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Functional Solutions for Fluid Flows Through Porous Media

GIOVANNI CIMATTI

Abstract. — The Levy-Caccioppoli global inversion theorem is applied to prove the ex-
istence and uniqueness of functional solutions for a problem of flow of a viscous
mcompressible fluid in a porous medium when the viscosity and the thermal con-
ductivity depend on the temperature. A method based on the Abel integral equation,
for determining the dependence of the viscosity from the temperature is also proposed.

1. — Introduction

A porous homogeneous body is represented in R® by the open and bounded
subset Q; the body is filled with a viscous and incompressible fluid obeying the
Darcy’s law [9]

K
(1.1) v=——Vp,
u

where v is the local average fluid velocity, p the pressure, K > 0 the constant
permeability and u the viscosity which we suppose to be a given function of the
temperature u. The regular boundary I" of 2 consists of three parts I'1, I's and
I'y. Between I'y and I's a constant difference of pressure P is maintained.
Moreover, a constant temperature which in a suitable empirical scale we assume
to be zero, is kept on Iy and I'e. Besides, Iy is thermally insulated. The condition
of incompressibility implies

VP _oj
(1.2) \Y (ﬂ(u)) =01in Q.

From the law of Fourier and the energy equation we have

K /)K 2 .
1.3 V- (t(uw)Vu) + po—Vp - Vu + —|Vp|" =01in Q.
(1.3) P VP ﬂ(u)l Pl
The third term in the left hand side of (1.3) reflects the energy dissipation in the
fluid [3] whereas the second term on the left is related to the convective phe-
nomena. p is the (constant) mass density, « (also a constant) denotes the heat
capacity at constant volume and t the thermal conductivity, a given function of
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the temperature as p(u). We set
Kk(u) = () (pK) ™ .

Taking into account (1.2) we have

. { W)} _ Vo

)| p(u)

Thus we arrive, under stationary conditions, at the following boundary problem
(P) for the determination of p(x) and u(x), x = (xy, x2,x3) € Q

Vp} .

14 V:|l—| =0in Q

a4 Lz(u)

1

(1.5) V- {m(ﬂ(u)Vu—MmVp +pr)} =0in Q
p

(1.6) p:OOnfl,p:Ponfz,%:OonFO
ou

(1.7) uzoonfl,uzoonfg,a—nzoonfo,

where

nw) = r(w)u(w).

In the next section we study the functional solutions of problem (P) according to
the following:

DEFINITION 1.1. — We say that a classical solution (p@x),u(x)) of problem (P)
is a “functional solution” if a function U(p) € C%([0, P)) exists such that

u(x) = U(p(x)).

Under quite general assumptions on the data we prove that a functional so-
lution exists and is unique. Moreover, if @ is the total mass of the fluid crossing
Iy in the unit time i.e.

Q=yp f v-ndl,
I’y
where n is the unit vector normal to I'e, we show that the quantity
QP
(1.8) fP)= i

does not depend on Q. In (1.8) the constant k¥ depends only on the geometry of 2
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and is given by

oz
(1.9) k= a—ndf,
Iy

where z(x) is the solution of the problem
(1.10) AZZOil’lQ,ZZOOHF1,221OHF2,§—Z:OOHF().
In the third section we discuss the following:
PROBLEM. — Suppose f(P) and n(u) = u(u)x(u) are known, calculate wu(u).

We prove that this problem can be solved with the help of a generalized Abel
integral equation.

2. — Functional solutions

THEOREM 2.1. — Assume

(2.1) w) >0, x(u) > 0 for all u > 0.
Let U(p) be a solution of the following two-point problem (TPP)
(2.2) n(u);lﬂ+ocu+p:y, y e R}

P
(2.3) Uuwo) =0, UP)=0.
Let z(x) be the solution of problem (1.10). Define

p
dt
G =
® Of P0)

and
(24) pix) = GHGP)(x)), ulx) =U(p()).

Then (px),u(x)) is a functional solution of problem (P).
PRrOOF. — p(x) and u(x) as given by (2.4), satisfy the boundary conditions (1.6)
and (1.7). Equation (1.4) is also satisfied. For, we have

Vp  Vp
wUPpX))  plulx))

Hence we obtain (1.4) by (1.10). It remains to verify that (p(x),u(x)) satisfies

G(p(x) = G(P)(x), VG(pkx)) = = G(P)Vz.
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(1.5). In fact, by (1.4) and (2.2) we have

1 1 du
_u. | VP _
=7V (u)] =0.

O

REMARK 2.2. — The solutions of problem (TPP) give all the functional solu-
tions of problem (P). For the proof we refer to [5].

We examine now the question of existence and uniqueness for the solutions of
problem (7T'PP). Define

u
2.5) U=FU = f n(dt
0
and assume
(2.6) f nHdt = .
0

By (2.6), F'({) maps diffeomorphically [0, co) onto [0, oo) and gives therefore also
a new scale for the temperature equivalent to the original one. In terms of U
problem (T'PP) becomes

au
(2.7) ap HBU +p =y =0
(2.8) U©) =0, UP) =0,

where
BWU) = FXU).

We quote, for later use, the following special case of the Levy-Caccioppoli global
inversion theorem (see [8], [4] and [2]).

THEOREM 2.3. — Let X = {U(p) € C1([0,P]), U(0) =0, UP) =0} x R' and
Y =C°(0, P]). Let F(U, y) be a map of class C from X to Y. Assume: (i) F is locally
mwvertible in X, (i1) F is proper. Then F is a diffeomorphism from X into Y.

We recall that F is proper if, for every compact subset K of Y, F1(K) is
compact in X. The above result is used in the following Theorem to show that
problem (2.7), (2.8) has only and only one solution.
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THEOREM 2.4. — Let B(U) € C([0, >0)) and
(2.9) 0 <B(U) < (m1 +mpU),

where o, my and mg are positive constants. Then the two-point problem (2.7), (2.8)
has one and only one solution U(p) € C%([0, P)).

ProoF. — Define X and Y as in Theorem 2.3. By (2.9), L(U) = aB(U) — amaU
is a bounded function. Let F : X — Y be given by

au
FWU,y) :%‘FP-FOCWLZU-‘FL(U) — 7.
F is locally invertible. For, the linearized two-point problem corresponding to
2.7), (2.8) reads

(2.10) (2_;1 = I'+ameH + L'(DH = g(p)
(2.11) H(0)=0
(2.12) HP)=0

where I' is a real number, (U(p),I") € X and g(p) € Y. This linear two-point
problem has a unique solution. To prove that we solve the Cauchy problem (2.10)
and (2.11) and find

(2.13) H(p)=e o

4 P T
— f (ama+L/ (U(t))dt f amo+L'(U(t))dt
f e (9@ + DNdz.

0

It easily seen that there exists one and only one value of I” which permits to
satisfy the condition (2.12). We claim that F is a proper map. For, let K be a
compact subset of Y and g(p) € K. If (U(p),y) € F 1K) we have

aUu
(2.14) b y+p +ameU + L(U) = g(p)

(2.15) U©) =0, UP) =0.

Applying the variation of constant formula to (2.14) and taking into account of the
condition U(0) = 0 we have

P

(2.16) Ulp) = e’“mﬂ’f " (y — v — L(U (1)) + g(z))dx.
0

Setting p = P in (2.16) we obtain, after an easy calculation,

_ p,—amgP 4
(2.17) y<16—) = gomeP f (t + L(U®) — g(0)dx.
0

oamsa
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Since the functions g(p) belong to K they are equibonded. Hence, from (2.17) we
draw the conclusion that there exists a constant C;(K) depending only on K such
that for all g € K we have

(2.18) Iy < C1(K0).

Using again (2.16) and (2.18) and recalling that L(U) is a bounded function we
conclude that there exists a constant Co(KC) such that, for all g € K,

(2.19) |U(p)| < Ca(K).

Moreover from (2.14) we have, for all g € K,
al
. — < .
(2.20) ’ i < G0

To apply Arzela’s theorem to the set F~1(K) it remains to prove the equiconti-
nuity of the functions Z_[Zj Let p1, p2 € [0, Pland M = sup{|L'(w)]; |u| < C2(K)}
From (2.14) we have, by difference,

d d
(2.21) d—g(pz) — d—g(pl) <(amez+M)|U(p2)—U(p1)|+|p2 —p1|+|9(p2) — g(p1)].

Since the functions U(p) and the g(p) are equicontinuous we conclude that the

d . .
funetions d_g are also equicontinuous. Therefore F~1(K) is compact in X. O

REMARK 2.5. — Assumption (2.9) is crucial for the validity of Lemma 2.4. As a
counterexample we can take the problem
d
(2.22) dg + U2 +p=y U0 =0, UP)=0

which can be solved explicitly in terms of the Airy’s functions.

3. — The inverse problem and the integral equation of Abel

In problem (P) the mass of fluid crossing /'y in the unit time is given by
Q=yp f v-ndl,
Iy

where n is the unit vector normal to I's. From (1.1) we obtain, recalling (2.4),

px)

I i fP Cdt
@y = ") wady
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where z(x) is given by the solution of problem (1.10). Hence

Vp dat
muwu»f‘vﬂ[Mumr

On the other hand, on Iy we have

1L op [ dt o
uUP) on S p@) o

Therefore

P

dt
=pKk | ——,
Q= !u@@)

where k is given by

0z

k= -
I3

By the maximum principle in Hopf’s form [10], we have k& > 0. Moreover k de-
pends only on Q, I'1, I'2, I’y . Thus we obtain the following

LemMA 3.1. — The function

P

_Q _f_d
ﬂm_M@_Jqum>

does not depend on Q, I'y, I'1, I's.
The inverse problem, stated in the Introduction, of finding u(u) if f(P) and

n(u) are known may be solved if we can solve the integral equation

P

(3.1) = [

0

dt
U, P)

in the unknown u(u). We first treat the case in which we have in equation (1.5)
o = 0. This means to neglect in problem (P) the convective phenomena. In this
case the two-point problem (2.2) and (2.3) becomes
au
U(U)% +p=y, U0 =0, UP)=0

which can easily be solved by separation of variables. If U = F(U) is given by
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(2.5) we have

o (Pp P
Up) =F <7_E)

and the integral equation (3.1) becomes

P
dt
3.2 P) = .
(3.2) £ Of P
a 22
Since U = F(U) is simply a new scale for the temperature, we may take as un-

known in the integral equation w(U) = u(F~1(U)). This permits to rewrite (3.2) as
follows

0

P
With the change of variable of integration { =¢ — 5 we obtain

8 2

5 d
=2 %
/ 9

2 2

and with the further substitution z = ) we have

(3.3) f(P) =2 f

v(z)\ /s

1
— f(2v2x) equation (3.3) becomes
ﬁf( V2x) eq (3.3)

@) de
o(x) —b]-ﬁ

P2
Setting x = 5 and ¢(x) =

This is the classical Abel integral equation [1] which has the simple solution [12]

1 [ gt
(34) w(x) = ") gt
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REMARK — We note that if #(u) € C°([0,00)) we have Q(P) € C([0, c0))
moreover ¢(x) is absolutely continuous by (2.1) and its definition. In addition
¢(0) = 0. Thus the solution (3.4) makes sense according to the work of Tonelli [11].

If « > 0 the two-point problem (7'PP)

n(U)fl—wau:y, U©O) = 0, UP) =0

u
or alternatively, in terms of U = F(U) = [ n(t)dt and with B(U) = F~X(U),
0

au
(3.5) %—i—p—l—aB(U)zm Uuoy=0, uP)=0
cannot be solved explicitly. However, we shall prove that if o > 0 is sufficiently
small the integral equation

F&® Of WU, P, )

with v(u) as unknown, can be restated as a generalized Abel integral equation. To
this end, we present below two lemmas on the properties of the unique solution
U(p, P, o) of problem (3.5).

LEMMA 3.2. — The solution U(p, P, a) of problem (3.5) has only one point of
maximum py (P, o) € (0, P).

ProoF. — In view of the regularity of the data problem (3.5) can equivalently
be rewritten as
d?U

(3.6) =

+1+ B(U)—_O Uwo)=0, UP) =
. . . .. adUu a?u,
Therefore, in every point p* € (0, P) in which %(p ) = 0, we have d—pz(p )<O0.

This excludes the presence in (0, P) of points of minimum. On the other hand, the
existence of two points of maximum is also excluded since this would imply the
existence of a point of minimum between them. d

LEMMA 3.3. — Let py(P,o) be the point of maximum of U(p,P,«). There
exists a positive number o such that, if 0 < o< then M(P,a) = U(py (P, o), o, P)
1s strictly increasing as a function of P > 0 for every fixed 0 < a<a.

Proor. — Since aa—U(pM(P, o), P,a) = 0, we have

%a) )——(pM(P %), P, ).
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We claim that
. P
(3.7 “lir(r)h pu(P, o) = 3

Integrating (3.5) from 0 to P we have

P
P «
y=S+3 Of B(U(t, P, a)dt.

If we define
P
P «
F(pu, P,3) = 5+ [ BUEP,0)dt = pay — 2B par, P,), P,)
0

we have
f(;P, 0)=0

and

oF
%(pM,P,O) =-1.

Therefore we may solve locally the equation F(pyy, P, ) = 0 with respect to py

- . P
i.e., there exists ; > 0 and a function py; = py(P, %) € C' such that py(P,0) = 5
and F(py(P,a), P,o) = 0. Thus (3.7) follows. It remains to show that g (p, P, o)

is eontinuous for P > 0 and in particular that oF
. oU D

With the substitution p = P& problem (3.6) can be restated in the fixed interval
[0, 1] as follows
2w

el + P2+ ocPB’(W)Ofi—Vg =0, W©0)=0, W) =0,

where W(&, P, a) = U(P¢, P, a). To prove the needed regularity of W(&, P, o) with
respect to P, we apply the implicit function in Banach spaces. Define in the space
{W() € C¥([0,1]); W(©0) =0, W) =0} x R? the operator

W aw

g(W7(P7a)):d—fz+P2+aPBl(W) dé 9 (P7OC)€R2
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2
with values in C°([0, 1]). We have for P > 0 and W(¢) = %(f - &)
Moreover, G is of class C? and for the the partial derivative we have

= d?H
P H]l=—-.
G W, (P, ONH] ="

2
Since the problem % =0, H(0) =0, H1) =0 has a unique solution, there

exists az > 0 such that G(W, (P, «)) = 0 is locally solvable with respect to W(¢)
when 0 <a<dp and P > 0 and, as a function of (P, o) is of class C'. Thus we can
write
oUu oW /p 1 oW /p
=5 (B P ) mt5p (5 P%)
Therefore (3.8) holds. In particular we have, by (3.7),

. ou P
}(111(1) 8_P(pM(P’ ), P, o) vy > 0.
Hence there exists & > 0 such that the conclusion of the Lemma holds. O

REMARK 3.4. — When B(U) = U (which corresponds to the linear case) we find
with a direct computation

ou
a_P(pM(Paa)7P7a) >0

not only when « is small, but for all « > 0 and for all P > 0. This is probably true
also for the nonlinear problem (3.5) under the sole hypothesis

B(U) <my +mpU.
For future use we quote the following elementary Lemma, referring for the
proof to [6].
LEMMA 3.5. — Let f(x) € C3(( — 6, 0)) satisfy
f0)=0, f'(0)=0, f7(0) > 0.

Let x = H1(y) be the branch of the local inverse of f(x) with 0 <y < u;, 0 <ax <7p
and x = Ha(y) the branch of the local inverse of f(x) with 0 <y < u, and
—n<x<0 (>0 u >0 1n>0). Then

1

/Zf”(O).

(3.10) yliﬂr{)l+ H VY = — ylija Hy)VY =
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We use in the sequel Lemma 3.3 and Lemma 3.5 to restate the integral
equation

P

@ = [

0

dt
WU, P,a)’

where v(U) is the unknown, as an Abel integral equation.

THEOREM 3.6. — Let U(p, P, a) be the solution of the problem

au
%ZV—IO—&B(U), U =0, UP)=0

and
x=M®P), M(P) = U(pu(P,x),P, )

the value of the maximum of U(p, P, o) in (0, P). If

0<a<a

there exists a continuous function G(x, z) defined in {(x,2);0 < z < x} such that

G(z,2) #0
and
f it Af” GUM(P),2)dz f G, 2)dz
2 W@, P,o) N voVMP) —z ) V@)V - z
Proor. — We can write
P Pum P
dt dt dt

Ofv(U(t,P,a): Of WUGP.9) +pf UG Py Dtile

We make in I; the substitution of variable of integration t = H;(z, x) (H; is global
inverse of U(t,P,a) for 0 <z <« and 0 <t < py) and in I, the substitution
t = Ha(z,x) (inverse of U(t, P,a) for 0 <z < x and py; <t < P). We find

P x
dt [ Hy(z, 1) — Hy(z, @) B
(3.11) Of TP _Of g dz, ©=M(P).
By Lemma 3.5

Gz,x) = Vo — 2 [H(z, ) — Hy(z,2)]
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is a continuous function for 0 < x < z. Moreover, by (3.10) we have G(z,z) # 0.
Hence, from (3.11) we obtain

P x

dt [ Glz,m)dz
(3.12) f wU(t, P, ) _f v@)e —z

0 0

Therefore the integral equation

o= [
R

can be reformulated, by (3.12), as follows

X

G(x,z)dz
P =] ———.
F®) ] vV —z
On the other hand, if 0 < o < & the function x = M(P) is invertible by Lemma
3.3. Defining

g(x) =fF(M1(x))

we obtain, for the determination of v(u), the Abel integral equation

&x

[ Gx,2)dz
9@ _! V(R)E — 2

which can be solved using standard methods see [7] and [12].
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