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New Periodic Solutions for N-Body Problems
with Weak Force Potentials

PENGFEI YUAN - SHIQING ZHANG

Dedicated in gratitude to Zhang’s teacher Professor Yang Wannian
on the occasion of his 75th birthday

Abstract. — In this paper, we apply a variant of the famous Mountain Pass Lemmas of
Ambrosetti-Rabinowitz ([5]) and Ambrosetti-Coti Zelati ([2]) with (CPS). type con-
dition of Cerami-Palais-Smale ([12]) to study the existence of new periodic solutions
with a prescribed energy for N-body problems with weak force type potentials.

1. — Introduction and Main Results

In 1975 and 1977, Gordon ([26], [27]) firstly used variational methods to study
periodic solutions of 2-body problems, later, many authors ([1]-[9], [11], [13]-[31],
[33]-[40] etc. and the references there) used variational methods to study N-body
(N > 3) type singular Hamiltonian systems. For Newtonian-type N-body pro-
blems with homogeneous potentials, the mathematicians can get some new non-
collision symmetrical periodic solutions by using some priori estimates on the
Lagrangian action or Marchal’s theorem on fixed ends.

In [2], Ambrosetti-Coti Zelati used Mountain Pass Lemma with the (PS)"
condition to study the existence of weak solutions for symmetrical N-body pro-

blems with any given masses my,...,my > 0 and a fixed energy & <0:

i+ Vo Vs, ay) =0, (L<i<N), (Phl)
o { %Z i@ + V() . .. an®) = h. (Ph.2)
They got:

THEOREM 1.1 ([2]). — Suppose that V(x) :% > Vilwi — ) with Vi €
CY(R™\{0}, R) satisfying: 1<iAj<N

(V1). Vii(&) = V;i(&),V ¢ € Q = R"\{0};
V2). da € [1,2), such that

VVi©) - &= —alV(©) >0, Ve
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(V3). 30 € (0,2) and r > 0, such that

VVi(©) - &< —aVy(O), YO<[E] <
(V4). Vii(&) — 0, as |¢] — + .
Then ¥ h <0, the problem (Ph) has a periodic solution.

THEOREM 1.2 ([2]). — Suppose V satisfies (V1),(V3),(V4) and
V2. 3 €(0,2), such that
VVi(@) - &> —aV(&) >0, VEe L
(V5). Vi € CH(Q,R) and
BUV(E) - &+ VIUOE - & > 0,
Then ¥ h <0, (Ph) has a weak periodic solution.

Motivated by Ambrosetti-Coti Zelati’s work ,we have the following theorem
THEOREM 1.3. — Suppose that V(g = > Vi(qi—q) with Vi€
CHR™\{0}, R) satisfying: I<i<j<N

V). V(&) = V()
(Vs). There are constant 0 <o <2 such that

(Vif(©,8) = —aVy(© >0, V&e R"\{0};
V3). 30 €(0,2),0=a,r > 0, such that
(Vii(9,8) < = V0, vOo<[¢ <
(Vo). Vii(©) — 0, as [¢] — + 0.

Then for any given h<0, the system (Ph) has at least a non-trivial weak
periodic solution which can be obtained by Mountain Pass Lemma.

REMARK. — Comparing Theorem 1.3 with Theorem 1.1-1.2, our Theorem 1.3
generalizes Theorem 1.2 since we don’t assume (V5), we also generalizers
Theorem 1.1 since we relax o in (Vs).

COROLLARY 1.4. — Suppose 0 <o = 5 <2 and

Vix) = Z —|oe; — 90j|71.

1<i<j<N

Then for any h <0, (Ph) has at least one non-trivial weak periodic solution with
the given energy h.
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2. — Some Lemmas

Let us introduce the following notation:

M = ZN:mi; H' = WH(R /7, R").
i=1
HY = {u=(uy,...,uy) | u; € H'}.
Hy={ucH | ult+1/2) = —ut)}.
E={u=u,...,uny) | u; € Hg1 <1 < N)}.
Ay = {u € E'[ui(t) # u;(t),Vt, Vi#j}.
0y = {u € E'| 3ty,1 <'ig # Jo < N s.t.uy(to) = uj, (o)}

1 N 1
LeEMMA 2.1. — (1][4]) Let f(u):% [ milifPdt [ (h—Va)dt and
; 0

0 =1
w € HYN satisfy f'(w) = 0 and f(@) > 0. Set

1

J (= V(@) dt
1

@1 1z ,
5 J D miluildt
0 =1

T2
Then q(t) = u(t/T) is a non-constant T-periodic solution for (Ph).

LeEmMmA 2.2. — (Palais [32])
Let o be an orthogonal representation of a finite or compact group G in the real
Hilbert space H such that for Vo € G,

flo-x) =f(x),

where f € C'(H, R).

Let S = {x € H | ox = x,VYo in G}, then the critical point of f in S is also a
critical point of f in H.

By Lemma 2.1-2.2 and (V1), we have

LEMMA 2.3. — ([1] — [4])
If u € Ay is a critical point of f(u) and f(u) > 0, then qt) = ut/T) is a non-
constant T-periodic solution of (Ph).

Cerami [12] introduced the following (CPS). condition:

DEFINITION 2.4 ([12]). — Let X be a Banach space, {q,} C X satisfies
(2.2) f(Qn) —c, 1+ H qn ” )fl(Qn) — 0,
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then {qyn} has a strongly convergent subsequence, then we call that {q,} satisfies
Cerami-Palais-Smale condition at level ¢, we denote it as (CPS).. If for all c,
(CPS), holds, then we call f(q) satisfies (CPS) condition.

Combining the different forms of the Mountain Pass Lemmas in
(2], [5],[12],[19], [23], [25]), it’s not difficult to get:

LEMMA 2.5. — Suppose f € C*(Ay, R) and

(ARy). v, > 0,st. flu) >, Yue€ Ay, | ulgv=r,

(ARy). Juy € Ay with ||ug|| = p<r and f(up) <p.

(AR3). VM > 0,30<p = p(M) <7, s.t. Yu € Ly, (df (w),u) > 0,
wheve Xy, = {u € Ay | |Ju|| = p,.f(w) <M}

(ARy). Fuy € Ay, s.t. |Juq] > 1, f(ug) <O0.

Let

C= }2,% Org%xlf(P(é)),

where
I',={PeC(0,1],%)) | || PO) ||gv=p, PQ) = u1 },
Zy={uedo| [l ulm=p}
Then there exists {u,} C Ay such that

f(un) — C) 1+ || Uy, || )f/(un) — 0.

Furthermore, if f satisfies (CPS)¢ condition, that is, {u,} has a convergent
subsequence, furthermore if

f(un) - + 007 vun — U e 6/10’
then C is a critical value of f, so there exists u € Ay such that f'(u) =0, and

fw)=C=p>0.

LEMMA 2.6. — (Gordon[27])
Suppose that Vi satisfies so called Gordon’s Strong Force condition: There
exists a neighborhood Njj of 0 and a function Ui € C*(R™"\{0}, R) such that:

(@) lim U(&) = —oo;
(iD). —Vi(&) > |U Q) for every ¢ € Ny \ {0},
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Then we have

1
fV(un)dt o, Y, —u € 9.
0
LEMmMA 2.7. — (Sobolev-Rellich-Kondrachov, Compact Imbedding Theorem
[10],[41D)
WYA(R/TZ,R™) c C(R/T7Z,R")
and the embedding is compact.

LEmMA 2.8. — (Eberlein-Shmulyan[10])
A Banach space X is reflexive if and only if any bounded sequence in X has a
weakly convergent subsequence.

LEMMA 2.9. — ([41]) T
Let g € WY2A(R/T7,R") and [ qt)dt = 0, then we have
0

(). Poincaré-Wirtinger’s inequality:

f|q(t)| dt>< ) f|q(t)| dt.

(12). Sobolev’s inequality:

T
T ([ e\ V2
gggaglq(t)l =l ¢ [lo< \/%(Of g dt)

It’s not difficult to prove:

LEMMA 2.10. — For Yu € Ay, we have

1

f u(t) dt —

0

YL s N2

By Lemma 2.9 and Lemma 2.10, for Yu € Ay, ||u| = ( Il Zmi\uﬂ dt) 18
; N . 0 =
equivalent to the HY norm.: i=1

1 1/2 1 1/2
| = (f |u|2dt) +(fudt|) .
0 0
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LEMMA 2.11. — (Coti Zelati[20])
Let X = (x1,...,2y) € R" x ---R™ Then

N
m;m; o\ /2
A — l‘|a > C“(ml,...,mN)< E m;|;| ) :
1<i<j<n 1% T % =

249
where Cy(my, . ... my) 2 C, :M‘“/Z( 3 mimj) ’

1<i<j<N

3. — The Proof of Theorem 1.3

In order to apply Mountain Pass Lemma for the variational functional defined
on Ay (an open set of Banach space), we need a complete condition:
3.0 fuy) — 400,  uy, — 94,

which can guarantee that the critical point is in A, not on it’s boundary. But in
the assumptions of Theorem 1.3, we don’t have the strong force condition, so we
need to revise the potential V as V,

Vew) = V(u) + W(u)

em;m;
We(u) = — — . y>2
(31) 1<i<j<N |7/LZ — uj|
&m;m;
Viiiui — ) = Vigu; — ) — ———
[ — ]

We also need to revise the functional f(u) as

1y 1
1 .2
filw) == mglu|”dt | (h — Vi(u))dt
| i
3.2)
1

1
_ 2 _
—5 Il Of(h V) dt.

REMARK. — Different from earlier papers, here we use W,(x) with y > 2 not
y = 2 to perturb V in order that f; satisfies (3.0) and we can verify all conditions of
Mountain Pass Lemma.

After we apply Mountain Pass Lemma to the variational functional f; to get
critical point u,, then let ¢ — 0 to get the limit point, which is a weak solution
which satisfies (Ph) except on a Lebegue’s zero-measurable set.

In order to find critical point of f, in 4y, we need to verify all conditions of
Mountain Pass Lemma, let’s begin to prove:



NEW PERIODIC SOLUTIONS FOR N-BODY PROBLEMS ETC. 99

Lemwma 3.1. — If (V1) — (Vo) hold, then for all C > 0 and any given ¢ > 0, if
{un} C Ay satisfies

33) felwn) — C >0, A+ [ uy || ) () — 0.

Then {u,} C Ay has a strongly convergent subsequence, the limit must be in
Ay, that is, f, satisfies the (CPS)¢ condition in Ay.

Proor. — The proof will be divided into three steps:
SteEPl. — We show that {u,} is bounded.
In fact, by f;(u,) — C, we have
1 : h
3.4) =5 o I Of Vi) dt — C =5 | wn [
So when # is large enough, it follows that

1
1 2 h 2
3.5) 5l | Ofm(un)dtsmly w |

By simple calculation, we can get

(3.6) (VIi(), ) = (V' (), ) — YW ().
Noting that
3.7 —yWe > —aW,.

From (V3), (3.6) and (3.7) we have

(3.8) (Vilun), un) > —aV,(uy) > 0.

So
1

(D) =] P f (0= Vi) = Vi) ) at

0

1
(3.9 <l 2 [ (1= Vi) + 3 Vi) ) it
0

1

=l 12 [ (h =@ =2V dt.

0
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Since 0 <o <2, using (3.5) and (3.9) we have

(Fraw) ) < Bl P+ = S)[2C +D =R [l o |P]
3.10) N
=5h | 2, || + Ch,

where C; =2(1-2)(C +1) > 0.

By (3.3) we have
(3.11) (fs Q) w) <|| s, ||| £ ) [|—= 0.
(3.10), (3.11) and 2 <0 imply
(3.12) | 2 ||< Co.

STEP 2. — We prove u,, — u € Aj.

Since HV is a reflexive Banach space, by Lemma 2.8 and (3.12), {u,,} has a

weakly convergent subsequence still denoted by {u,,} such that u,, — u.
To prove u € Ay, we need two Lemmas.

LEMMA 3.2. — Vy; satisfies Gordon’s Strong Force condition.

Proor. — Let
m; m y—2
Vi) =—2, (0<i<i==
Y ,1|é|i ( 2 )
Then
(3.13) lim V—” = —00.
[E][—=0 -~

By simple calculation, we obtain

m;m;

|V_ij,(5)|2 = |§|2”2'

Since

ey My

3.14 _ >
(3.14) & = e

Ve > 0,

when |¢| E small enough, so there exists a neighborhood Aj; of 0 such that
—Veij > Vi |2,VgZ € Nij\{0}. Therefore, V,; satisfies Gordon’s Strong Force
condition. 0
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LemMmA 3.3. — For any weakly convergent sequence u, — u € 04y, where
Uy = (k... ,ul), there holds:

PRrooF. — First of all, we recall that

1 iy
fw) =5 [ > mitii Pt [ - Vit
0 =1 0
(1). If w = constant, we deduce that « = 0 by u;(t + 1/2) = —u;(t). By Sobolev’s
embedding theorem, we have
3.15) I % [[oo— 0, 7 — 0.
Using (V2) we have Cs > 0, such that

Cgmi m;

3.16 V(&) < — !
(3.16) () H

Y& > 0.

Therefore, h — V(u,) > 0 when 7 is large enough, then by Lemma 2.11 we have

filuy,) = 2[Zml|uﬂ| dtf (h ZV(@L —u7)+z em;m; )

1<j i<j |M2 unly

1L
3.17) >§J-Zmi|u}l2dtfz% dt

n — Un

A N P2
where H Un ”00 = Zmi|un|oo
i=1
Then by Sobolev’s inequality, (3.15) and y > 2 we have
fiwn) > 66C, || wy |7 — + 00, n— oc.

(2). If u # constant, by the weakly lower-semi-continuity property for norm, we
have

Y Y
(3.18) timinf [ > mific, Pt > [ mafisf dt > 0.
N—00
0 =1 0 =1
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Since u € 04y, there exist ty,1 < 9 # Jo < N s.t. u;,(to) = u;,(to) Set
&) = ud (O — uff (@)
<) = u;, (&) — u;,(8)

By u, — u, we have &,(t) — &(t). Then by Lemma 2.6 and Lemma 3.2, V¢ > 0, we
have

1
[ Vi — ity at — —oo.
0

Recalling that
V() = Zij(%Z —ul).
i<j
So we have
3.19) f:(uy) — + 00, m— oo.

Combining (3.3) and Lemma 3.3, we deduce that u,, — u € Aj.
STEP 3. — We prove that %, — u strongly.
By u, — u € A4y and compact embedding theorem we have
max |uy, () — u(t)| — 0.
0<t<1
By the continuity of V,, V] and the inner product (-, -), we have the uniformly
convergent for 0 <t <1
V(un) HVH('M/),
(3.20) W(w,) *)W!:(u)y
<V£(un)7un> —><V8’(u),u>
1N
From STEP 2, we know u € Ay, so |u]|= [ S mli|* dt > 0, otherwise
0 i=1

u=0¢€dA by u;(t+1/2) = —u;(t). Then by u, — u and the weakly lower-
semi-continuous property of the norm ,we have

3.21) liminf || w, ||>| » ||> 0.

By (3.11) we have

1
622 (flw) =l | [ U Vitw) L (Vi) m)1dE 0.
0
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Let n — oo in (3.22), by (3.20) and (3.21) we have
1 1
1 '
3.23) Of (h V() dt = Of (V! (), ) dt > 0.

From (3.3), we deduce that f/(x,) — 0, then (f/(u,), v) — 0,Vv € HY that is

1

1y ' 1 1
3.24) f z;mim,mdtf (h=Vi ) dt = ||, | f (V!(wy),0) dt — 0, Vo HY.
0 = 0 0

Taking v = u in (3.24), we get

1 N
(3.25) lim Emim;,,m dt = lim || u, 1% .

0 i=
By u,, — u, we have

1N 1 N
(3.26) m [ i i) dt:meimith:H wl?.
. J 4

n
e 0 =1 i=1

From (3.25) and (3.26), it follows that

1 N . , 1 N . N ' N ,
= |P= [ > mafi, it = [ mili -2 3w i)+ milif®) at
0 =1 0 =1 i=1 i=1

(8.27) —lw P =2 w|®+ [ wl]?
=0.

That is %, — u strongly in H'. O

LEMMA 3.4. — f; satisfies the condition (AR1) in the Mountain Pass Lemma.

Cym;m;
) |]w so by

Proor. — By (3.8) we have Cy > 0, such that —V,.(u) > > -
()

Coti Zelati’s inequality [20], we have i<j
1
1 2
fy =5 lu [o-vaw)a

0

1
_h’ 2 1 2
—IMI—ﬂuH!Wm&

2

h/ 2 C@C4 2 _
> — —— *.
> 2+ 22 P
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Then by Sobolev’s inequality, we have C5 > 0 s.t.

=+

5wl

h
Since 0<a<2, we can choose || u ||:r small enough such that EI'Z—i—

(;" 2=% — > 0. Hence

fa)y>p>0, V|u|=r.
O

LeEmMA 3.5. — f. satisfies the condition (AR2) in the Mountain Pass
Lemma,that is, Juy € Ay and & > 0, with || up ||= p<r s.t. foluy) <f, V0 <e<eg.

ProoF. — For R > 0, we consider
1

fi(Ru) = % | Ru |? Of (h — V.(Ru)) dt.

Using (V3) we have Cg > 0, such that
Vii(&) > —Comimyld] °, YV O0<[é| <.

Then we have

fi(Ru) <= R2 | % ||* +CsR*° || u |? melmﬂ% ;| °dt
i<j 0
1

FeCiRE || |? meimjmi — |7 dt.
i<j 0

(3.28)

)
—)], where |[&=1, |y=1,

1 .
Take u;(t) = Ecos[2r(t + N)] + 5 sin [27(t + N

<£7 77) = O’ 69 /IS Rn, then

—-ag.

‘ B o/z
S i~ w07 = 3 mim, {2 - 2eos 1}

i<j i<j
Py ) /2
Zmimﬂui(t) — )| = ZmiMj{Z - Zcos[zn(;\r J)]} L

= .
i<j i<j
| u|? = 4n*M.
Hence
329 f(Ru) < 47z2M( R? + Cya, R0 + eCra, B2 V)

< 4P*M(CgasR*™ + ¢Cra,R*7).
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Since 0< <2, so we can take R, small enough such that 47> MCsasR3~° <.
For the above fixed R, we choose ¢ > 0 small enough such that

(3.30) A MCra, RS e < f — 4 MCsasR3.
In fact, we can choose

ﬁ 47Z2MCG(L 5R2 o

(3.31) 0<e<
" MG R

Choose R; small enough such that || Riu ||= p<r, take R = min{Ry, R1}, let
uo = Ru, then we have

(3.32) fiuo)<B, || uo ||= p<r,¥ 0<e < &. .

LEMMA 3.6. — f; satisfies the condition (AR3) in the Mountain Pass Lemma,
that is, YM > 0,3p(M) > 0,3 > 0, s.t.(dfe(w),u) >0, Yu € Xy ,, V0<e<e,
where Xy, = {u € Ay | f:(w) <M, [Ju|| = p}.

ProoOF. —

1
(), u) = [|ull? f (h — Vi) — % <Vg(u),u>) at
0

1
p (1= 2) el + o(1-2) fz%dt]
0

2
Choose p small enough s.t. & + (1 - 5)0300_/)*“ > 0.

2
> ull

We claim f b i 5dt is bounded for Vu € Xy, that is, there exists
i<j lui — uj| '

A>0,st. f y
i<j \ul — uj|
In fact, if not, then 3{u"}, [|u"|| = p,Jig # jo,to € [0,1] such that u} (to)—
u;-f]( jo) — 0, that is, there is a subsequence of " ,we still denote it as u,, and
Uy, — U € Ay asm — + oo, furthermore by Lemma 3.3, f,(u") — + oo, which is a

contradiction with f,(u) < M. X
fw) < h+ (01— %)CgCap‘“

Thus, if we choose ¢ = inf
ueZMP

dt <A for Vu € 2y .

, we have g >0 and

1
G0 2 o
(dfe(w),u) > 0,Yu € Xy, V0 <e<e. 0 i~ O

LEMMA 3.7. — f; satisfies the condition (AR4) in the Mountain Pass Lemma,
that is, Juy € Ag with || wy ||> r s.t. fi(uq) <O0.
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Proor. — Let R > 0, we consider
1 1
fiBw) =3 || R | [ (= ViRw)dt.
0
i

N

N 1/2

(Z |ui|2) — N, |Ru| = RN, || u |?= 472M, by (V,) it follows that
i=1

Take u:(ul,...,uN),ui:fcos[Zn(t+%)]+nsin[2n(t+ ), uil =1, |u| =

1
fVH(Ru) dt —0, R— +oo.
0

So f.(Ryu)<0, when R is large enough. Choose R; large enough such that
|| Byu ||> r. Take R = max{Ry, R}, let u; = Ru, then

fillu)<0<B, ||ug ||>r. .

From Lemma 3.1-3.7, V0<¢ < ¢, f; satisfies (AR;), (AR2), (AR3), (ARy),
(CPS)¢ with C > 0, and f,(s, ) — + 00,V Uy, — U, € 0do. Let

C, = Piglfﬂ max J(P©)).
By Lemma 2.5, we know that V0 <e < &, there exists u, € Ay such that
(3.33) fiws) =0, fi(u;) = C; > > 0.
Let

1
J (= Vi(uy)dt
2 0

ot = )
5 [ > mlud|dt
=1
Then by Lemma 2.3, y. = u.(w,t) satisfies

3.34 TH — =0.
(3.34) my, + oy

1 o o
(3.35) 5 > mli B + Vius®) = k,

i=1

where y, = (), ..., yN),u, = ul, ... ul).

Next, we show that u, converges to some % which gives rise to a solution y of (Ph).

LEMMA 3.8. — 3Cg,Cy > 0 s.t. Cg <[ u, ||< Cy.
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1N '
PROOF. — Since u, € Ay, s0 || u, ||>= > mi|u§|2 dt # 0, otherwise u.(t) =0 € 94
0 i=1
by ui(t +1/2) = —ui(t). By (f(u,),u.) = 0, we have

1

1
2 - - = / =
[ e || Of {h Vilw) = 5 (Vi) ) | dt = 0.
Then

1
1
(3.36) h— f (Vi) +5 (Vi) ) dt.
0
Letting y — 2, we have
1
1 !
h= Of (V) + 5 (V@) w)) dt.
By (V3), we get

1
)
(3.37) ha-9) Of Vi) dt.
If | u. |— 0, as ¢ — 0; then || %, ||oo— 0, from (3.16) we deduce
1
[vawdt— -,
0

which is a contradiction with (3.37). So we have Cs > 0 such that
(3.38) | u. [|> Cs > 0.
On the other hand, from (3.33) we know

=i < &.
fiu) pl?fy, max f:(P(), Y0<e<eg

So we have
<
filu,) < lgglf/) max S (P©)
< mnax Jeoo(P(O) = Cro, V0<e < .
That is

1
(3.39) Je(ue) :% | . ||? f (h — Ve(u,)) dt < Cpp,V0<e < &.
0
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By (3.8) we have

1
h= Of (Vi) + 3 V2. )

1
11 )
> (5-2) Of (V! (), ) dit.

So
: h
!
(3.40) f (Vi) 1) At > 1= > 0.
0 —_—— —
2 o
Then by (3.36) we obtain
: h
(3.41) f (= V) dt > ——.
0 1——
o
(3.39) and (3.41) imply
(3.42) | u, [|< Co.

Since E is a reflexive Banach space, by (3.42) and Lemma 2.8, there is a
subsequence, still denoted by {u.} such that u, — 4, then by compact embedding
theorem, %, — u uniformly.

In the following, we can use almost the same proofs of Ambrosetti-Coti Zelati
([1],[2]) to get Lemma 3.9-3.11, but we should remember y > 2, so in order to get
our result, we need to let y — 2. For the convenience of the readers, we write the
complete proofs.

LEMMA 3.9. —

(3.43) ). V@) £ h.
(3.44) (2). Jp C[0,1]s.t.mes(p) =1 and u;) # u;t),Vi #J, Vi € p.

PROOF. — (). if not, V(@(?)) = h, then
Viu,@) =V (@) = k.
(V' (@), u @) — (V' ((t), ).

Since

1
1
h= Of (Vita) + 5 (Vi) )t
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Letting y — 2, we can get
: 1
—_ A vd
h= [ V@) + 5 V'), u)
Then letting ¢ — 0, we have

= fV(u)u

0
Hence (V'(&), %) = 0, this is a contradiction with (V).
(2). Set £; = {t € [0,1] | u;(t) = u;(®)}(@ # j), then each ¢; is a closed set, and
uﬁ—uﬁ—>0 on L
If mes(¢;) > 0, then
7}520 C. = nlijgo Jfelue) — +o00.

This is a contradiction with (3.39), so we obtain
mes(ly) = 0V # 7).
Let ¢ = |J ¢;, then mes(¥) = 0, we set p = [0,1]\/, then

i<j

mes(p) = 1,u;(t) # u;(t),Vi #J, Vi € p.

LeMMA 3.10. — There are numbers 6,4 > 0, such that
(3.45) o< w, <A

Proor. — Integrating (3.35) on p, we have

(3.46) f Zml|u| dt + f V() dt = hmes(p).

o =1

From (3.42), we deduce

1

meL\u\ dt ff:mm dt < C2.
0

o =1 i=1

From (3.33), h — V,(u,) > 0, then by Lemma 3.9, V.(u,) — V(%) uniformly on o
and [ (b — V() dt > 0, it follows that
©

2[(h—Viu)dt 2 [(h— V() dt
[ <]

(3.47) w? > > 0.

cz - Cz
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Integrating (3.35) on [0, 1], we have
1 1y 1
Za? milil P dt + [ V() dt = .
i st

Then by (3.2), (3.36), (3.38) and (3.39) we have

o _ 4w _ 4G

(3.48) o = Tt L 210
7% R o

LemMmA 3.11. — Suppose that (V1) — (Vy) hold, then for any h <0, u is a weak
solution of (Ph).

Proor. — Let K,, C p be an increasing sequence of compact sets with
U K, = p,
n>1
and set
K ={u®) |teK,}.
Each K C = {x = (v1,...,xn) | 2; € R", ; # ;,V 1 # j} is compact and has a
neighborhood A/, such that A", C i. Then V, — V in C'(W,,, R), and therefore
V!(uy(t)) — V'(u(t)) uniformly on K.
Since u, = (u}, ..., uY) satisfies
oV(u,)

2 -
M, U, + VR 0.
&

By Lemma 3.10, w, has subsequence, still denoted by w,, and we have
w, — @ # 0.

It follows that
s — = (@, ... 02) n C3(K,,R).

- da; V(@)
20 . v _
a“m; iz + B =0 on K,.

Since | J K, = g, it follows that

o i OV
e T 0w

=0 on K, Viteyp,

and y(t) = u(@t) satisfies

. V@)
mzyi+ agl -

0, Viep.

The energy conservation (Ph. 2) on g follows directly from (3.35). |
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