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Lipschitz Contractions, Unique Ergodicity and Asymptotics
of Markov Semigroups

FRANCESCO ALTOMARE - I0AN RASA

to the memory of Professor Giovanni Prodi

Abstract. — We are mainly concerned with the asymptotic behaviour of both discrete and
continuous semigroups of Markov operators acting on the space C(X) of all con-
tinuous functions on a compact metric space X. We establish a simple criterion under
which such semigroups admit a unique mvariant probability measure i on X that
determines their limit behaviour on C(X) and on LP(X, ).

The criterion 1mvolves the behaviour of the semigroups on Lipschitz continuous
Sfunctions and on the relevant Lipschitz seminorms.

Finally, we discuss some applications concerning the Kantorovich operators on
the hypercube and the Bernstein-Durrmeyer operators with Jacobi weights on [0, 1].
As a consequence we determine the limit of the iterates of these operators as well as of
their corresponding Markov semigroups whose generators fall in the class of
Fleming-Viot differential operators arising in population genetics.

Introduction

One of the most interesting aspects of the theory of strongly continuous
semigroups of operators concerns their asymptotic behaviour that, among other
things, gives useful information about the behaviour for large time of the solu-
tions to the Cauchy problems governed by them (see, e.g., [12], [17] and the
references therein).

A similar significance can be attributed to the study of the iterates of a single
linear operator because of its connections with ergodic theory and, in particular,
with ergodic theorems (see, e.g., [14]).

More recently, a renewed interest also arose from the study of iterates of
positive linear operators in approximation theory and related fields (see, e.g., [3,
Chapter 6], [5], [13], [18], [19]).

In this paper we develop some results related to these topies for both discrete
and continuous semigroups of Markov operators acting on the space C(X) of all
continuous functions on a compact metric space X. More precisely, we establish a
simple criterion under which such semigroups admit a unique invariant prob-
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ability measure x4 on X that determines their limit behaviour on C(X) and on
LP(X, 1). The criterion is based on the behaviour of the semigroups on Lipschitz
continuous functions and on the relevant Lipschitz seminorms. Furthermore,
some estimates of the rate of convergence in the limit relationships are also
given.

Finally, we discuss some applications concerning the Kantorovich opera-
tors on the hypercube and the Bernstein-Durrmeyer operators with Jacobi
weights on [0,1]. As a consequence we determine the limit of the iterates of
these operators as well as of their corresponding Markov semigroups whose
generators fall in the class of Fleming-Viot differential operators arising in
population genetics.

1. — Preliminaries and notation

Let (X,d) be a compact metric space. We shall denote by C(X) the linear
space of all real-valued continuous functions on X endowed with the supremum
norm

(L1) 1flle == sup lf@)]  (f € CX))

and the pointwise ordering, with respect to which it is a Banach lattice.

Let Bx be the o-algebra of all Borel subsets of X and denote by M (X) the
subset of all probability Borel measures on X.

IfueM 1+(X )and p € [1,+oc[, then LP(X, 1) stands for the linear space of all
(the equivalence classes of) Borel-measurable real-valued functions on X that are
p-fold p-integrable.

The space LP(X, u), endowed with the natural norm

(12) 171, = ([ 1FPa’?  (f € LX)
X

and the ordering
(1.3) f<gif fx) <g(x)for yu —ae. xeX

(f,9 € LP(X, ), is a Banach lattice and C(X) is dense in it.

As usual, we shall denote by 1 the constant function with constant value 1. If
¢ : C(X) — R is a positive linear functional such that ¢p(1) = 1, then by the Riesz
representation theorem (see, e.g., [7, Section 29]), there exists a unique
u € M{(X) such that

(1.4) o(f) = f fdu for every f e C(X).
X
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A Markov operator on C(X) is a positive linear operator T : C(X) — C(X) such
that T(1) = 1. Such an operator is then continuous and ||7|| = 1. Moreover, by
the Riesz representation theorem, there exists a family (¢, ),cx in M f(X ) such
that

(1.5) T(f) @) = f flg, (f € CX),x e X).
X

Therefore, for every p € [1,+ o[, from the Holder inequality it turns out that
(16) TO@P < [ IfPdy, = TAFP))
X

(f e CX),x € X).
Every Markov operator T on C(X) admits at least one invariant probability
measure, i.e., a measure u € M 1* (X) such that

(1.7) f T(f)dyu = f fdu for every f e CX)
X X

(see, e.g., [14, Section 5.1, p. 178]). On account of (1.6) we get that for every
feCX)andp €1, +oc,

Jirnrd < [ 110 = [ 17 dr
X X X

and hence T extends to a unique bounded linear operator T, :LP(X,u) —
LP(X, p) such that || T, || < 1. Furthermore, T), is positive as C(X) is a sublattice of
LP(X, ) and, if 1 < p<q< + oo, then T}, = Ty on LI(X, p).

From now on, for a given p € [1, +ocl, if no confusion can arise, we shall
denote by T the operator 7).

In the sequel, given u € Mf(X), we shall denote by A(u) the subset of all
Markov operators T on C(X) for which x is an invariant measure.

Below we list some simple properties of this subset, that can be easily
verified.

PROPOSITION 1.1. — For u € M (X) the following properties hold:

Q) IfS,T € A(w), then So T € A(w) and STT — g oT on LP(X, 1) for every
p € [1,4ocl.
@) If (T, is anet in A(w) and if there exists T(f): = hl}n T,(f) uniformly on
~ . tel=
X for every f € CX), then T € A(w) and T(f) = lim T;(f) in LP(X, 1) whenever
felPX,wand 1 <p< + oo iels
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2. — Asymptotic behaviour of semigroups of Markov operators

In order to simultaneously treat both discrete and continuous semigroups of
Markov operators, we shall introduce the symbol A to denote either the interval
[0, + ool or the set N of all positive integers. The subset A will be endowed with
the usual ordering < inherited from R. Without no explicit mention, we shall
refer to this ordering when we shall consider converging nets (v,)>, in some
metric space, whose limit will be denoted by hm X

Consider a compact metric space (X, d) and set

(2.1) 0X) := sup{d(@,y) | v,y € X}
and
|f @) —f@)|
(22) LipX) :={f € CX) | [flpip == U ) oo}

£y

Below we state and prove the main result of the paper.

THEOREM 2.1. — Let (T(7))S

T€A

be a net of Markov operators on C(X) such that

1) (semigroup property): T(c) o T(t) = T(o + 1) for every a,t € A,
(ii) (Lipschitz contraction property) For every t € A, T(t)(LipX) C Lip(X)
and
TS Lip < cCOIf iy (f € LipX))

where ¢ : A—]0, + oo with lim c(z) =0
Then

(1) For every f € C(X) the net (T(r)f)fE A converges uniformly on X to a
constant function.

(2) There exists a unique u € M fr(X ) such that T(t) € A(w) for every t € A,
i.e, [T@)fdu = [fdu for each f € C(X) and T € A. Moreover,

X X

2.3) lim T(0)f = f fdu wniformly om X (f € C(X))
X

as well as

(2.4) lim T(0)f = f fdu in LPX,0) (f € L"X, 0)

for every p € [1, 4 ool.
@B) Forevery f € Lip(X) and 1 € A

(25) IT@f — [ il < 26000111
X
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ProoF. — Because of assumption (ii), given f € Lip(X) and 7 € A, for every
x,y € X we get

@ IT(@)f (@) — T@f )] < (@) dX)|flLs,

and hence

IT@f @1 - T@f] < c@dX)|f|L,-

Therefore, for o € A, by recalling that T'(¢) is a Markov operator and by using
the semigroup property (i), we obtain

IT(@)f (@) — T(o + Of| < c(©)0X)|f |1,
and hence, since x € X was arbitrarily chosen,

) IT(@)f — T(o + 0)f| < @)X f]Lip-

The above estimate together with the assumption on the function ¢ show that the
family (T'(¢0)f )fex is a Cauchy net in C(X) with respect to the uniform norm and
hence it is convergent.

Therefore, we may consider the mapping T : Lip(X) — C(X) defined by

T(f) = Iim T@f (f € Lip(X),

that is linear, positive and 7(1) = 1.

From (1) it follows that, for every f € Lip(X) and x,y € X, T(f)(x) = T(/)(y)
so that T'(f) is constant. In other words, there exists a positive linear functional
v : Lip(X) — R such that

T(f) =w(f)1 for every f € Lip(X).

The functional y extends to a positive linear functional ¢ : C(X) — R such that

»(1) = w(1) =1 and hence, by the Riesz representation theorem there exists

w € M{(X) such that o(f) = [fdu (f € C(X)). Consequently lim T'(z)f = [ fdu
X T—00 X

uniformly on X, provided f € Lip(X). Since Lip(X) is dense in C(X), the same
limit relationship extends to C(X) as well which shows (2.3) and, hence, (2.4) (see
Proposition 1.1, part (2)).
Notice that T'(r) € A(w) for every t € A because, given f € C(X),
[ r@fdn = tim T@)(T@f) = lim T +0f = [ fape
X X

Moreover, if v € Mf(X) and if T'(r) € A(v) for each 7 € A, then, from (2.3) we

obtain
f fdv = lim f T()fdv = f fdu
X X X

for every f € C(X) and hence v = p.
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Finally (2.5) follows from (2) letting o to tend to oco. O

REMARK 2.2. — 1. Note that, under the assumptions of Theorem 2.1, from (2.5)
it follows that for every » > 0

2.6) lim T(@)f = f fdu
X

uniformly on X and uniformly with respect to f* € Lip(X), |f].;, <7
2. Consider the K—functionals ([11, p. 171])

K(f.0)= inf {17 =gl +019 1 |

(f e CX),0 > 0) and
k(.0 = inf {If =g+l 9 1)

geLipX)

(f e LP(X, 1), 1 <p< + 00,0 >0).
Then, from (2.5) it follows that, for every r € A

| T@F ~ [ fap | < 2K(f,e@00)  (f € CX)
X
and

| 7@ — [ fdge < 2K(f,e@3X)  (f € X, ,1 < p< + 00)
X

Finally, we point out that, if X is a compact interval of R or the unit circle 1" of
RZ, then

K(f.0) = L .20) < af.20),

where w(f, -) denotes the usual modulus of continuity of f and @(f, -) denotes the
least concave majorant ([11, Chapter 6, Theorem 2.1 and Chapter 2, Lemma 2.1]).

Below we discuss some consequences of Theorem 2.1. Consider a Markov
operator 7' : C(X) — C(X) such that

2.7 T(LpX)) C LipX)
and assume that there exists ¢ € ]0, 1[ such that
(2.8) |T(f)|Lip < C|f‘Lip
for every f € Lip(X).

For every m € N, denote by 7™ the iterate of T of order m. Clearly
T™(Lip(X)) C Lip(X) and

(2.9) IT" Dlrip < Il (f € LipX)).
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Therefore, Theorem 2.1 applies to A = N, T(m) = T™ and c(m) = ¢™ (m € N)
and we get

COROLLARY 2.3. — Under assumptions (2.7) and (2.8), there exists a unique
i€ M{(X) such that T € Aw), i.e., [ T(f)du = [fdu for every f € C(X). More-
over, X X

(2.10) lim 7"(f) = f fdy  uniformly on X
X

for every f € C(X), and, if p € [1,+o00[ and f € LP(X, ), then

(2.11) Tim 7(f) = f fdu in LPX, ).
X

Moreover, if f € Lip(X) and m > 1, then
(2.12) T = [ fu] < 265001 f
b

so that the limit (2.10) is uniform with respect to f € Lip(X), | f] Lip <7 (r>0)

REMARK 2.4. — 1. Markov operators admitting only one invariant probability
measure are called uniquely ergodic ([14, Section 5.1, p. 178]). Under assumptions
(2.7) and (2.8), clearly from (2.11) it turns out that for every f € LP(X, u) the se-

n—1

1 ~
quence <% Z T (f )> of the Cesaro means converges to [ fdu in LP(X, ). On
k=0 n>1 X

the other ha;ld, by Akcoglu’s ergodic theorem ([14, Theorem 2.6, p. 190]), the
sequence is p-a.e. convergent and hence

n—1
(2.13) lim © ST = f fdu - ae.
n—oo N —0 4

2. Estimates of the rate of convergence in (2.10) and (2.11) can be directly ob-
tained from Remark 2.2, 2. We omit to explicitly state them for the sake of brevity.

The problem of checking condition (ii) of Theorem 2.1 for a continuous family
(T(®))>0 of Markov operators on C(X) seems to be a more delicate task, especially
when one does not know an explicit description of the operators 7'(t) as it gen-
erally happens when dealing with the Cy-semigroup generated by some linear
operator A : D(A) c C(X) — C(X).

Below we discuss a simple situation where both Theorem 2.1 and Corollary
2.3 can be successfully applied. This situation often occurs in the theory of ap-
proximation by positive linear operators (see also Section 3).



8 FRANCESCO ALTOMARE - IOAN RASA

COROLLARY 2.5. — Consider a semigroup (T()o0 of Markov operators on
CX) and assume that there exists a sequence (L,),>1 of Markov operators on
C(X) such that for every t >0 there exists a sequence (k(n)),>1 of positive
integers such that k(n)/n — t and

(2.14) T@®)f = lim LF(f)  uniformly on X

Sfor every f € C(X).
Furthermore, assume that

(i) There exists w € R, w<0, such that for every n > 1, L, (Lip(X)) C Lip(X)
and |Ly(Plyiy < (142 )|, for every f € Lip(X)

(i) There exists u € M{(X) such that L, € A(w) for every n > 1.

Then

1) Forevery n >1and f € C(X)

(2.15) Tim () = f fdu wniformly on X,
X

2) For every t>0, T (LipX) C LipX) and |TO)f,;, < exp(@b)|fl,
(f € Lip(X)). Moreover, T(t) € A(u) and

(2.16) i T(O)f = f fdu wniformly on X
X

for every f € C(X).
@) If1<p<+oo,n>1andf e LP(X,p), then

(2.17) Tim L) = [ fiu = lim T)f in L',
X

ProoF. — Each operator L, satisfies conditions (2.7) and (2.8) so that, by
Corollary 2.3, there exists a unique v, € M{ (X) such that L,, € A(v,). Therefore
v, = u and hence (2.15) follows from (2.10).

From (2.14) it turns out that, given ¢t > 0, T(t)(Lip(X)) C Lip(X) and

I TOf i < exp(@b)|flip

k()
because nlim (1 + %) Yo exp (wt). Therefore, Theorem 2.1 applies and hence

there exists a unique v € Ml+ (X) such that T(t) € A(v) for every ¢t > 0. On the
other hand 7'(t) € A(u) for every ¢t > 0 as pointed out in Proposition 1.1, part (2),
and hence v = . Accordingly, (2.3) implies (2.16) as well as (2.17) follows from
(2.11) and (2.4), respectively.
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REMARK 2.6. — Notice that, according to (2.5) and (2.12), if f € Lip(X), then

m w "
2.18) L) — !fdﬂISZ(l +2) 0| f s
and
(219) T ~ [ fiu] < 2exp @)X 114,
X

(m>1,m >1,t>0). Other estimates for arbitrary functions in C(X) or in
LP(X, ) can be obtained by applying Remark 2.2, 2.

3. — Some applications

In this section we illustrate some applications that are mainly concerned with
sequences of Markov operators occurring in approximation theory and with their
associated Markov semigroups.

3.1 — Kantorovich operators on the hypercube and the associated Fleming-Viot
differential operator

Given N > 1, consider the hypercube of RY
[0,11V := {(@)1<icy € RY |0 < ; < 1for everyi=1,..., N}

endowed with the metric induced by the l;-norm || - ||; defined by

N
el == il @ = @rcien € RY),

i=1
We shall denote by Ay the usual Borel-Lebesgue measure on [0, 17V and the
corresponding space LP([0, 1y ,An) will be simply denoted by LP([0, 1)
1<p<+ o).

Given n > 1, consider the positive linear operator C,, : L'([0, 1) — (o, 1M

defined by

hy+1 Iy +1
n+1 n+1
31  CuH@= > [(n+1)N f diy ... f f(tl,.-.,tN)dtN]Pn,h(x)
h=(hi)1<i<N Iy Iy
h;€{0....n} 1 n+1

where

S LAY n—h;
(3.2) Py () = I | (h>9€11(1 —x)
g\t
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(f € L0, 1Y), x = (®)1<i<n € [0, 11Y). The operators C,,n > 1, have been
first introduced in [22] and they represent a natural multidimensional extension
of the classical Kantorovich operators on L([0,1]) (see, e.g., [3, pp. 333-335]). A
recent generalization of them can be found in [4] and [5].

Each operator C,, is a Markov operator on C([0, 1) and a positive contrac-
tion on LP([0, l]N), 1 < p < + o (see [4, proof of Theorem 2.5]).

Note that, givenn > 1, h = (hy)1<i<y € {0, ... ,n}N andx = (@)1<i<n € [0, 11V,
then

N 1
f Pn,h(%')d% = H (;;L) f thi(l _ t)n—hidt _ - —:1)N
0

[0,1]N i=1

so that, if £ € L1([0,1]Y),

hy+1 hy+1

f CP@de =3 f dt; . .. f Fltr, .. i)ty = f f@)da.
011" ey U 1"
Therefore,
(3.3) C, € AAy) for every mn > 1.

and, obviously, C,| Loo11) coincides with the extension of Cnlc([o_lllv) as discussed
in Section 1. As we pointed out in [5, formula (2.22)], the operators C,, are closely
related to the Bernstein operators on C([0,11") that are defined by

(34) Buf)@ =3 f(%fw.w%f)Pme>

h=(hp)1<j<n
h; €{0,...n}

(f € C(10,11), 2 € [0, 11V).
Setting, for f € L1([0,11Y) and ® = (x;)1<i<y € [0,11",

nwy+1 nay+1
n+1 Tl
(35) FH@=+0" [ da... [ fr,.. todty
' : t1 + nx Ny + nx
_ 1 1 N N
_Ofdtl...off( A )dtN,
then
(36) Cn(f)(m) = Bn(Fn(f))(x)-

. . n
If feLip(0,11V), then F,(f) € Lip(0,11") and EnPlwip < 77 1 luip-
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Therefore, from (3.6) and from [3, Corollary 6.1.22 and Section 6.3.1, p. 476] it
follows that C,,(f) € Lip([0,11") and

n 1
(37) CPluip < o2 W laip < (1= 55 ) laip

Finally, we point out that in [5, Theorems 3.2 and 3.5] it was proved that there
exist a Markov Cy-semigroup (7'());>o on C([0, 11) and a positive contractive Cy-
semigroup (T(t))t>0 on LP([0, 1N ),1 < p< + oo, such that for every f € C([0, 1™
(resp., f € LP([0, 1]N )) and ¢ > 0 and for every sequence (k(n)),>1 of positive in-
tegers satisfying k(n)/n — t,

(3.8) T()f = lim CEO(f)  uniformly on X
and

(3.9) T f = Jlim CEO(f) in LP([0,11V)
respectively.

Moreover, the generators of these Cjy-semigroups are the closures in
C([0,11Y) and in LP([0, 1]"), respectively, of the elliptic second order differential
operator A : C2([0,11V) — €([0,11") defined by

N 82u N1 ou
(3.10) Aux) = ; (1 — pr @) + ; (5= @) g @:

Such a differential operator falls in a class of Fleming-Viot operators arising in
population genetics (see, e.g., [10] and [16] and the references therein).

Summing up, all the assumptions of Corollary 2.5 are satisfied and hence we
obtain the next result.

THEOREM 3.1. — The following statements hold true:

1) Foreveryt >0, T(t) € A(Ay); moreover T(t)(Lip([0, l]N ) C Lip(([0, l]N ) and

1
IT@f i < exp(— ét)|f|Lip
for every f € Lip([0,11)).
@) Iff € C([0,11Y) and n > 1, then
lim €)= [ fade = Tim T
[0,11¥

uniformly on [0, 1"
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@) Iff € LP([0,11V),1 < p< + oo, and n > 1, then

Iim €)= [ flde = Tim T
[0,11"
in LP([0,11V).
@) Iff € Lip([0,11), then

m 1 m
G~ [ f@dal <40 = 5"l
011"
and

t
|T@)f — ff(-?c)d%| <dexp(-— §)|f|Lip

[0,1%
(mn>1,m2>1,t>0)

Other estimates for arbitrary functions in C([0, 1) or in LP([0, 11Y) can be
obtained by applying Remark 2.2, 2.

3.2 — Bernstein-Durrmeyer operators with Jacobi weights and the associated
Fleming-Viot differential operator

Consider the interval [0, 1] endowed with its natural metric. Let o > 0 and
S >0 be given real numbers and let u € Mf ([0,1]) the absolutely continuous
measure having the normalized Jacobi weight

1
(3.11) w,5(@) = *(1 — 2/ f £ - tfdt, (x<0,1]),
0

as density with respect to the Borel-Lebesgue measure on [0, 1].
For each n > 1,k € {0,1,...,n} and f € L*([0,1], u) let

1
[ @ — 2" f@)du)
an,k(f) L= 0 1

[ @k — 2)" Fdute)
0

1
[ k21 — )" *Pf ()dae
0

1
[ akte(1 — )" B e
0

I'n+oa+p+2)

1
= ktor1 o \n—k+p
T+ a+ DI —k+f+1 ) @A ) (@)de

where I" denotes the usual Gamma funection.



LIPSCHITZ CONTRACTIONS, UNIQUE ERGODICITY AND ASYMPTOTICS ETC. 13

Given n > 1, consider the positive linear operator M,, : L'([0, 1], ) — C([0, 1])
defined by

M@ =3 () eyt
k=0

(f € L'0,11,40, @ € [0,1]).

The operators M,,,n > 1 are called the Bernstein-Durrmeyer operators with
Jacobi weights w, z on [0,1] (see [9]). A more general definition of Bernstein-
Durrmeyer operators with Jacobi weights on a simplex of RY is presented in [1],
[2], [8], [21] and the references therein.

Clearly each operator M,, is a Markov operator on C([0, 1]) and

1 1
f M, f(@)du(x) = f f@dulx) (f € C(0,1])
0 0

ie., M, € A(u). Moreover, each M, is a positive linear contraction on
LP([0,1], 10),1 < p< + oo ([9, page 27]) and hence the restriction of M, to
LP([0,1], ) coincides with the extension of M,, restricted to C([0,1]), as dis-
cussed in Section 1.

The next result describes the behaviour of the operators M, with respect to
the functions lying in Lip([0, 1]).

PROPOSITION 3.2. — Given n > 1 and f € Lip([0, 1]), then M,( f) € Lip([0, 1])
and

n

(3.12) My < o T2

Proor. — By using Lagrange’s mean value theorem we find
(313) ‘Mn(f)‘l,w = H(Mn(f))l||oo7 (f € C([Oa 1]))

A straightforward calculation leads to
n—1 _ 1 . )
Bl M@ =13 @ialH) - () (" ; )xf(l gyt
=0

(n >1,f € C(0,1]), = € [0,1]).
Moreover, if f € Lip([0,1]) and j € {0, ...,n — 1}, introducing the function

F(x) =271 — )" 7 (0<2<1),
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we get

an,jJrl(f) - an,j(f)

_ IT'n+o+f+2)
Tt o+ (m—j+B+1)

1
xfnn—j+mﬂ”“a—xwﬂw4=4j+a+nﬂﬂa—xwﬁwymmx
0

1
_ I'n+a+p+2) /
B F(j+0€+2)r(n—j+ﬁ+1)_()I-F(x)f(%')dﬂc

1
_ I'n+o+p+2) j}wmnm
0

TG+ oa+2In—j+p+1)

B I'n+o+f+2)
TG ta+2I(n—j+B+1)

1
[ Fovir@,
0

where both last integrals are Riemann-Stieltjes integrals and, in the last
equality, we applied the partial integration formula.
If we consider the last integral as limit of Riemann-Stieltjes sums, we get

I'(G+o+2)In—j+p+1)

1 1
[ F@af@) < |fly, [ Faxde = |1,
0 0

I'n+ao+p+3)
Thus
1
(3.15) |, j1(f) — @y ()] < O \flLip-
Now (3.12) is a consequence of (3.13), (3.14) and (3.15). O

In order to apply Corollary 2.5, we proceed to show the inequality

(3.16) M)y < A+ DI e F € Lip(0, 1),
where

L at+p+2
(3.17) W= JIFI§<O

In fact, (3.16) can be immediately derived from (3.12), by using the elementary
inequality

1 ¢
—<1—-=— >1 .
n+t— nt+1’(n_ 6>0)
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On the other hand, consider the differential operator
Au(x) == (1 — )" @) + («+ 1 — (a4 f + 2)x)u'(x)

(u € C?([0,1]), « € [0,1]), that is a one-dimensional Fleming-Viot differential
operator as well.

On account of [6, Section 2] there exists a Markov semigroup (7'(f));>o on
C([0,1]) generated by the closure of A; moreover, C%([0,1]) is a core of this
generator. In fact, the closure of A and its domain are explicitly described in [6,
Theorem 2.1]. It is also known that for all » € C%([0, 1]),

lim nw(M,(u) — u) = Au, uniformly on [0, 1].

Nn—0o0

(See [15], [20, Section 25.2]).
Now, according to Trotter’s theorem (see, e.g., [3, Theorem 1.6.7]),

T@A)(f) = lim M (f) uniformly on [0, 1],
foreveryt > 0,f € C([0, 1]), and for every sequence (k(n)),>1 of positive integers
such that k(n)/n — t.
Summing up, all the assumptions of Corollary 2.5 are satisfied, with x defined

by the density (3.11) and w given by (3.17). Taking Remark 2.6 into account, we
are in a position to state our last result.

THEOREM 3.3. — The following statements hold true:
1) Foreveryt >0, T(t) € A(w); moreover T(t)(Lip([0,1])) C Lip([0,1]) and

7)1y < exp@b)|fl, (f € Lip([0,11).
@) Iff € C([0,1]) and n > 1, then

1
Tim M) = Of @@ = Tim_ T

uniformly on [0,1].

@) Iff € LP(0,1], ), 1 < p<oo, and n > 1, then
1
Tim M) = Of f@du@) = im TO(f)

wn LP([0,1], ).
@ Iff € Lip((0,11), then

1
m @ ym
M)~ Of F@du@) < 201 +2)" 11y,
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and
1

1O - [ F@du@] <2 exp@h] [y,

0

m>1,m>1,t>0).

REMARK 3.4. — 1) Other estimates for arbitrary functions in C([0,1]) or in
LP([0, 1], 1) can be obtained by applying Remark 2.2, 2.

2) On account of Proposition 1.1, it is easy to verify that the family (i’(t))tzo
associated with the Markov semigroup (7'());>¢ considered in Theorem 3.3 is
itself a Cy-semigroup of positive contractions on LP([0,1],1),1 < p< + oo.
Moreover, its generator is an extension of the generator of (7'(¢));>( and C2([0,1])
is a core for it. In [16, Theorem 2.4] the domain of the generator is determined.
Finally, for every t > 0 and f € LP([0,1], )

T(t)f = lim M™(f) in LP([0, 1], w),

where (k(n)),>; is an arbitrary sequence of positive integers such that
k(n)/n —t.

3) The above results can be extended to Bernstein-Durrmeyer operators with
Jacobi weights on a simplex of RY. Details will be given in a forthcoming paper.
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