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The 3-Dimensional Oscillon Equation

FRANCESCO D1 PLINIO - GREGORY S. DUANE - ROGER TEMAM

Dedicated to the memory of Giovanni Prodi

Abstract. — On a bounded smooth domain Q C R we consider the generalized oscillon
equation

Opulx, t) + w@®)omulr, t) — u(t)dulx, t) + V'(ulx, 1)) = 0, x € QC ]R3, te R,

with Dirichlet boundary conditions, where w is a time-dependent damping, u is a
time-dependent squared speed of propagation, and V is a nonlinear potential of
critical growth.

Under structural assumptions on w and u we establish the existence of a pullback
global attractor A = A(t) in the sense of [1]. Under additional assumptions on i,
which include the relevant physical cases, we obtain optimal regularity of the pull-
back global attractor and finite-dimensionality of the kernel sections.

1. — Introduction

Let @ C R? be a bounded domain with smooth boundary. We consider the
generalized oscillon equation

(1.1)  Opulx,t) + w@®om(x, t) — u@®)dule,t) + V'ulx,t)) =0, x€QcC R?’, teR,

with Dirichlet boundary conditions, where w is a time-dependent damping, 1 is a
time-dependent squared speed of propagation, and V is a nonlinear potential.
This equation, as well as its simpler version in dimension one studied in [1], has
been proposed to describe some long-lived structures (termed oscillons) which
appear in the formation of the universe; see e.g. [4, 5], for more details on the
physical context, as well as [1]. Further studies on the oscillon equation and on
the physical background can be found in [11], and [7, 8], which are part of a series
of articles on the subject.

The concept of pullback attractor has been shown to capture an enlarged
notion of dissipativity that is applicable to Hamiltonian systems in which phase-
space volume is conserved. In previous work [1], it was suggested that the long-
lived coherent structures, oscillons, in the dynamical system corresponding to
the evolution of a scalar field in an expanding universe might naturally be de-
scribed in terms of a non-trivial pullback attractor. Here we show that the



20 FRANCESCO DI PLINIO - GREGORY S. DUANE - ROGER TEMAM

construct is structurally stable: the existence of a pullback attractor is estab-
lished for a large class of expansion scenarios. A pullback attractor is also shown
to exist in three-dimensional models, consistently with work on the occurrence of
oscillons in three-dimensional particle physics models [4]. Gauge fields are
probably required for three-dimensional oscillons to be long-lived, but me-
tastable oscillons have been studied in three-dimensional scalar field models [7],
resembling the one used here. The article is organized as follows. After this
introduction, describing the background and motivations, Section 2 summarizes
the time-dependent attractor framework developed in [1]. The results of [1] are
supplemented with a new result (Corollary 2.1) which establishes an important
uniqueness property of the pullback attractor. That is, if the existence Theorem
2.1 applies, then the resulting pullback-bounded attractor is necessarily the
unique pullback-bounded pullback attractor.

Section 3 contains the abstract formulation of the evolution problem asso-
ciated with (1.1) in the setting of time-dependent spaces, as well as the as-
sumptions on the time-dependent damping term « and squared speed of pro-
pagation . Regarding the nonlinear potential V, we require it to be of dissipative
nature, and to have polynomial growth ¢ at most 4; the growth rate ¢ =4 is
critical for the well posedness of the problem (as well as for an autonomous
damped wave equation in space dimension three) in the weak sense. In the
physical model from relativistic mechanics, u is usually taken to be a decreasing
function on R, unbounded for t — —oco and vanishing at +oo; however, we are
able to deal with a more general class of time-dependent u’s, not necessarily
decreasing, which are of interest for other physical models (for instance, wave
propagation in media with time-dependent shape). Namely, we merely require
that for each time ¢, the growth of 1 on ( — oo, t] is at most exponential, with rate
comparable to the damping coefficient w(t). Under our assumptions, the damping
term w(t) is allowed to (possibly) vanish at +oo; this ensures that the physical
model of the reheating phase of inflation (see [5]) falls into the scope of our
analysis.

In Section 4, we list, comment and motivate the main results of the paper. In
Theorem 4.2, we show that the evolution problem associated with (1.1) generates
a strongly continuous process z — S(t, s)z, depending continuously on the initial
data z, and that the process S(t, s) is of dissipative nature, i.e. possesses a pull-
back-bounded absorber. With Theorem 4.2, we establish the existence of a
pullback attractor A = { A(f) : t € R} for the process S(t, s). Regularity proper-
ties of the pullback attractor, namely, boundedness of the kernel sections A(f) in
a more regular space, are addressed in Theorem 4.3. In order to obtain the
regularity result, we exploit an additional integrability property of the time-
derivatives of the solution; for this property to hold in our time-dependent set-
ting, a further local LP-integrability condition on 4/, condition (4.4), is needed.
However, the scope of condition (4.4) includes a wide range of qualitative be-
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haviors for u: for example, (4.4) holds whenever u is a decreasing function, or
more generally, has finitely many critical points; oscillatory behavior for arbi-
trarily large negative times is also allowed, under additional assumptions (see
Remark 4.3 for details). Finally, we show in Theorem 4.4 that the kernel sections
A(t) have finite fractal dimension.

Sections 5 to 8 contain the proofs of the main results.

This article is dedicated with much consideration to the memory of Giovanni
Prodi, who did so much for the theory of partial differential equations, and
especially for the Navier-Stokes equations. In particular, we mention the articles
[6, 12, 14] quoted so many times by the third author (RT).

2. — Attractors in Time-Dependent Spaces

As anticipated in the Introduction, in this section we summarize the defini-
tions and main results concerning attractors in time-dependent spaces. For the
interested reader, complete proofs of the theorems and corollaries listed below,
as well as comparison with the preexisting literature and appropriate references,
can be found in [1], where the framework of time-dependent spaces has been
introduced for the first time.

Process.

Fort € R, let X; be a family of Banach spaces endowed with norms || - ||, (see
(3.8) for an example). A (continuous) process is a two-parameter family of map-
pings {S(,s) : Xs — Xi},, with properties

@ S,t) =1dy,;
(i) S(,s) € C(X,, Xyp);
(iii) S(z,t)S(,s) = S(z,s) for s <t <.

Pullback-bounded family.

A family of subsets B = {B(t) C X;},cx is pullback-bounded if *
R@®) = sup [|Bs)|y, <o  VI€R,

s€(—o0,t]

i.e. the function s — || B(s)|| x, is bounded on s € (— oo, t] for each ¢ € R.

(") Here, for D subset of a Banach space X, ||D||x = sup ||2||x-
zeD
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Pullback absorber.

A pullback-bounded family A = {A(?)} is called pullback absorber if for every
pullback-bounded family 55 and for every ¢t € R there exists ¢y = t(t) <t such
that

S, s)B(s) C A(?), Vs < to.

Time-dependent w-limit.

Given a family of sets B, its time-dependent -limit is the family
wp = {wp(t) C Xi},cp, where wp(t) is defined as

wp(t) = () St 98B),

1<t s<t

and the above closures are taken in X;. A more concrete characterization is the
following:

wpl) ={z € Xt : Is, — —00,2, € B(sy,) with ||SE, i)z, — ZHX, — 0 asn — oo}.

Time-dependent global attractor.

A family of compact subsets A = {A®) C X;},. is called time-dependent
global attractor for the process {S(t, )}, if it fulfills the following properties:

(i) (invariance) S(t, s).A(s) = A(t), for every s < t;
(i) (pullback attraction) for every pullback-bounded family B and every
teR,?

Sli{n disty, (S(, $)B(s), A(®)) = 0.

If property (ii) holds uniformly with respect to ¢t € R, A is called a uniform time-
dependent global attractor.

REMARK 2.1. — In general, conditions (i)-(ii) are not sufficient to guarantee the
uniqueness of the time-dependent attractor. For example, consider the simple
ODE, ¥ +y =0, and denote by S(.-) the process it generates on R,

(3 For a Banach space X and A, B C X, the Hausdorff semidistance is defined as

distx(4,B) = supinf ||y — x|
weA YeB

From the definition, distx(4, B) = 0 if and only if A is contained in the closure of B.
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ie. S(t,s)x = xe . The process S(-,-) has infinitely many time-dependent
attractors in the sense of the definition above; they are given by
A. = {At) = ce '}, ¢ € R. However, only Ay is also a pullback-bounded family.
Indeed, if we require in addition
(iii) A is a pullback-bounded family,
then there exists at most one family satisfying (i)-(iii), i.e. & pullback-bounded
time-dependent global attractor is unique in the class of pullback-bounded
famalies.

REMARK 2.2. — Note that the definition does not require the time-dependent
attractor {A®t)},. to be pullback-bounded. However, the time-dependent at-
tractor we are going to construct (see Theorem 2.1 and Corollary 2.1) will indeed
be pullback-bounded, and thus unique in the sense of Remark 2.1.

Existence of the global attractor

The shorthand o; stands for the Kuratowski measure? in the space X;. We
remark that, for fixed s,t € R, o5 and o; are equivalent measures of non-
compactness whenever there is a Banach space isomorphism between X and X;.

THEOREM 2.1. — Assume that the process S(-,-) possesses an absorber A for
which

(2.1) sli{n o (S(t, s)A(s)) = 0, vt € R.
Then, wa 1s a global attractor for S(-,-).

We follow up the theorem with some important corollaries. In the first, we
show that the construction of Theorem 2.1 always yields the unique pullback-
bounded global attractor.

COROLLARY 2.1. — Under the assumptions of Theorem 2.1,

A@®) = wat) C A®), vVt € R;

In particular, Ais a pullback-bounded family, and therefore unique in the sense
of Remark 2.1.

() If X is a Banach space, the Kuratowski measure of noncompactness of a subset
A C X is defined by

a(A) = inf{d > 0: A is covered by finitely many X-balls of radius J}.
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ProoF. — Lett € R, z € A(t) be fixed. By definition of an w-limit family, there
exist s, — —o0,2, € A(sy) such that ||z — S(t, Sn)anX, — 0asn — oco. But Ais a
pullback-bounded family, and therefore absorbs itself: S(¢, s)A(s) C A(t) for ev-
ery s > s,(t). Hence S(t, s,,)z,, € A(t) for n large enough, so that z € A(¢). This, in
particular, implies that the family {.A(#)} is pullback-bounded and thus absorbed
by A, ie S(t, s))A) C A(t) for some s(t) < t. The stronger inclusion A(t) C A(t)
then follows again by the invariance of A. O

The second corollary is a concrete reformulation of Theorem 2.1, proven
in [1], and completed with the uniqueness result of Corollary 2.1.

COROLLARY 2.2. — If the process S(-,-) with absorber A possesses a decom-
position
S, )A(s) = B(E, s) + N, s)
where

lim [|R¢ 9|y =0, VteR,
S§——00

and (t, s) is a compact subset of Xz for all t € R and s < t, then A(t) = wa(t) is
the unique (in the sense of Remark 2.1) global attractor for the process S(-,-) .

Finally, we dwell on further regularity properties of the pullback global at-
tractor.

COROLLARY 2.3. — Let Y; be a further family of Banach spaces satisfying, for
every t € R,*

o YV;CXy;
e closed balls of Y; are closed® in X; .

Under the same assumptions as in Corollary 2.2, if in addition

sup [ING@,s)ly, = k() <oo Vi e R,
]

se(—o0,t
then the global attractor satisfies

JA®|ly, < k(@) VE€R.

(*) With Y c X we indicate compact injection of the Banach space Y into the Banach
space X.
(®) For example, this holds when Y; is reflexive and compactly embedded into X;.
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3. — The 3D oscillon equation with a general potential

In this section, we state the main assumptions and then cast the evolution
problem associated with (1.1) in the abstract framework of processes in time-
dependent spaces as described in Section 2.

Notation

Let Q be a smooth bounded domain in R?. In the following, |- | and (-, ) de-
note respectively the standard norm and scalar product on L?(Q); A denotes —4
on Q with Dirichlet boundary conditions, with domain dom(A) = H%(Q) N Hi(Q).
For ¢ € R, we define the scale of Hilbert spaces H' = dom(A!/?), endowed with
the standard inner product and norm

(u,0), = (APu, APv), Jul, = |A"Pu).

The symbols ¢ and Q will stand respectively for a generic positive constant and a
generic positive increasing continuous function; both may be different in different
occurrences. When an index is added, (e.g. co, Qp), the positive constant (re-
sp. function) is meant to be specific and will be referred to subsequently. Similarly,
the symbols A, 4, will denote certain energy-like functionals occurring in the proofs.

3.1 — Definition of the problem and assumptions on the nonlinearity

We study the oscillon equation in space dimension n =3 with Dirichlet
boundary conditions

®) Opu(t) + w(®)Ou(t) + uAu) + pu)) = 0, t>s,
u(s) =ug € H', du(s) = vy € H.

We consider a (nonlinear) potential V € CS(]R), such that V(0) =0, and ¢ =V’
satisfies the following assumptions:
(HO) (0) = 0;
(H1) there exist ag,as > 0, ai,ag > 0, g € [2,4] such that
aoly|”? — a1 < ¢'(y) < azly|*? + as.

When q = 2 (sublinear case), we assume ay > a;.
The case q = 4 is critical for well-posedness of (P) (as well as for an auton-
omous damped wave equation in space dimension three) in the weak sense.’

(%) By this, we mean that for nonlinearities V growing faster than a polynomial of
order 4 the uniqueness of weak solutions to (P), i.e.

we C([s, T), Hy(Q)), o € L*([s, T1,LA(Q)), Opu € L*([s,T),H '(Q)), VT >s,

is not guaranteed.
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Since V(0) = ¢(0) = 0, two consecutive integrations of (H1) yield

2

(3.1) plvl’ - 12 <V <

q 3
q(q (q pll+

Moreover, integrating by parts and using (H0)-(H1), we have
(3.2) yoly) > V) + 2 |y|q 1y2 > V(y) - o,

for some ¢y > 0 depending only on ay,@1,q. In particular, we can take cp =0
whenever a; = 0. We set also

V() = f Vu() d.
Q

In view of (3.1), V(u) is well defined for every u € L%(0,1), and
(3:3) bo([lull, + |uf*) — b1 < V() < ba(||ullf, + |uf?),

with by, b2 > 0 and b; > 0 depending only on the a, (: =0,...,3) and ¢; in par-
ticular, b; = 0 whenever a; = 0.

REMARK 3.1. — We point out that the potential corresponding to p(y) = 43 — v,
(i.e. the well-known ¢ extension of Klein-Gordon theory) falls into the scope of our
assumptions (H0)-(H1), and of assumption (H2), which will be stated below in
Section 4.

3.2 — Assumptions on the time-dependent terms

We now specify the hypotheses we make on w and u. See Remark 3.4 below
for the specific form of w(t) and u(f) in the case of an expanding universe.

Assumptions on w

The damping coefficient @ : R — R™ is assumed to be a decreasing strictly
positive differentiable function, with w(t) bounded as t — —oo (and thus on all of

R), and we set
W :=sup o) < cc.
teR

Observe that the degeneracy tlir+n o(t) = 0 is allowed. We associate with w the

decay rate ¢, : R — R, defined as the function

1 C1
(3.4) e,(t) = 6m1n{1 a(t), a +W)}’

where ¢; > 0 is a positive constant depending only on V as specified later.
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Assumptions on u

The main structural assumption on u is as follows: u(t) > 0 for all ¢ € R, and
there exists a function o : R — [0, c0), such that
(M1) W (@) < 20@)u@), with supals) < &,(), vt € R.

s<t

See Remarks 3.2, 3.3, 3.4 and 3.5 below for examples.

REMARK 3.2. — Any positive decreasing function u satisfies (M1) with o = 0,
independently of how the positive function w is chosen.

REMARK 3.3. — In the case of constant damping w(®) =w >0, ¢, is in-
dependent of ¢, and with o« = &, assumption (M1) is equivalent to

(3.5) ptz) < plt)e®e = vty € Rty >t

that is, e *!u(t) is a decreasing function on IR. The case of constant damping
and not necessarily decreasing u is relevant in the study of the autonomous
damped wave equation in a time-dependent domain, for instance, Q; = [0, a®P.
A rescaling produces the nonautonomous problem (P) on the fized domain

) 1
Q=10,17, with u = =

REMARK 3.4. — We explain how the time-dependency in (P) described by E.
Fahri et al. in [5] for an expanding universe fits into our framework. If a = a(t)
denotes the rate of expansion of the universe, the physical model prescribes

a@) 1d ( 1 )a(t)z _ lﬂl(t)

a) — 2dt \a(t)? C2u)

1
= — t =
O =0 ol

Therefore, to ensure that the damping w is a strictly positive function, we have to
require u to be a decreasing function, which is the same as requiring the rate of
expansion a = a(t) to be a strictly increasing function, in agreement with the idea
of an expanding universe. Hence, (M1) holds true with « = 0.

Moreover, we have to require that w is decreasing, i.e., referring to the above
form of w,

If we set w(t) = log(u(t)), this can be rewritten as @'(t) < @’'(s), for each t > s, i.e.
@ is an increasing function, i.e. @ = log u is a convex function. But this is the
same as saying that a = e ®/2 is logarithmically concave (not necessarily loga-
rithmically strictly concave). Summarizing, the assumptions on the expansion
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rate a(t) that are needed to fit the described physical case into our analysis are

(3.6) d()>0 aeteR  (=4(1)<0 ae teR)
(8.7)  loga is a concave function, (=logu is a convex function)

The article [1] focuses on the most common case, where a'/a = H > 0, so that
a(t) = et and log a(t) = Ht is concave (not strictly concave, but this is enough).
Hence a(?) is increasing and logarithmically concave, and the assumptions are
satisfied. Moreover, in [5] the authors cite as interesting the case of (rapidly)
decreasing w (reheating phase of inflation), which fits the assumptions above as
well (a will be a logarithmically strictly concave function in that case). For in-
stance, the following is an example of a strictly increasing logarithmically con-
cave function which is furthermore logarithmically strictly concave for ¢ > 0:

o t<0 v 2 <0 o {1 t<0
a - - ~> () = X] > (DI =
exp@vE+1) t>0 2RCID > g L t>0.

REMARK 3.5. — Regarding our assumptions on the damping w, which we recall
is required to be positive decreasing and bounded at —oo, two significant ex-
amples are

e constant damping: w() = W > 0;

e damping vanishing at + co: e.g wyan(t) =

1+et’

Observe that if the damping is of the form wyay, a sufficient condition for our
assumption (M1) to hold is

W) < emin{l,e " }u(t), vt € R,

where c is a constant that can be explicitly computed and depends on W and c;.
Indeed, a suitable choice of the function o in this case is given by
a(t) = cmin{1,e~'}, with ¢ > 0 small enough.

3.3 — The functional setting

We rewrite Problem (P) in our abstract framework. For ¢,/ € R, we introduce
the Banach spaces
(88) X{=H""xH' withnorms |0y = u®"uly, + lulg + o,
For simplicity, we set X’ = X{. Likewise, the index ¢ is omitted when ¢ = 0, that
is X; = X} and X = X{.

For some of the proofs below, it will be convenient to use the natural energy of
the problem at time ¢

2
(3.9) Ex;(u,v) = uOluliy, + p el + ul? + ol
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in place of the X{-norm. Indeed, from the elementary relations
B0 <+ 0+ @@+, a0 < a0+ (@ + b0,
we see that
(3.10) Ex@ < el + el el < Ex@) +Exglor
Hence, the energy Ex:( - ) is equivalent to the norm |- 1l X0 in the following sense:

e a family B = {B(t) C X;} is pullback-bounded if and only if
sup sup Eyi(z)<oo vt € R;

s€(—oo,t] zeB(s)

e a sequence {z,} C X; converges to z € X; if and only if EXf(zn — %) con-
verges to zero. '
In accordance with the above notation we write £x, when ¢ = 0.

4. — Main results

This section contains the main results of the article. Unless otherwise spe-
cified, the assumptions of Subsections 3.1, 3.2 and 3.3 are standing. Additional
assumptions will be specified as needed.

4.1 — Well-posedness and dissipativity.

Our first theorem is a well-posedness result in the base spaces X;. This the-
orem will also clarify the role of the decay rate ¢, introduced in (3.4).

THEOREM 4.1. — Problem (P) generates a strongly continuous process
S, s) : Xy — X;, with the following continuous dependence property: for every
pair of initial conditions z' € X (2 = 1,2) with £x,(z") < R and every t > s, we have

'
1
(41) Ex,[SE 92! — S, 5)2%] <exp (Ql(R) ((t—s) +_! @ dr)) Ex, [F — 77

Moreover, there exists Ry = Ra(w,a,) > 0 such that the family
(4.2) A= {A(t) ={rzeX;: &) < R,\}}

1s an absorber for the process S(-, ). The dependence of R » and Q1 on the physical
parameters of the problem is specified in the proof:

The proof of Theorem 4.2 is given in Section 5.
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4.2 — Euxistence of the global attractor

We first obtain the existence and uniqueness of the attractor without any
additional smoothness. Smoothness questions will be addressed in a subsequent
result, imposing further assumptions on .

In the critical case q = 4, we require a slight strengthening of the assump-
tions on the nonlinear term. Following [9], we ask for the existence of a splitting
¢ =¢+w, with ¢,y € C%(R), and, for some 2<y<4,

(H2.2) S > aolyl”, 14" @) < e+ |y));
(H2.b) W' ()| < & + [y )

REMARK 4.1. — For polynomial-type nonlinearities ¢ fulfilling (H0)-(H1), the
existence of a decomposition of the type (H2.a)-(H2.b) is achieved by choosing ¢ to
be the leading term in ¢.

THEOREM 4.2. — In addition to the hypotheses (H0)-(H1) and (M1) of Section
3, assume also, when q = 4, that (H2) holds. Then the family A(t) = wa(t) is the
unique (in the sense of Remark 2.1) global attractor of the process S(-,-) gener-
ated by (P).

REMARK 4.2. — Corollary 2.1 tells us that A(®) C A(t) for every t € R. More
explicitly, there holds the estimate

(4.3) 1S, 9)z[lx, < Q(RA), Vs e R,z € Als), t > s,
which will be of use later.

Theorem 4.2 is proven in Section 6.

4.3 — Regularity properties of the global attractor

In order to derive additional regularity properties of the global attractor A of
Theorem 4.2 we need additional assumptions on the time-dependent squared
speed of propagation x. We assume the following two conditions.

(M2) there exist constants C > 0,6 € [0, 1) such that

2]
N (t
(4.4) J (”ﬂ)(;)( Jdt<C+t—t)), Vb <t
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where ('), stands for the positive part;

1
(M3) the function v = m belongs to L>°( — oo, t), for every t € R, i.e.

(45) V(t) = ||v||Lm(7OO’t)<OO, Vit S R.

THEOREM 4.3. — We supplement the hypotheses of Theorem 4.2 with (M2)-
(M3). Then the global attractor A = A(t) constructed in Theorem 4.2 possesses
the additional regularity

[A@Iy <@ VEER,
where hy is a positive increasing continuous function which depends on the

physical parameters of the problem (in particular on v) and which can be ex-
plicitly computed.

The proof of Theorem 4.3 is presented in Section 7. Here, let us comment and
motivate the additional conditions (M2)-(M3).

REMARK 4.3. — Condition (M2) implies additional integrability for the time-
derivatives of the solution (see Lemma 7.1 below). We describe some relevant
qualitative behaviors falling inside the scope of assumptions (M1)-(M3).

The case of a decreasing p.

If i is a decreasing function on R, conditions (M2), with C' = 0, and (M3) hold
true. This ensures that the expanding universe model of [5], as described in
Remark 3.4, fits into the above assumptions (M1)-(M3), since u is positive de-
creasing by (3.6).

Finately many critical points.

Assume, together with (M1) and (M3), that the set
I,={teR:u@® >0}

(i.e. the set on which u increases) is the union of finitely many intervals (tf- 8,
i=1,...,Z,t  <t!, and possibly tj = —oco. If tj; = — oo, assume further that
there exist 0 > 0 and 4 € [0, 1) such that

(4.6) ptz) < exp (d(tz — t))ulty)
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holds for each Vt; <tz <. Then (4.4) holds, for some positive constant C de-
pending on g, and with 6 = 0 if ¢, > — oo, or with 6 = J appearing in (4.6), if
téz = —o0.

Oscillating behavior as s — — oc.

Assume, together with (M1) and (M3), that the set Z , is the union of infinitely

many intervals (¢, ¢)), ¢/, <t!, and that there exists § > 0,9 € [0, 1) such that
197 i+1 )

(4.6) holds with t; = t/,t, = 7,  Vi=1,2,...

Furthermore, assume that 7 = ¢t/ — t{ satisfy the summability condition

> 1
4.7 — = B<oo.
(4.7) ;Ti

Then (4.4) holds, with C = ¢B'Z, and 0 = #.
We postpone to Remark 7.1 the verifications that these assumptions are

sufficient for (4.4), and hence (M2), to hold.

4.4 — Finite-dimensionality of the global attractor

For a compact subset K of a Banach space X, define the fractal dimension” of
Kin X as

dimyK = lim sup w
e—0t+ log z

where N (K,W) indicates the minimum number of balls of X of radius ¢
covering K.
The final result is that, under the same assumptions as for Theorems 4.2 and

4.3, the sections A(f) of the pullback global attractor A constructed therein have
finite fractal dimension, as stated in the next theorem.

THEOREM 4.4. — Under the assumptions (H0)-(H2) on ¢, and (M1)-(M3) on
1, o, the sections of the pullback global attractor A of Theorems 4.2 and 4.3 have
finite fractal dimension:

dimy, A®) <he(),  VE€R,

(") For more details on the fractal dimension (also known as the Minkowski or box-
counting dimension), we refer the reader to e.g. [13, 15]; see also [16].
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where the positive increasing function he depends only on the physical para-
meters of the problem and can be explicitly computed.

The final Section 8 contains the proof of Theorem 4.4.

5. — Proof of Theorem 4.1

We begin by deriving a suitable a-priori dissipative estimate for the solution,
as stated in the following lemma.

LEMMA 5.1. — Let z € X, and S(i,s)z be the solution of (P) with initial time
s € R and nitial data z. The following a-priori estimate holds:

(5.1) Ex,(St,)2) < Kox,(2)e @) L K vt >,

with Ki = 8¢171(co + by), ¢o, by from (3.2) and (3.3), ¢; defined below. The positive
constants cy, Ky, explicitly defined in the proof below, depend only on the phy-
sical parameters W, a, and q.

ProoF. — Hereafter, (u(t), 0au(t)) denotes the solution to (P) with initial time
s € R and initial condition z = (19, v9) € X, which we assume to be sufficiently
regular.

A multiplication of (P) by d;u entails

d ,
(5.2) 7 [Hluls + 0P + 2] — g tuf + 200l = 0,

while multiplying (P) by « and then using (3.2) yields

4

(63) 3

[w|u|2+z<atu,u>]+2ﬂ|u|§ — o |uf? —2|0uf? = —2(p(w), u) < — 2V) + 2co.

For ¢ > 0 to be determined later, we add (5.2) to 2&-times (5.3). Setting
A= plul? + 10u|? + 2V(w) + 2e(w|ul* + 2(8u, u)),
A, = Qe — iH)uf? + (0 — 68)|0ul* + ( — 260 — 42w)|ul* — 46> (B, u),

we obtain

d 2
B e * T -~ .
(54) dt/l+28/1—|—/1 + o|0wu|” < 4decy

15
Let us now fix ty > s. By restricting ourselves to (say) ¢ < min{z ,50}, we claim
the bound

(5.5) a1 &x, [(u®), Ou@)] — 201 < A@) < e2Ex,[(w(®), du(?))]
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with ¢; = min{qby, 1} /2 and ¢ a positive constant depending (increasingly) on W
and by. Indeed, the left-hand side bound comes from (3.3), and by applying the
Cauchy-Schwarz inequality combined with the restriction on ¢; the right-hand
bound simply follows from (3.3). We now further restrict ¢ in order to control /A,
from below. We claim that, if we choose

1 . c
&= &y(to) = Emm{l, w@ohﬁ},
(as in (3.4)) then
(5.6) A @t) > —eA(t) — 2¢by, vt € [s,tol.
Indeed, a consequence of the lhs bound in (5.5) is that

u®)? < Ex[u), )] < ¢7'[A®) + 2b1];

therefore, using assumption (M1) to control the first term on the rhs, and also
recalling that w is decreasing,
A > Qe — //)|u|§ + (0 — 6 — 452)|8tu\2 +(— 280 — 4821 + cu))|u|2
(with 4/ (t) < 2e)ut) < 2, (to)ult) = 2eu(t), t < to)
> 421 + W)lul* > —421 + W)ey 4 — 2820y ¢;
> —ed — 2¢by,

as claimed. The above turns (5.4) into

(5.7) %A + e < 46(2co + by).

Multiplying the above inequality by e” and integrating between s and t,, we
obtain

(5.8) Alty) < As)e™ 0™ + 4(2¢o + by);
an exploitation of (5.5) then leads to
c1€Ex,[(uto), Opulto))] < Aty) + 201
(5.9) < Als)e™ ™ 1 8(cy + by)
< 2y, (2)e =9 1 8(co + by),

which is (5.1), with Ky =cz/c1, K1 = 8c;1(co + b1). Note that, like b; and co,
K; = 0 when a; = 0 in (H1). This completes the proof of (5.1). O

Having (5.1) at our disposal, global existence of (weak) solutions (u(t), dyu(t))
to Problem (P) is obtained by means of a standard Galerkin scheme. The solu-
tions we obtain in this way satisfy, on any interval (s,t), — co<s<t< + oo,

we L>(s,t; HY) N LI(s,t; LURQ)), O € L>(s,t; H).
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Replacing L on (s, t) with continuity on [s, t] requires some additional work, as
explained in [16, Section 11.4].

Uniqueness of solutions, and therefore generation of the process S(,s) will
then follow once the continuous dependence estimate (4.1) is established.

Proor oF (4.1). — For :=1,2, let 2' = (ug,vp) € X with Ex,(z") <R.
Accordingly, call (u'(t),0u'(t)) the solution corresponding to initial datum z*,
prescribed at time s € R. Preliminarily, we recall that the dissipative estimate
(5.1) can be rewritten as

(5.10) Ex,[(w' @), o' )] < KoR + K; := Q(R), vt > s.
Then, we observe that the difference
() = (W' (®), o' ) — WD), 0P () = (ult), Dyu(d))

fulfills the Cauchy problem on (s, +00)

2

Ot + Wit + pAn + W a|TE + 4 = @ + o) — pu) + w77,
Z2(s) = 2! — 22

Assuming (i, 9;u) sufficiently smooth, we multiply the above equation by 9;# and
obtain the differential inequality

d _ N _ - _
(5.11) &SXt(z) < ,u’|u|§ + 2(it 4 p(u?) — p(ul) + ulu|? Z o).

The first term in the right-hand side is bounded, using (M1), by ommﬁ, observing
that o is bounded by 1. The second term is easily bounded by 2|#%||0:#%|. Regarding
the third, in view of (H1), we exploit Holder’s inequality and (2 < ¢ < 4) usual
Sobolev embeddings and obtain

2(p) — pu"), dyit) < o1+ '} + o[} ) )y |y
Treating |#|* % as done above for ¢/ yields the similar control
20|12, By) < c(l P+ |u2|§) (@il |8y
Recalling (5.10), we bound

(5.12) W OF < u(t) ™ Ex, (' @), o' 1) < () ' Q(R),

and get the estimate

(5.13) %sxt(w)) < ¢(1+ u®) ) QR)EX, G
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We then apply Gronwall’s lemma on (s, t) to obtain
¢
Ex,(z(t)) < exp (QI(R) ((t —s)+ f (@)™ df)) Ex (' — 2P,
S

where Q;(R) = cQ(R), as claimed in (4.1), so that the proof is complete. O

CONCLUSION OF THE PROOF OF THEOREM 4.2. — We are only left to show that
the family A defined in (4.2) is pullback-absorbing for the process S(, s), with a
suitable choice of R, specified below. Let B be a pullback-bounded family and,
for t € R, let

R(t)= sup Exl[B(s)],

se(—o0,t]

which is finite for every ¢, due to the equivalence between the energy £y, and the
X;-norm. Estimate (5.1) then reads

Ex,(S(t,8)2) < Ko&x,(2) e D9 L K < KoR(t) e D=9 L K) <1+ 2K,

for every z € B(s), provided that

(5.14) s<ty=t@):=t— max{o7 (e,(t)) " log K—OR(t)}.

1+ K
Taking the supremum over z € B(s), we obtain
Ex IS, 9)B(s)] <1+ 2K, Vs < 1o,

which, setting R, = 1 + 2Kj, reads exactly S(t, s)B(s) C A(t) whenever s < y(2).
This ensures that A is pullback-absorbing for the process S(Z, s), and concludes
the proof of Theorem 4.1. O

REMARK 5.1. — The radius R, of the absorber A(t) does not depend on ¢;
however, the entering time of a pullback-bounded family B into A(f) depends
explicitly on ¢ (see (5.14)), unless &, in (3.4) is uniformly bounded from below.

6. — Proof of Theorem 4.2

We will entirely devote ourselves to the proof of the (critical) case ¢ = 4. The
proof in the case g<4, where no additional assumptions are needed, can be
handled in a much simpler way along the same lines. We will work throughout
with

z = (ug,v0) € A(s);



THE 3-DIMENSIONAL OSCILLON EQUATION 37

until the end of the section, the generic constants ¢ > 0 appearing below depend
only on R4, whose dependence on the physical parameters of the problem has
been specified earlier. Hence, the estimate (5.1) now reads

(6.1) Ex, (S, 9)%) < KoRA + K := c2, Vs e R,t>s.
We decompose the solution of Problem (P) into
(6.2)  (u(®), ou(®) = S(t,s)z = P.(t,s) + N.(t,s) = (p®), 0p@)) + (n(?), on(?)),

where

Oup + wOsp + 1Ap + 2p + ¢(p) = 0, t>s,
(6.3)
p(s) = ug, Op(s) = vy,
(6 4) Oyn + wom + ,uATL + go(u) - ¢(p) = 2]0, t>s,
’ n(s) = 0, 9n(s) = 0.

LEMMA 6.1. — There exists Ko > 0 such that
(65) gXt(Pz(t, s) < KzR{\e_g‘“(t)(t_s) < K3R Vte R,s <t,

where &, is given by (3.4), with c1 replaced by ¢1 > 0, which is specified below.

Proor. — We peruse the proof of (5.1), Theorem 4.2, replacing ¢ with
o) =2y + (y). Fr0m~(H2.a) we read that (H1) holds with a; = 0, and the cor-
responding potential V(y) satisfies (3.2) with ¢y =0, and (3.3) with (e.g.)

by = %,bz = 1,and b; = 0. Incidentally, ¢; = min{6by, 1}/2. Hence K; = 0in (5.1),

which is exactly the claimed estimate. Observe that the constant Ky can be ex-
plicitly computed. O

REMARK 6.1. — We observe that n(t) = u(t) — p(t), so that, using (6.1) and
Lemma 6.1,

(6.6) [n@®)|74 + 1@} + @) < c.

In the next lemma, we will derive (formally) certain differential inequalities
for some energy functionals involving the solution of (6.4). These inequalities will
be used both to obtain the compactness of the solution operator N,(t,s) and to
conclude the proof of Theorem 4.2, and, in the subsequent Section 7, to obtain a
regularity estimate for the global attractor.

LEMMA 6.2. — Fora given 0 < ¢ < 1, and for givenv € H'* ,w € H',t > s, we
define the functionals
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A, w;t) = p®OWIT,, + [wl? + 2(p®) — p(t) — pt),A'v),
Az(v w;t) = a)(t)|v|? + 2(v,w),,
AL, w;t) = A, w; t) + 2e,(E) A5, w; t).

1
For a fixed o €[0,1], let n = n(o) = min{—72 —%,1 - a}, so that n+ 0o < 1.
Then, for every t > s, we have the bounds

ﬂ(t) | (t)|1+a+;7 + |8tn(t)\,r+,7 <1 + #) < AT"’”(%(t), om(t); t)

(6.7) g
1
< 2u(t)|n(t)|1+g+,, + |8m(t)|(,+,7 +c (1 + (t)4)
. c

(6.8) —= \8tn(t)|a+,] (t) < A5 (), Opn(t); t) < c|8m(t)|a+,7 D
and the differential inequality

%AH”(n(t) On(t); ) + 2e,, 45 "(n(t), OynAt); t)

1

6.9 1+ — | [[o®], + |0p®)| + u®Ip®; 31457 udt), dn(d); )
(6.9) )

e (1 ) [ 100, + 4O
u@)

ProOF. — With a slight abuse of notation, we write hereafter A7*(t) :=
Af*”(n(t), om(t);t), » =1,2,3. Let us first establish (6.7)-(6.8). The bound (6.7)
comes from bounding A" from below, using

o - u
[ () — $p), A7 )| < €Lt Jufy + [Pl 1y < e Ak [uly + DD + 5 [l

and from (5.12), (6.1), (6.5) and (6.6). The bound (6.8) is an easy consequence
of (6.6).
Now, assuming that (n, 9;n) is regular enough, we multiply the equation (6.4)
by A°™dn, getting the differential equation
d

(6.10) — A7~ 0 5, + 20007, =~ 20 — ¢ @O + ¢ PP, A ).

The first term in the right-hand side is easily bounded as follows:

2(a+n)

(6.11) —2(Ap, An) < c|ap||A™ | < claplnfir,L, [ < c|amplinf, .,

14+0+n
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For the remaining part, we write
(6.12) 9" (W)ou — §(P)Oyp = v (W)du + ng" (W) + ¢ (p)om,

where n(x, t) is chosen between u(x, t) and p(x, t), and therefore satisfies, due to
(6.1) and (6.5)

(6.13) 12|75 + D@ + i®F < c.
Using the assumption (H2.b) we estimate

W/ @)y, A7) < €L+ ||l 75O s A ]| s

L3=2 L5—r+2

(6.14) < oL+ ;DO 514151
1—y
< el + @7)|0pul,mly 5y
here we used the embeddings H! < L5(Q), H? < Lr'5(Q), H -7 — L7==(Q),

and the last line follows by using (6.1). Regarding the term of (6.12) containing 7,
we write, using the appropriate Sobolev embeddings,

|(ng" @hu, A )| < ellg" @) sl|Opull s |Iml| o A7 ml] s
(6.15)

- — 2
S C(l + |n|1)‘atu|a‘n|1+n|n|1+(/‘+n S C(l +/l 1)‘atu|a|n|l+a+q;

we used (H2.a), (6.1) and (6.6) to obtain the rightmost inequality. For the last
term of (6.12) we use (H2.a) and (6.6):

(¢ @0, A7 )| < ellp? 0l o AT m] s
(6.16)

2
< C|p|1‘n|1+a+n|8tn|o'+ly‘

In view of (6.11) and (6.14)-(6.16), the rhs of (6.10) is bounded by
(6.17) o1+ 120l + [0pDA + [1[3 . 5) + clpli [l o0 -
For the functional A5 ", multiplying (6.4) by A°*"n yields

d 2 2

_Aa+i7 2 o 2 . Aa+;7 =2 A(r+i7
(618) dt 2 + /1|7’L‘1+0—+,7 w |atn|a+r/ + <(ﬂ(?/l/) (p(p)v 7’L> <p7 ’}’l/>

< C|]0|J+,7,1|%|1+J+,7 < Clu_l + ﬂlnﬁﬂrﬂy’

making use of (6.5) in the last inequality. Combining (6.10) with (6.18), and using
the bounds (6.7) and (6.8) yields

d , 7
g8 200 A+ Reopt — Wl

< e+ 1730, + || + ulpDATT + e + 1A + [dpul, + plpl)-



40 FRANCESCO DI PLINIO - GREGORY S. DUANE - ROGER TEMAM

The last term on the first line is nonnegative, by (M1), so that (6.9) follows. This
concludes the proof of the lemma. O

LEMMA 6.3. — There exists a continuous positive function h such that

(6.19) N 9|3 < ht,s)  VEeR,s<t,

7

. 9
with n 2

Proor. — Having at our disposal (6.6), the only terms in || N,(Z, s)|| x1 We are left
to bound are '

1O, + [0m@)].

To this aim, we use Lemma 6.2 with ¢ = 0: again we abuse notation and write
A3(@) in place of A(n(t), dm(t); t) (and sometimes omit the t). We have, from (6.1)
and Lemma 6.1,

|0ut)] + |8p®)| + 1®Ip@)[; < c,

so that (6.9) reads, for t > s,

d 1
&Ag + e, 44 < c(l Jrﬂ%l)A’g7 + c(l +E>'

Observe that Ag(n(s), om(s); s) = 0, so that Gronwall’s lemma on the interval (s, t)
and the controls (6.7)-(6.8) yield

HOWOR, +10ml, < cts(® + ¢ (l ! ﬁ)

(6.20) ¢ . ‘g
<cf<1+ 1 >ec<t H(rf“(y"id‘/)drvhc 14—L4 .
u)

- u(@°

S

This concludes the proof of Lemma 6.3, and the function A(Z, s) is given by the last
line of (6.20). O

We can now complete the proof of the main theorem.

CONCLUSION OF THE PROOF OF THEOREM 4.2. — Let n = 2 — % > 0 as in Lemma

6.3. Observe that X is compactly embedded in X; and each X is a reflexive
Banach space, so that closed balls of X} are closed in X;. These considerations
ensure that we are in position to apply Corollaries 2.2 and 2.3.
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Setting
Bt = |J Pslel, N, = (J NG 9I0],

2€A(s) 2€A(s)
we have S(t, s)A(s) C L(¢t, s) + N(t, s). Lemma 6.1 gives

lim [, 9)[ly, = lim sup [|[P.(,9)[y, =0,
§——00 §——00 Z‘E;’X(S)

while Lemma 6.3 shows that

190, )30 < it ).

Therefore, Ji(t, s) is compact in X3, for every ¢t € R, s < t. Applying Corollary 2.2,
we obtain the existence of the unique pullback-bounded global attractor
A) = wa®). d

7. — Proof of Theorem 4.3
Before entering the proof of this theorem, in Lemma 7.1 we show how (M2)
implies additional integrability of the time-derivatives of the solutions of (P),

(6.3) and (6.4), in the following lemma.

LEMMA 7.1.-Let s€ R be fixed, zec A(s), ta >t >s and write
(u(t), owu(t)) = S(t, s)z. We have that

to
(7.1) f ()o@ dr < e + (s — 1)),
t

ProoF. — Going back to the proof of (5.1) and integrating (5.2) between t; and
t2, we obtain

tz tZ
(7.2) f o(@)|du@dr < ¢+ f 1@,
t ty

Taking advantage of (5.5) and (M2) in the last inequality, we have that

123

t b
fwwm@mhg!mmmum%hg<wpmmmmﬁluﬁfmr

; €ty t2] H
1

<+t —t)").

This last inequality, in light of (7.2), completes the proof of the lemma. O
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REMARK 7.1. — As promised, we show how the conditions described in Remark
4.3 imply (4.4). Under the assumption that u is decreasing on finitely many in-
tervals (#,t!), and t; > — oo, we have, for each t < ¢},

177

o0 , z
(uﬂ)(zgr) dr < > (log(u(d}) — log(u(t)) = C;,<oc,

i=1

(7.3)

which clearly suffices for (M2). In the case t, = — oo, in view of (7.3), it is enough
to observe that, when #; <tz <7,

= log(u(tz)) — log(u(ty) < cltz — t1)’,

to
), (o) d
()

thanks to condition (4.6).
We now show how (M2) follows from the oscillating behavior at s — —oo
assumptions. Remember that u is increasing on an infinite sequence of intervals

t,t),i=1,..., 00, <t!, for which (4.6) holds, and the inverses of T; = t/ — t

are summable, with ZT = B. Let t; < t3 be fixed and let us consider the 7’s (if
i

any) for which (t‘ t7) intersects (t1,%2); say ¢ =j,...,7 + k. We can assume that
t <t ik <tj <lz, the other cases being treated likewise. By explicit computation
and a subsequent use of (4.6),

Jj+k ” Jj+k
(ﬂ;(;;'f) Zlo </l(l;/;> < CZ@? té)’y.

i=j

Therefore, it suffices to show that, for 0 = 1%9 <1, we have

J+k
Z(t’ —t)° < BTt —1y)’.
i=j
. 11 s . . 1, 2
Using Holder’s inequality with p = 7 p = =9 we have that

Jj+k Jj+k

Z(t’”—tf) —Z(t’"—tﬁ (T
Itk o0 9-1_2 75
< (Z(t;‘—tff)) (Z(T»Tl—s) < BTt — 1),
i=j i=1

which is the estimate we were looking for.
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The main tool of the proof of Theorem 4.3 is the bootstrap scheme devised in the
proposition below. The idea of relying on the time-integrability of the time-deri-
vatives of the solution to obtain regularization effects is fairly common in the lit-
erature, see for example [2, 3, 9]. The main novelty of our construction lies in
showing that the additional time-integrability is preserved for a very large class of
time-dependent coefficients. As before in Lemma 6.2, for a given ¢ € [0, 1], we let

1
n(o):min{Z,Z—%,l —a}.

From now on, we will always consider initial data z € A(s) and write S(t,s)z =
(u(®), dyu(?)). The generic constants ¢ appearing in the proof below will (possibly)
depend on

sup [|A®)|x, < Ra,
teR
and on the physical parameters of the problem.

PropPoSITION 7.1. — Let g € [0, 1] be given. Suppose that there exists a positive
mereasing function

IN:R—R, I >l +vt)),
where v is defined in (4.5), and such that for every s € R, z € A(s),
(7.4) (), Ou®)|, < "ty Wt >s.

Then the solution P.(t,s) = (p(t), O;p(t)) of (6.3) satisfies
to
(75) [ 1ow@Ede < IO+ G- 0))  Vs<h <h <t
t1

for some positive increasing function
TR =R, M) > e+ v(@)).
In addition to (7.4), suppose that there exists a positive increasing function

IR =R, TN > (4 v@)),
such that

ta
16)  [low@Ed < T OO+ G -t)  Vs<h<bh<t,
5]

for some fi, € [0,1). Then there exist positive increasing functions

TR R — R, IO, KU > el +v(@)),
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such that the solution N.(t,s) = (n(t), on(t)) of (6.4) satisfies
(7.7) 1@, Ol < o) vt>s,

and

)
(7.8) f 02,y de < KU1+t — ) Vs <t <ty <t,
t
. 1 .
wWith Py = max{ i

2

,0} e [0,1).

We postpone the proof of Proposition 7.1 to the end of the section, and now
show how Theorem 4.3 follows from this proposition.

PROOF THAT PROPOSITION 7.1 IMPLIES THEOREM 4.3. — We will construct a
finite sequence of g;’s:

0=0p<01<---<0,=1, oiv1=0;+n(0;), 1=0,...,k—1,
and increasing functions
I, Ji: R =R, ), Jit) > cd +v@®)P),

such that, for every s € R, z € A(s),

(A); |, G < Ty V=,
and
t2
®; [ lu@Pd < T+ -0  vs<h <k <t

t

Note that the number « of steps to go from ¢y = 0 to g, = 1 depends only on y in
(H2.b) and is always finite. Also, the statement of Theorem 4.3 follows from (A),
and from the invariance of the attractor; the function /; can be taken equal to Z,
appearing in (A),.

We now explain how to perform the construction inductively. The base case,
that is, (7.4) and (7.6) holding true for ¢ = 0, follows from (4.3) and from (7.1),
with

1
To) = Jot) = ¢ max{l,%,v(t)s}, Bo=0.

For the induction step, we start by assuming that (A); and (B); hold true. Let
then t be fixed and z € A®#). Let z, € At —k), k € N, be chosen 80 that
S(t,t — k)z;, = z. The inductive hypotheses show that (7.4)-(7.6) hold with " = Z;,
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JM = 7, so that we can apply Proposition 7.1 to z;,. We read from (7.7) that
an = Nzk(t, t— k)”X“iH < IOUt(D;
due to the compact embedding X7 € X{", and to the fact that closed balls of X;"*!
are closed in X}, n;, has an X7 -limit point 7 with [|7||y=.: < Z°"(t). However, we
t
have z = ny, + P, (t,t — k), and we know from Lemma 6.1 that P, (¢, — k) — Oin
X" as k — oo. We conclude that z = %, and therefore ||z|| X < T°U(¢). At this
point, (A);,1, with Z;,1(t) := Z°(t), follows from the i invariance of the attractor.
In consequence of (A);;1, we can apply Proposition 7.1 with ;; in place of g,
Z;41(t) in place of 7™, and we also obtain (7.5) with ¢;,; and f3;,,, i.e.
t2
[1op@E  ac < 7@+ G -1, Vs<h <<t
ty

we wrote J°U¢ instead of J°“ to mark that this output comes from a second
application of the proposition. We also had from the previous application of the
proposition that

2
[ 10m@F |, ar < K1+t 1) Vs<th <<t

(B);11 now follows by combining the last two bounds, and setting [J;,1 =
KO + 7°U The induction step is complete, and so is the proof that Proposition
7.1 implies Theorem 4.3. O

Proof of Proposition 7.1

We need the following Gronwall-type lemma, adapted from [10], which we
refer for the proof.

LEMMA 7.2. — Let @ be an absolutely continuous positive function on [s,ty],
satisfying the differential inequality

00 + 200 < gO20 + 10, a1 st

for some & > 0 and where f,g are positive functions on [s,ty] satisfying

min{ty,t+1}
fdt < F, vVt € [s, o],

(7.9) . !

[owdr<ca+t:-t),  vs<ti<t<t,
t
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for some positive constants F',G and some f € [0,1). Then,

(7.10) D(ty) < I'd(s)e 09 1 @,
eS

where I’ = I'(G, f5,¢) > 11s computed explicitly in the proof and @ = I'F 1o

PROOF THAT (7.4)-(7.6) IMPLY (7.7)-(7.8). — The initial time s € R and the final
time ¢y > s are fixed. As usual, we refer to Lemma 6.2, and write Ag(t) in place of
A3(n(t), Om(t); t). Setting for brevity

g1 =c(L+ )|, g2 =c(1+*) ||0p]+ lpl ], £ = e (1+1) [1+ 10t + lpl]

we rewrite (6.9) as

(7.11) %A?Ww+%4mmyﬂw+dm@mmis@ﬂw+mwmyﬂw+ﬁ®.

We use our assumption (7.6) and condition (M3) to estimate

1

ty 1] : t 2
f gi(ndr <ec (f (1 + VS(T)) df) ( |8tu(7)|3 dT)
t 2l

t
< o1+ o) T (1 + 2 — 1)),

ﬁinJrl

Lemma 6.1, we have

where we set { = <1. Thanks to the exponential decay resulting from

to
[ 18p@] + k@l <.

so that

1

ts ts i/ z
fgg(r) de<ec (f (1++%0) dr) (f [|0p(@)| + p@|p@)fF] df)
t

2l b

< el +w(to))(1+ & — 1)F).

Finally, we use (7.4) to control |0,u(?)|, pointwise in ¢, obtaining

min{to,tJrl} mil’l{to,t+1}

A@dr<ed+Th [ (1+45©) dr < ol + T b)),
t t

We apply Lemma 7.2, with g1 + g» in place of g, f; in place of f. Since A3 "(s) = 0,
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we can write

) nto)l: oy, + 0mito)[2,, < cA5 (o) + ¢(1 + v(to)")

< O(ty) + ¢(1+v(t)"),

where O(ty) is the constant @ given by (7.10), and is seen to depend only on Z M(to),
TN(ty), o), v(to), ew(to). Observe that all of the above functions are increasing
functions of ¢y, so that @ can be chosen to be increasing in ¢, as well.

We turn to (7.8). Let us recall (6.10) from Lemma 6.2, which, written for
t € [s, ], reads, in view of (7.12),

(7.12)

d
G 20|0mlZ,,

(7.13) <Kl + @+ (0l + |0p] + ulpDA + plnl} ., + 10,
!
< cO(to) (1 +17) (% + Bl + 0| + ulM?) .

Now, for s <t; <ty <, integrate (7.13) on the interval [t;,%2]. We find, pro-
ceeding as before,

f (149@") (19D, + ()] + H@IPEF) de
ty

< ot + vt T (1 + (2 — ).

The remaining term in the right-hand side of (7.13) is bounded as follows, by
using (4.4):

t2 ,
[ D 4 o e < et + vt + e — 1)
: u(t)

note that this term can be simply neglected when x is a decreasing function on IR.
Summarizing, and using the bound (6.7) together with (7.12), we finally obtain

t2
oto) [ 102, dr < A7) + e+ vito) + TG (1 + (2 — ™)
t

< cO(ty) + c(1+ v(to) + Tt (1 + (t2 — ™).

We compare this last inequality with (7.12), and setting

1 , .
() = K™ (to) = CmaX{l, Tto)} [6(ty) + ¢(Z"(to) + T" (k)]

and f,,, = max{({, 0}, we obtain (7.7)-(7.8). O
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PROOF THAT (7.4) IMPLIES (7.5). — Fix s € R and the final time ¢y, > s. Similarly
to Lemma 6.2, we define the functionals

Pt = u®lp®f; ., + 0@ + [p@)Z + 2($(pE), Ap@)),

() = A3(p(), Op(®); 1),

Since [{¢(p), A%p)| < c|p|‘;’|p|1+a, we have the usual bounds:

t
% PO, +10m®)f; - c(l + v(t)“) <L) <2u®)p®)[ ., + |0 @) + c(1 + v(t)4) .
Now, assuming that (p, 9;p) is sufficiently regular, we multiply the equation (6.4)
by A?0;p. This yields

d
G ¥7 — HIplE o+ 20l0p]; = 28 o, A%p)
(7.14) < cllp 1ol s, 147D s

L3=2¢ Li+26

< elpli1oml, 1Pl < culpli(+ )Py,
A multiplication by A%p implies

d, .
(115) V5 +20pli., — Ipl; — 2101 = ~2(6(p),p) < elplilp| < o,

where we used Lemma 6.1 in the last inequality. The last two inequalities and the

inequality

1
=3 10Ol vt < V5O < clap®f; + @),

give for Y§(¢) = Y1) + 2¢,)¥P5() the inequality

(7.16) %lpg + 26,95 < culpP(1 + O + ook,

The exponential decay of ,u(t)|p(t)|? from Lemma 6.1 guarantees that

to
[ el + v < et + v,

s

so that an application of the Gronwall lemma to (7.16) yields the control
PE) < PO + c[PE@)] < c[PE)]| + ovlte)® < eI, Vi€ [s, o]

Here, we used that Z" dominates ¢(1 + v3). Going back to (7.14), and integrating
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between t; and t; we finally obtain

t2

[ 1@ ae < 7240 + 2 - ),

t

provided we set J°(ty) = cw1(t)Z™ (). O

8. — Proof of Theorem 4.4

Theorem 4.4 is a consequence of the following proposition, which in turn is
closely related to Lemma 6.1 of [1], see Remark 8.1.

PROPOSITION 8.1. — Suppose that there exists a decomposition
(8.1) S(t,8)z = D,(t,s) + K.(t,s), z € A(s), s <t,

such that the following squeezing property holds.

(SP) There exists a positive function F and a decay rate &,, depending only
on hy from Theorem 4.3 and on the physical parameters of the problem, such that
foreach ty € R, t, > 0, and for every s < ty —t,, 2',2% € A(s),

(SP1) |Di(s +ti,8) = Dals + 1, 8)[[%,, < Cllz" — 22|[3 e "k,
and
(SP2) 1K (s + 1, 8) = Ko + 1,95 < Fllo, 12" = 2%,

Then Theorem 4.4 holds, with he depending only on the function F.

. 2 1
REMARK 8.1. — By choosing ¢, = t,(t) such that Ce *®@\ < p< 7 the de-

composition (8.1) satisfies the hypotheses (6.1)-(6.2) of Lemma 6.1 of [1], and
therefore, we obtain the conclusion from this lemma.

Thus, the remainder of the section is devoted to the verification of the
squeezing property (SP). Throughout, it is understood that the data z at time
s € R belongs to A(s), and we will use the notation

S, 9)z = (u:(t:9), Qus(t;9)),  t>s,z€ Als).

Moreover, the notation Q( -) will be used to denote a generic positive increasing
function of time ¢, depending only on the function /; from Theorem 4.3 and on the
physical parameters of the problem. As a consequence of Theorem 4.3, we have
the uniform (in s) bound

(8:2) sup [u.(t;9)[3 < v(to)a (to).

s<t<ty
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The decomposition (8.1) from Proposition 8.1 is achieved as follows:

S(t,8)z = D.(t,5) + K:(t, ) = (d:(t; 5), 0,d(t; 9)) + (k. (t; ), O (8 9))

where
(83) 8ttdz + Cl)atdz + ﬂAdz + dz = 07
D,(s,s) =z,
and
(8 4) Ok, + w0k, + ﬂAkz =—d, - (ﬂ(uz)v
' K.(s,s) = 0.

8.1 — Verification of (SP1)

We peruse once again the proof of (5.1), Theorem 4.1, this time replacing ¢ by
o(y) = y. It follows that

(8.5) ID:t.9)||3. < Cllz|% e ™9,

where &, is given by (3.4) with ¢; = 1. Since z — D,(t, s) is linear and &, is de-
creasing, it follows that

D.i(t,s) — D, s)|% < C||z" — 22||% e tolo)t=5) Vs <t <t.
z z Xt X‘z

Thus (SP1) follows, with ¢, = ¢ — s.

8.2 — Verification of (SP2)

We begin by noting that the difference (k(t;s), 0:k(t; ) = K. (t,s) — K.2(2,s)
solves the Cauchy problem

(®6) Ok + w0k + uAk = f +g,
' k(s;s) = 0, d;k(s;s) = 0,
where zZ = 2! — 2% and

fts) = —d:(t;s),  gt,s) = —(p(uat;s)) — p(uzxt;s)).

We recall here, as a consequence of the continuous dependence estimate (4.1),
that

B7) |uat;s) —uzt; s)||y, < Qto)exp (A +vto))t — ) |25, s <t<t.
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With this in hand, we begin the core of the proof of (SP2). First, we derive ap-
propriate estimates for the terms f, g in (8.6). We deduce from (8.5) that

(8.8) | f (¢ S)ﬁ = |dz(¢; S)ﬁ <w(tp)||D.(, S)||§(t < Q(t0)||5||§(8» s <t <.
Regarding g, we write, omitting the time dependencies
Vug(t;8) = ¢’ ) V(U — ) + ¢" @)ty — 2)Vethy,

for some wu(x,t;s) < max{u,(x,t;s), uz(x,t;s)}. The basic estimates we need
to control the above terms come from (8.2) and the Sobolev embedding
H2(Q) — L>~(Q):

(8.9) |2 (& )| + [2(E; 9|1 < Qlto), s <t <tp.
The straightforward estimates
19 @)Vt = w2)* < €1+ [l [T tar =
and
0" @) — 20Vt 2 < 01+ i + ot o)t — 2 | Vs |4
< (L1 [ g + ozl oot — 22 oz 3
together with an application of (8.2) and (8.9) lead us to the bound

9 8); < e[ Vag(t: )P < Qlto)|ua(t: s) — uz(t; )|t

(8.10) 2112
< Q(ty) exp ((1 + v(to))t — 9)) |Izll%.,

for all s < ¢ < ty, where we used (8.7) in the last passage. Now, multiplying (8.6)
by Aok yields the differential inequality

d
i 10Ct: ), 0kt )5 + 20| A0kt )
(8.11) < W Ok(t; )5 + 2(f + g, Adik)

< Wu|k(t; )| + ito) (/&) + elgtt; 9)fF) + 20(0)|A 204k,

for all s < t < ty. The second passage involves the use of condition (M1) and of the
decreasing monotonicity of w. We summarize (8.9), (8.10), and (8.11) into

d
a@ |(k(; 8), Oske(t; S))H?(tl < Qo) (”(k(t; s), Opk(t; 8))||§(t1 +exp (1 +v(t)(E —s)) HéHgg) ,

for all s <t <t). An application of Gronwall’s lemma on (s,s + t,) and the ob-
servation that (k(s; s), 0:k(s; s)) = 0 yields

(8.12) 1GeCs + t.: 8), DtkCs + ;)3 < Qto) exp (A + vtk ) |25,
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which is (SP2) with F(t, t,) precisely equal to the right-hand side of (8.12). The
verification of (SP) is complete.
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Note added in proofs

At the time when the galley proofs of this article were being corrected, one
of the authors (RT) gave a lecture on the topic of this article and [1].
Following are some useful remarks resulting from the lecture and the sub-
sequent discussion.

e Fquation (1.1) contains two viscosity coefficients:

— u(t), the viscosity coefficient of the spatial operator. In the original oscillon
equation considered in [1], ut) = e 21!, The analysis of the asymptotic
behavior is made difficult by both singularities

lim e 27 =, lim e 2! = 4 o0,
t—+o00 t——o0

The first difficulty is overcome by using the pullback attractor frame-
work (even the classical framework without time dependent spaces
would suffice), where the absorbing faomily, and the attractor are al-
lowed to have size depending explicitly on time and possibly going to
+ o0 as t — +o0. The second difficulty (which, in short, causes fixed
balls of HY(Q) x LA(Q) to have huge “physical” energy for large negative
time) is circumvented with the introduction of the time dependent
spaces and the restriction of the basin of attraction to the pullback-
bounded families.

— w(t), the damping coefficient of the evolution equation, which, classically,
makes the dynamical system dissipative, as we have seen in the article.

o The quantity u appearing in (1.1) represents a scalar field, usually taken to be
the Higgs field.

e In the post-inflation scenario in which this equation is used, a(t) (see
Remarks 3.4 and 3.6) is steadily increasing. We have introduced some mathe-
matical generality in the time-dependent coefficients.
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