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Asymptotic Director Fields of Moving Defects in Nematic
Liquid Crystals

PAoLO BISCARI - STEFANO TURZI

Abstract. — This paper deals with the detailed structure of the order-parameter field both
close and far from a moving singularity in nematic liquid crystals. We put forward
asymptotic expansions that allow to extract from the exact solution the necessary
analytical details, at any prescribed order. We also present a simple uniform ap-
proximation, which captures the qualitative features of the exact solution in all the
domain.

This paper is dedicated to the memory of Carlo Cercignani, a master who will be
never praised enough for both his scientific achievements and the way he taught how
research is to be conducted.

Nematic liquid crystals are aggregates of (quasi) axially-symmetric molecules
which aim at orienting along a common, parallel direction. Boundary conditions
and/or external fields may, however, induce non trivial configurations and, under
some special circumstances, singularities in the orientation field. These defects
have been extensively studied over the last decades and have played a propelling
role in the establishment of the Topological theory of defects [1, 2, 3]. By studying
the homotopy groups of the order parameter manifold, it becomes possible to
assign a topological charge to each singularity. The total topological charge is
invariant under regular evolution of the system, but single defects may split and/
or annihilate [4, 5], while pairs of opposite-charged defects may emerge in
otherwise regular patterns [6].

In recent years, attention has been focused on the possibility of driving the
defect dynamics through suitable external fields [7, 8]. Analytical relations be-
tween the defect velocity and the external field intensity and direction have been
established in [9] by neglecting backflow, i.e. the orientational modifications
induced by the presence of a macroscopic flow, and vice versa. Neglecting
backflow is a non-trivial simplification. Indeed, both numerical [10] and experi-
mental [11] studies have stressed the importance of backflow effects, including
the speed difference between opposite-charged defects. Nevertheless, it has
been recently shown [12] that the no-backflow solution can be interpreted as the
leading-order term in a perturbation scheme. In such an iterative procedure,
both the macroscopic velocity field and the corrections to the defect speed may
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be computed in terms of the no-backflow solution. In particular, the symmetries
of the no-backflow solution determine which Fourier components of the velocity
field influence the general solution. It becomes therefore important for appli-
cations to understand in detail the structure of the orientation field obtained in
the absence of backflow.

In this paper we analyze the no-backflow solution identified in [9]. By suitably
adapting classical perturbation methods, we extract analytical information about
the qualitative features of the orientational pattern of a moving defect in all the
relevant domains: close to the defect, in the characteristic z-wall, and far from
the defect. In all cases, we test the analytical approximations against the out-
comes of numerical simulations. Close to the defect, we show that the defect
speed does not break the symmetry of the stationary pattern at the leading
order. Far from the singularity, we are able to prove the existence, and to de-
termine the structure of a translationally invariant wall. We also identify a quite
simple, uniform approximation, that approximates remarkably well the exact
solution in all the regions.

The plan of the paper is as follows. In the next section, we review the relevant
equations of the nematic defects evolution, and set up the geometry of the model
under study. Sections 2 and 3 are devoted to the asymptotic expansions of the
orientational pattern. Finally, in Section 4 we introduce the uniform approx-
imation, and test the analytical predictions against the results of numerical
computations.

1. — Stationary motion of a nematic defect

The order parameter fit to describe the microscopic configuration of a nematic
liquid erystal is the director field n : B — S?, where B is the region occupied by
the system under study, S? is the unit sphere in R®, and therefore n(P) is a unit
vector pointing parallel to the molecular orientation at the point P € B. In addi-
tion, the head-and-tail symmetry of nematic molecules implies that the orienta-
tions n and —n must be considered as equivalent. Therefore, the order parameter
manifold will be actually identified with the quotient set S?/ ~, which coincides
with the projective plane RP?. Nematic defects are the discontinuities of the map
n. In this paper we deal with nematic disclinations, that is line singularities.
More precisely, we take B to be coincident with R?, and assume translational
invariance along the z-direction, so that we may restrict our attention to the plane
By = {# = 0}. The disclination is represented by a line orthogonal to By and, in
our treatment, its position will therefore be identified by a point in Bj.

Nematic disclinations may be classified on the basis of the number of turns 7 the
director performs when we follow its variation along a closed curve which includes
the defect. The head-and-tail symmetry described above implies that the topolo-
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. . . 1. . .
gical charge n may take half-integer values. We consider a # = 4= disclination

moving in an external magnetic field, as described in detail in [9]. The external field
is assumed to favor the director orientation of one side of the defect with respect to
the other side, and this asymmetry is sufficient to induce a defect motion. We follow
the so-called one-constant approximation in the choice of the hyperelastic po-
tential which determines the energetic cost of any prescribed configuration n, and
neglect backflow. More precisely, we are interested in determining the shape and
the speed of a steadily-moving pattern in which the defect proceeds towards its
preferred direction. To this aim, we choose a co-moving reference frame, in which
the direction configuration appears as still, with the direction sitting at the origin O.
The x-axis is chosen to be parallel to the external field. Given any point P in the
plane, let (r, 0) be the polar coordinates of P in By, and let ¢(P) be the angle the
nematic director at P determines with the x-axis (see Figure 1).

We refer to [9] for the analytical details in determining the travelling pattern

1
which describes an y-disclination (with = +— ) and satisfies ¢(P) =0 in the
positive x-axis. Such solution is given by

+00
n g e -y f Im(eiq’”’k‘?y) of]q ify>0,
0

—¢(x,—y) otherwise.

1) o, y) =

In (1), &£ = /K/(y,H?) represents the magnetic coherence length, with K the
average Frank nematic elastic constant, y, the magnetic anisotropy, and H the
intensity of the external field. Moreover, k, is defined as the square root of the
equation kg = ¢2 +iqy + ¢ which has positive real part. Finally, y = y,v/(2K) is
a parameter (proportional to the defect speed v and the nematic viscosity y;),
which has the dimensions of an inverse length. The defect speed v can be de-
termined through the self-consistency equation

/7o
iy \/ e 1\, .
(2) b[(\/ +—+S—2— 1—?+S—2)d8—lﬂ,

0] T

Fig. 1. - Coordinates definition in the problem under study.
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where 7y is a microscopic length, of the size of the defect core within which the
nematic undergoes a phase transition towards an isotropic, or a biaxial phase
[13]. It is typically well below the um scale and then much smaller than all other
characteristic lengths. Figure 3 in [9] shows how the solutions of equation (2)
precisely depend on the ratio &/7y. For our purposes, we may simply recall that,
for values covering most applications, the speed v turns out to be proportional to
the magnetic coherence length, apart from a logarithmic correction.

The next sections will be devoted to a careful asymptotic analysis of the di-
rector field (1). Because of the top-down symmetry evidenced in it, we will re-
strict our attention to the upper half-plane in By. First of all, it is convenient to
transform the integrand in (1). By solving the algebraic equation which defines
kq and then choosing the correct solution, it is possible to show that, for any
y >0,

400 da
®) s =nge —n [ eV Dsing(z — i0:@)

0
where all variables identified with a bar are now dimensionless: & = x/&,y = y /¢,
q = q¢. Moreover, A = %yé, is a speed-dependent dimensionless parameter, of

order 1. Finally, the function g, is defined as

(\/(1 TRl r4le_1— tz)E
V2t

with ¢,(0) = 1. A straightforward analysis of its first derivative suffices to show

(4) 9,(t) = for ¢t > 0,

&
1.0

0.8
0.6

0.4

0.0 t
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Fig. 2. - Plot of the function g, defined in (4) for different values of 1. Top to bottom: limit
;‘_>0+”1:{2§’5’10'
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that g, is a monotonically decreasing function of ¢ for any positive ¢ and that

0= tlir+n 9, < g, < tlirgl+ g, =1 Vt>0, Vi>0.
More precisely,
1
g =1-50+ A +0(t') when t— 07,

()

11 1
g =550+

1
5 B + O<t5) when t — +oo.

Figure 2 evidences that g, does not depend critically on the particular value
attained by the parameter A, as long as it remains within the range of physical
interest.

2. — Far-from-defect approximation

To begin with, we determine the asymptotic shape of the director config-
uration at points P sufficiently far from the defect, which sits at the origin of the
co-moving reference frame.

2.1 — Far field

We begin by considering the easiest case, 7.e. the limit ¥ > 1 (y > ¢). In this
case we may apply the Laplace method [14] for the asymptotic expansion of the
integral in (3) when % — +o0. The main contribution to the integral, in the limit
Yy — +oo, arises from the values of g such that —1/¢;,(g) attains its maximum. In
view of the remarks above on the function g;, this certainly occurs as ¢ — 0*.
Therefore, it is only the immediate neighborhood of ¢ = 0 that contributes to the
full asymptotic expansion of the integral for large %, and we may replace g, with
its Taylor expansion about ¢ = 0. The resulting approximation of equation (3) is

+00 _
$,y) ~ ne? (g — [ e #10 P sing@ - 1) %) .
0
This integral can be explicitly computed in terms of the error function

z
erf(z) = %f e tdt.
0
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We obtain

(6) S~ h et |1 et T
V2L + 2y

In particular, and since |erf(z)| <1 for any z € R, the tilt angle ¢ decays ex-
ponentially with ¥ when this latter increases.

as ¥y > 1.

2.2 — m-wall

The approximation (6) has in fact a wider range of validity than expected.
Indeed, the same conclusion about the integral (3) being dominated by the small-
@ terms can be applied also when the factor multiplying q in the argument of the
sine function becomes large. Such a factor can be given the following bounds,
uniform in g:

(M) [ = 4g]| < |2 - 2mg:@)| < |&|+ 2y, V&R, Vy,q,4>0.

Therefore, the approximate expression (6) becomes valid also if || is large, while
¥ remains finite. In particular, it is interesting to check the behavior of the so-
lution close to the x axis, in order to appreciate the difference between the left
and the right-hand sides of the defect. Since

_ e’ 1 -4
erf(t) = 1—ﬁ<1 2t2+0(t )) as t — +o0o

2
et

1
—m<1_ﬁ+o(t_4)) aSt—>—OO,

we obtain at leading order

In(+ 2y g2
(8) ¢, y) ~n We e as & — 400 (7 > 0 fixed)

9)  Hla,y) ~nme? as T — —oo (7 > 0 fixed).

erf(t) = —1

The estimate (8) shows that at the right-hand side of the defect the tilt angle
decays exponentially towards the direction preferred by the external field. On
the contrary, equation (9) shows that at the left-hand side of the defect there is a
structure which does not vanish at infinity. Whatever the (large and negative)
value of &, the director performs a rotation of #z in a vertical strip of char-
acteristic length &. More precisely, and in view of the top-down symmetry of the
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field about the x-axis, the director performs a 25z rotation in a strip of typical size
. . . 1 S
2¢. Since we restrict the attention to = =+ 5 (which is indeed the only en-

ergetically stable choice) such a stripe is thus identified as a n-wall. Both the
elastic and the magnetic energies induced by the defect are mostly confined in
this domain, as evidenced in Figure 2 of [9].

3. — Close-to-defect approximation

At equilibrium, and within the one-constant approximation, all planar nematic
point singularities tend to a universal asymptotic pattern when we approach the
defect [15]:

(10) é(r,0) ~ 5l + const., asr — 0.

It is our present aim to check whether such approximation stands in the case of a
stationarily-moving defect, and possibly to compute the first-order corrections to
the asymptotic limit. We stress that it is not trivial a priori that the limiting
pattern obeys equation (10), because the presence of the external field and the 7-
wall clearly breaks the rotational symmetry around the defect.

Close to the defect, the gradients of the director field diverge. This implies
that the Fourier integral in (3) is expected to be dominated by the large-g con-
tributions. Similar conclusions may be drawn by noticing that the estimate (7)
evidences that the factor multiplying ¢ in the argument of the sine function
vanishes close to the defect.

Once we take into account the asymptotic expansion (5) for g,, the integral in
equation (3) simplifies to the Laplace transform

too 02 — _
. . 1
Im<{ e 4 f e % exp(— J;A Q)@ ;
0 a/ q

where the Laplace variable s, is to be evaluated in s = y — 1x. The interesting
feature of this approximation is that it is possible to compute analytically the
Laplace transform of exp ( — C/q)/q, where C is a positive constant (see e.g. [16]).
Therefore, we obtain the following approximation of the director field close to the
defect

7'[

(1) gy ~nge ! - nlm{Ze“yKo <\/2<1 + ) wcy)) } :

where Ky(z) is the zeroth-order modified Bessel function of the second kind.
In the limit %, ¥ < 1, the modified Bessel function can be approximated by its
leading order terms Ky(z) ~ —log (z/2) — I", where I" is Euler’s constant, with
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numerical value I" = 0.577216. After some further algebra, equation (11) becomes

i 4 12\2 i 2
(12) ¢(7",9):'79—M 7+ 4A + 2log 7‘(1+:—5)lslr19

2
5¢ + 0@,

asr — 0.

Equation (12) shows that the stationary pattern of a moving defect shares the
same asymptotic behavior (10) of a stationary singularity. The rotational sym-
metry is broken at O(r), the maximum asymmetry being concentrated above and
below the defect.

4. — A uniform approximation and numerical tests

The structure of the far- and close-to-defect approximations (in particular
equations (9) and (12)) suggests to propose a simple, uniform approximation,
which turns out to be able to match asymptotically both limits. Such approx-
imation is given by

(13) $(r,0) = nfe =m0,

and it is immediate to check that it satisfies all the boundary requirements. It is
the aim of the present section to test all the asymptotic and uniform approx-
imations derived above against the results of exact calculations, performed
through suitable numerical integration routines.

[VE]

g

NE

Pex
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3 T

1
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0

Fig. 3. - A plot of the the exact solution ¢, (r, 0), as given in (1), computed along half-circles
of radii (top to bottom) » = 0.1¢, » = &, and » = 5. The parameter / is set to 0.5, and
1
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We report the results obtained by comparing the predictions along three half-
circles, all centered in the defect and of radii » = 0.1&, » = ¢ and r = 5¢ re-
spectively. The dimensionless parameter Z is set to be equal to 0.5, a value which
matches the predictions computed in [9], and reported in Figure 3 therein. The
sign of the topological charge of the defect does not affect critically the results, as
n everywhere appears simply as a multiplying factor. In the following we set

1
n=-+5

Figure 3 reports the results of the exact calculations. To make explicit com-
parisons, in Figures 4 and 5 we have plotted the errors of the approximated
analytical solutions, defined as the difference 4¢ = ¢, — @y

Close to the defect (see Figure 4(a)), the dashed line corresponding to the
approximate solution (12) obviously provides the best results. It is however to be
remarked that the dotted line, corresponding to the uniform approximation (13),
provides only slightly greater errors. At intermediate distances (see Figure 4(b)),
the close-to-defect approximation immediately looses validity, as it does not cap-
ture the decay of the director towards the direction established by the external
field. The uniform and far-field approximations are approximately equivalent in
this range. When we finally reach the far-from-defect domain (see Figure 5) the
close-to-defect approximation is meaningless, and there is no sense in reporting it.
On the contrary, the uniform approximation (13) is not to be discarded, as the error
scale in this Figure has been augmented for the ease of presentation.

-0.3[— \ / —
-0.4— / =1

—-0.5— / -

NER S

D ol
u|7 -

(a) (b)

Fig. 4. - Comparison of the errors 4¢ = ¢, — ¢, between the exact solution, as given in
(1), and the three approximate solutions (6) (solid line), (12) (dashed line) and (13) (dotted
line). The errors are calculated along a half-circle of radius (a) » = 0.1¢ and (b) » = £. The

value of the parameter 4 is set to 0.5, and # = +§.
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Fig. 5. - Same as in Figure 4 except that » = 5. For this value of r, the close-to-defect
approximation yields too large errors, and it is therefore not shown here. Note the change
of scale in the error axis with respect to Figure 4.

To summarize: we have established classical perturbation expansions that
allow us to obtain asymptotic analytical expressions for the director field of a
moving nematic defect. Moreover, we have presented in this section a new,
uniform approximation, that proves useful to capture the qualitative features of
the director field both close and far from the defect.
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REFERENCES

[1] N. D. MERMIN, The topological theory of defects in ordered media, Rev. Mod. Phys.,
51 (1979), 591-648.

[2] M. KLEMAN, Defects in liquid crystals, Rep. Prog. Phys., 52 (1989), 555-654.

[3] P. BiSCARI - G. GUIDONE-PEROLL, A hierarchy of defects in biaxial nematics,
Commun. Math. Phys., 186 (1997), 381-392.

[4] G. GUIDONE-PEROLI - E. G. VIRGA, Annihilation of point defects in nematic liquid
crystals, Phys. Rev. E, 54 (1996), 5235-5241.

[6] P. BiscArl - G. GUIDONE-PEROLI - E. G. VIRGA, A statistical study for evolving
arrays of nematic point defects, Liquid Crystals, 26 (1999), 1825-1832.

[6] G. GUIDONE-PEROLI - E. G. VIRGA, Nucleation of topological dipoles in nematic
liquid crystals, Commun. Math. Phys., 200 (1999), 195-210.

[7] G. RyskiN - M. KREMENETSKY, Drag force on a line defect moving through an
otherwise undisturbed field: Disclination line in a nematic liquid crystal, Phys.
Rev. Lett., 67 (1991), 1574-1577.



ASYMPTOTIC DIRECTOR FIELDS OF MOVING DEFECTS IN NEMATIC LIQUID CRYSTALS 91

[8] E. I. Kats - V. V. LEBEDEV - S. V. MALININ, Disclination motion in liquid
crystalline films, J. Exp. Theor. Phys., 95 (2002), 714-727.
[9] P. Biscari - T. J. SLUCKIN, Field-induced motion of nematic disclinations SIAM J.
Appl. Math., 65 (2005), 2141-2157.
[10] D. SVENSEK - S. ZUMER, Hydrodynamics of pair-annihilating disclination lines in
nematic liquid crystals, Phys. Rev. E, 66 (2002), 021712.
[11] C. BLANC - D. SVENSEK - S. ZUMER - M. NoBILIL, Dynamics of nematic liquid crystal
disclinations: The role of the backflow, Phys. Rev. Lett., 95 (2005), 097802.
[12] P. Biscarl - T. J. SLUCKIN, A perturbative approach to the backflow dynamics of
nematic defects, Euro. J. Appl. Math. 23 (2012), 181-200.
[13] P. BiscarI - G. GUIDONE-PEROLI - T. J. SLUCKIN, The topological microstructure of
defects in mematic liquid crystals, Mol. Cryst. Liq. Cryst., 292 (1997), 91-101.
[14] C. BENDER - S. ORrszAG, Advanced Mathematical Methods for Scientists and
Engineers, Springer-Verlag, New York (1999).
[15] H. Brezis - J. M. CoroN - E. LiEB, Harmonic maps with defects, Comm. Math.
Phys., 107 (1986), 649-705.
[16] M. ABRAMOWITZ - I. STEGUN, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Dover Publications (1965).

Paolo Biscari: Dipartimento di Matematica, Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milan, Italy
E-mail: paolo.biscari@polimi.it

Stefano Turzi: Universita degli Studi e-Campus
Via Isimbardi 10, 22060 Novedrate (CO), Italy.
E-mail: stefano.turzi@polimi.it

Received May 11, 2011 and in revised form June 16, 2011






