 5 Applying (5.4) in B,(x) and (5.5), provided G < ¢ we get
(5.8) |Dulxg)| <CilA+G) sup u+M]<Ci[A + G)supu + M]<C u(0) + M)
By 4() Bsyy

with a positive constant C = C(n, 4, A).
Rescaling, for |xo| < r/2 and r < min (/o/G, R) we deduce that

(5.9) |[Dulay)| < C (QL;O) + Mr)
Finally, setting Ry = min (R,, Rg, R), we conclude that
(5.10) sup |Du| < C (@ +M1”>
Bry2 r

from which, resoning as before, by comparison of R., Rz and R, we finally
obtain (1.10). O
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