BOLLETTINO UNIONE MATEMATICA ITALIANA

DIMITRIS N. GEORGIOU

Topologies on Hyperspaces1

Bollettino dell'Unione Matematica Italiana, Serie 9, Vol. 5 (2012), n.1, p. 173–186.

Unione Matematica Italiana

 $<\! \texttt{http://www.bdim.eu/item?id=BUMI_2012_9_5_1_173_0} >$

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Topologies on Hyperspaces¹

DIMITRIS N. GEORGIOU

Abstract. – Let Y and Z be two arbitrary fixed topological spaces, C(Y,Z) the set of all continuous maps from Y to Z, and $\mathcal{O}_Z(Y)$ the set consisting of all open subsets V of Y such that $V = f^{-1}(U)$, where $f \in C(Y,Z)$ and U is an open subset of Z. In this paper we continue the study of the A-proper and A-admissible topologies on $\mathcal{O}_Z(Y)$, where A is an arbitrary family of spaces, initiated in [6] and we offer new results concerning the finest X-proper topology $\tau(\{X\})$ on $\mathcal{O}_Z(Y)$ for several metrizable spaces X.

1. - Preliminaries

We denote by Y and Z two arbitrary fixed topological spaces and by C(Y, Z) the set of all continuous maps of Y into Z. If t is a topology on the set C(Y, Z), then the corresponding topological space is denoted by $C_t(Y, Z)$.

By $\mathcal{O}(Y)$ we denote the family of all open subsets of Y and by $\mathcal{O}_Z(Y)$ the set

$$\{f^{-1}(U): f\in C(Y,Z) \text{ and } U\in \mathcal{O}(Z)\}.$$

Let X be a space, $F: X \times Y \to Z$ a continuous map, and $x \in X$. Let F_x be the map of Y into Z, defined by $F_x(y) = F(x,y)$ for every $y \in Y$ and \widehat{F} the map of X into the set C(Y,Z), defined by $\widehat{F}(x) = F_x$ for every $x \in X$.

Let G be a map of X into C(Y, Z). We denote by \widetilde{G} the map of $X \times Y$ into Z, defined by $\widetilde{G}(x, y) = G(x)(y)$ for every $(x, y) \in X \times Y$.

A topology t on C(Y,Z) is called *proper* if for every space X, the continuity of a map $F: X \times Y \to Z$ implies that of the map $\widehat{F}: X \to C_t(Y,Z)$. A topology t on C(Y,Z) is called *admissible* if for every space X, the continuity of a map $G: X \to C_t(Y,Z)$ implies that of the map $\widehat{G}: X \times Y \to Z$ (see [1], [2], [4], and [7]).

If in the above definitions the space X is assumed to belongs to a family \mathcal{A} of spaces, then the topology τ is called \mathcal{A} -proper (respectively, \mathcal{A} -admissible) (see [5]). For $\mathcal{A} = \{X\}$, we write X-proper and X-admissible instead of \mathcal{A} -proper and \mathcal{A} -admissible, respectively.

Let
$$\mathbb{H} \subseteq \mathcal{O}_Z(Y)$$
, $\mathcal{H} \subseteq C(Y, Z)$, and $U \in \mathcal{O}(Z)$. We set

$$(\mathbb{H},U)=\{f\in C(Y,Z): f^{-1}(U)\in \mathbb{H}\}$$

⁽¹⁾ Work supported by the Caratheodory Programme of the University of Patras.

and

$$(\mathcal{H}, U) = \{ f^{-1}(U) : f \in \mathcal{H} \}.$$

Let τ be a topology on $\mathcal{O}_Z(Y)$. The $t(\tau)$ topology on C(Y,Z) is that having as subbasis all sets (\mathbb{H}, U) , where $\mathbb{H} \in \tau$ and $U \in \mathcal{O}(Z)$. The topology $t(\tau)$ is called dual to τ (see [6]).

Let t be a topology on C(Y, Z). The $\tau(t)$ topology on $\mathcal{O}_Z(Y)$ is that having as subbasis all sets (\mathcal{H}, U) , where $\mathcal{H} \in t$ and $U \in \mathcal{O}(Z)$. The topology $\tau(t)$ is called dual to t (see [6]).

Let τ be a topology on $\mathcal{O}_Z(Y)$ and t a topology on C(Y,Z). If $\tau = \tau(t)$ and $t = t(\tau)$, then the pair (τ, t) is called a pair of mutually dual topologies (see [6]).

Let X be a space and $F: X \times Y \to Z$ a continuous map. We denote by \overline{F} the map of $X \times \mathcal{O}(Z)$ into $\mathcal{O}_Z(Y)$, defined by $\overline{F}(x,U) = F_x^{-1}(U)$ for every $x \in X$ and $U \in \mathcal{O}(Z)$.

Let X be a space and $G: X \to C(Y, Z)$ a map. We denote by \overline{G} the map of $X \times \mathcal{O}(Z)$ into $\mathcal{O}_Z(Y)$, defined by $\overline{G}(x, U) = (G(x))^{-1}(U)$ for every $x \in X$ and $U \in \mathcal{O}(Z)$.

Let τ be a topology on $\mathcal{O}_Z(Y)$. We say that a map M of $X \times \mathcal{O}(Z)$ into $\mathcal{O}_Z(Y)$ is continuous with respect to the first variable if for every fixed element U of $\mathcal{O}(Z)$, the map $M_U: X \to (\mathcal{O}_Z(Y), \tau)$, defined by $M_U(x) = M(x, U)$ for every $x \in X$, is continuous. We denote by $CF(X \times \mathcal{O}(Z), \mathcal{O}_Z(Y))$ the set of all continuous maps with respect to the first variable from the set $X \times \mathcal{O}(Z)$ to $\mathcal{O}_Z(Y)$.

DEFINITION 1 (see [6]). — A topology τ on $\mathcal{O}_Z(Y)$ is called \mathcal{A} -proper if for every space $X \in \mathcal{A}$ the continuity of a map $F: X \times Y \to Z$ implies the continuity with respect to the first variable of the map $\overline{F}: X \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \tau)$. For $\mathcal{A} = \{X\}$, we write X-proper instead of \mathcal{A} -proper.

In the set $\mathcal{O}_Z(Y)$ there exists the finest \mathcal{A} -proper topology which is denoted by $\tau(\mathcal{A})$ (see [6]).

DEFINITION 2 (see [6]). – A topology τ on $\mathcal{O}_Z(Y)$ is called A-admissible if for every space $X \in \mathcal{A}$ and for every map $G: X \to C(Y, Z)$ the continuity with respect to the first variable of the map $\overline{G}: X \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \tau)$ implies the continuity of the map $\widetilde{G}: X \times Y \to Z$. For $\mathcal{A} = \{X\}$, we write X-admissible instead of A-admissible.

If \mathcal{A} is the family of all spaces, then the \mathcal{A} -proper (respectively, \mathcal{A} -admissible) topology τ on $\mathcal{O}_Z(Y)$ is called *proper* (respectively, *admissible*).

In this paper we continue the study of the A-proper and A-admissible topologies on $\mathcal{O}_Z(Y)$, where A is an arbitrary family of spaces, initiated in [6] and we offer new results concerning the finest X-proper topology $\tau(\{X\})$ on $\mathcal{O}_Z(Y)$ for several metrizable spaces X.

2. – On A-proper and A-admissible topologies

In this section we describe some properties of A-proper and A-admissible topologies on $\mathcal{O}_Z(Y)$, where A is an arbitrary family of spaces.

THEOREM 2.1. – Let A be an arbitrary family of spaces, τ a topology on $\mathcal{O}_Z(Y)$, and e the map from $\mathcal{O}_Z(Y) \times Y$ to Z, defined by $e(f^{-1}(U), y) = f(y)$ for every $y \in Y$ and $f^{-1}(U) \in \mathcal{O}_Z(Y)$. If the map e is continuous, then the topology τ is A-admissible.

PROOF. – Let $X \in \mathcal{A}$ and $G: X \to C(Y, Z)$ be a continuous map such that the corresponding

$$\overline{G}: X \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \tau)$$

is continuous with respect to the first variable. For every $U \in \mathcal{O}(Z)$ the map $\overline{G}_U: X \to (\mathcal{O}_Z(Y), \tau)$ is continuous. Also, the identity map $id: Y \to Y$ is continuous. Thus, the map

$$\overline{G}_U \times id : X \times Y \to \mathcal{O}_Z(Y) \times Y$$

is continuous for every $U \in \mathcal{O}(Z)$ and, therefore, the map

$$e \circ (\overline{G}_U \times id) : X \times Y \to Z$$

is continuous for every $U \in \mathcal{O}(Z)$. We observe that

$$e \circ (\overline{G}_U \times id)(x, y) = e((\overline{G}_U \times id)(x, y)) = e(\overline{G}_U(x), id(y))$$

= $e(G(x)^{-1}(U), y) = G(x)(y) = \widetilde{G}(x, y),$

for every $(x, y) \in X \times Y$. Thus, the map \widetilde{G} is continuous and, therefore, the topology τ is A-admissible.

THEOREM 2.2. – Let τ be a topology on $\mathcal{O}_Z(Y)$.

- (1) If τ is larger than an A-admissible topology, then τ is also A-admissible.
- (2) If τ is smaller than an A-proper topology, then τ is also A-proper.

PROOF. - (1) Let τ' be an \mathcal{A} -admissible topology on $\mathcal{O}_Z(Y)$ such that $\tau' \subseteq \tau$. By Lemma 4.2 of [6] we have $t(\tau') \subseteq t(\tau)$. Also, by Theorem 3.9 of [6], the topology $t(\tau')$ is \mathcal{A} -admissible. Since $t(\tau') \subseteq t(\tau)$, the topology $t(\tau)$ is \mathcal{A} -admissible (see [5]). Therefore, by Theorem 3.9 of [6], the topology τ is \mathcal{A} -admissible.

(2) Let τ' be an \mathcal{A} -proper topology and τ be a topology on $\mathcal{O}_Z(Y)$ such that $\tau \subseteq \tau'$. By Lemma 4.2 of [6] we have $t(\tau) \subseteq t(\tau')$. Also, by Theorem 3.5 of [6], the topology $t(\tau')$ is \mathcal{A} -proper. Since $t(\tau) \subseteq t(\tau')$, the topology $t(\tau)$ is \mathcal{A} -proper (see [5]). Therefore, by Theorem 3.5 of [6], the topology τ is \mathcal{A} -proper.

COROLLARY 2.3. – Let τ be a topology on $\mathcal{O}_Z(Y)$.

- (1) If τ is larger than an admissible topology, then τ is also admissible.
- (2) If τ is smaller than a proper topology, then τ is also proper.

THEOREM 2.4. – Let (t, τ) and (t_1, τ_1) two pairs of mutual dual topologies such that $C_{t(\tau)}(Y, Z) \in A$. If τ is A-admissible and τ_1 A-proper topology, then $\tau_1 \subseteq \tau$.

PROOF. – By Theorems 3.5 and 3.9 of [6] the topologies $t(\tau) = t$ and $t(\tau_1) = t_1$ are \mathcal{A} -admissible and \mathcal{A} -proper, respectively. Since $C_{t(\tau)}(Y,Z) \in \mathcal{A}$ we have $t(\tau_1) = t_1 \subseteq t(\tau) = t$. Indeed, let

$$G: C_t(Y, Z) \to C_t(Y, Z)$$

be the identity map. Since t is an A-admissible topology on C(Y, Z) and $C_t(Y, Z) \in A$ we have that the map

$$\widetilde{G}:C_t(Y,Z) imes Y o Z$$

is continuous. Also, since the topology t_1 is \mathcal{A} -proper, the map

$$\widehat{\widetilde{G}}: C_t(Y,Z) \to C_{t_1}(Y,Z)$$

is continuous. We observe that $\widehat{\widetilde{G}}(f) = f$ for every $f \in C(Y, \mathbb{Z})$. Thus, $t_1 \subseteq t$. Now, by Lemma 4.3 of [6],

$$\tau(t_1) = \tau_1 \subset \tau(t) = \tau.$$

COROLLARY 2.5. – Let (t, τ) and (t_1, τ_1) two pairs of mutual dual topologies. If the topologies τ and τ_1 on $\mathcal{O}_Z(Y)$ are admissible and proper, respectively, then $\tau_1 \subseteq \tau$.

THEOREM 2.6. – Let A_i , $i \in I$, be a family of spaces. Then, the following propositions are true:

(1) If
$$A = \bigcup \{A_i : i \in I\}$$
, then

$$\tau(\mathcal{A}) = \bigcap \{ \tau(\mathcal{A}_i) : i \in I \}.$$

(2) If
$$A = \bigcap \{A_i : i \in I\} \neq \emptyset$$
, then

$$\vee \{\tau(\mathcal{A}_i): i \in I\} \subseteq \tau(\mathcal{A}).$$

(3)
$$\tau(\mathcal{A}) = \bigcap \{ \tau(\{X\}) : X \in \mathcal{A} \}.$$

PROOF. – (1) Since $\mathcal{A} = \bigcup \{\mathcal{A}_i : i \in I\}$ we have that every topology which is \mathcal{A} -proper is also \mathcal{A}_i -proper, for every $i \in I$. Thus, the finest \mathcal{A} -proper topology

 $\tau(\mathcal{A})$ is \mathcal{A}_i -proper and, therefore,

$$\tau(\mathcal{A}) \subseteq \tau(\mathcal{A}_i)$$
,

for every $i \in I$. So, we have

$$\tau(A) \subseteq \bigcap \{\tau(A_i) : i \in I\}.$$

For the converse relation it suffices to prove that the topology

$$\bigcap \{\tau(\mathcal{A}_i): i \in I\}$$

is \mathcal{A} -proper. Let $X \in \mathcal{A}$ and let $F: X \times Y \to Z$ be a continuous map. We prove that the map

$$\overline{F}: X \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \bigcap \{\tau(\mathcal{A}_i) : i \in I\})$$

is continuous with respect to the first variable. Since $X \in \mathcal{A}$, there exists $i \in I$ such that $X \in \mathcal{A}_i$. This means that the map

$$\overline{F}: X \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \tau(\mathcal{A}_i))$$

is continuous with respect to the first variable. Since

$$\bigcap \{\tau(\mathcal{A}_i): i \in I\} \subseteq \tau(\mathcal{A}_i),$$

the identity map

$$id: (\mathcal{O}_Z(Y), \tau(\mathcal{A}_i)) \to (\mathcal{O}_Z(Y), \bigcap \{\tau(\mathcal{A}_i) : i \in I\})$$

is continuous. Clearly, by the above fact, the map \overline{F} is continuous with respect to the first variable. Thus, the topology

$$\bigcap \{ \tau(\mathcal{A}_i) : i \in I \}$$

is A-proper.

(2) The proof of this follows by the fact that the topology

$$\vee \{\tau(\mathcal{A}_i): i \in I\}$$

is A-proper.

(3) It follows from (1).

DEFINITION 3. – Let A_1 and A_2 be two classes of spaces. We say that these families are equivalent and write $A_1 \sim A_2$ if and only if:

- (a) a topology τ on $\mathcal{O}_Z(Y)$ is \mathcal{A}_1 -proper if and only if τ is \mathcal{A}_2 -proper and
- (β) a topology τ on $\mathcal{O}_Z(Y)$ is \mathcal{A}_1 -admissible if and only if τ is \mathcal{A}_2 -admissible.

THEOREM 2.7. – Let A be a family of spaces. Then, there exists a space X(A) such that

$$A \sim \{X(A)\}$$

PROOF. — Let T_p^c be the set of all topologies on $\mathcal{O}_Z(Y)$ which are not \mathcal{A} -proper and let T_{ad}^c be the set of all topologies on $\mathcal{O}_Z(Y)$ which are not \mathcal{A} -admissible. For each topology $\tau \in T_p^c$ there exists in \mathcal{A} a space X_τ^p such that τ is not X_τ^p -proper. Similarly, for each $\tau \in T_{ad}^c$ there exists in \mathcal{A} a space X_τ^a such that τ is not X_τ^a -admissible. Let

$$\mathcal{A}_0 = \{X^p_\tau : \tau \in T^c_p\} \cup \{X^a_\tau : \tau \in T^c_{ad}\}.$$

We can suppose that the spaces in A_0 are pairwise disjoint. Let X(A) be the free union of all spaces in A_0 . We prove that

$$A \sim \{X(A)\}$$

Let τ be an \mathcal{A} -proper topology on $\mathcal{O}_Z(Y)$, $F: X(\mathcal{A}) \times Y \to Z$ a continuous map, and $X \in \mathcal{A}$. We prove that the topology τ is $X(\mathcal{A})$ -proper. In order to show that the map

$$\overline{F}: X(\mathcal{A}) \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \tau)$$

is continuous with respect to the first variable, let F_X be the restriction of F on $X \times Y \subseteq X(A) \times Y$. By continuity of F_X , it follows that

$$\overline{F}_X: X \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \tau)$$

is continuous with respect to the first variable. Since X(A) is a free union of $X \in A_0$, we have that

$$\overline{F}: X(\mathcal{A}) \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \tau)$$

is continuous with respect to the first variable. Thus, the topology τ on $\mathcal{O}(Z)$ is $X(\mathcal{A})$ -proper.

Now, let τ be a $X(\mathcal{A})$ -proper topology on $\mathcal{O}_Z(Y)$. We assume that τ is not an \mathcal{A} -proper topology. Then $\tau \in T_p^c$ and so τ is not X_τ^p -proper. Thus there exists a continuous map

$$F_{X^p_{ au}}: X^p_{ au} imes Y o Z$$

such that the map

$$\overline{F}_{X^p_{\overline{\iota}}}: X^p_{\overline{\iota}} imes \mathcal{O}(Z) o (\mathcal{O}_Z(Y), \overline{\iota})$$

is not continuous with respect to the first variable. The map $F_{X^p_{\tau}}$ can be extended to a continuous map $F: X(\mathcal{A}) \times Y \to Z$. Since the restriction of \overline{F} to $X^p_{\tau} \times \mathcal{O}(Z)$ is not continuous, it follows that \overline{F} also is not continuous, which contradicts our assumption that τ is a $X(\mathcal{A})$ -proper topology.

In a similar way we can prove that a topology τ on $\mathcal{O}_Z(Y)$ is \mathcal{A} -admissible if and only if τ is $X(\mathcal{A})$ -admissible.

Corollary 2.8. – There exists a space X such that:

- (a) a topology on $\mathcal{O}_Z(Y)$ is proper if and only if this topology is $\{X\}$ -proper and
- (β) a topology on $\mathcal{O}_Z(Y)$ is admissible if and only if this topology is $\{X\}$ -admissible.

DEFINITION 4. – Let τ be a proper topology on $\mathcal{O}_Z(Y)$. The exponential function

$$E^{\tau}: C(X \times Y, Z) \to CF(X \times \mathcal{O}(Z), \mathcal{O}_Z(Y))$$

is defined by $E^{\tau}(F) = \overline{F}$, for every $F \in C(X \times Y, Z)$.

We note that since τ is proper this function is well defined.

It is easy to verify the following theorem:

Theorem 2.9. – If for every space X the mapping E^{τ} is onto, then τ is an admissible topology.

Theorem 2.10. – The following propositions are true:

- (1) A topology τ on $\mathcal{O}_Z(Y)$ is proper if and only if it is A-proper, where A is the family of all spaces having exactly one non-isolated point.
- (2) A topology τ on $\mathcal{O}_Z(Y)$ is admissible if and only if is A-admissible, where A is the family of all spaces having exactly one non-isolated point.

PROOF. — To prove (1), let τ be a proper topology on $\mathcal{O}_Z(Y)$. By Theorem 3.9 of [6] the topology τ on $\mathcal{O}_Z(Y)$ is proper if and only if the topology $t(\tau)$ on C(Y,Z) is proper. Also, by Theorem II.2 of [5], $t(\tau)$ is proper if and only $t(\tau)$ is \mathcal{A} -proper, where \mathcal{A} is the family of all spaces having exactly one non-isolated point. Thus, the topology τ on $\mathcal{O}_Z(Y)$ is proper if and only if it is \mathcal{A} -proper, where \mathcal{A} is the family of all spaces having exactly one non-isolated point.

In a similar way (2) can be shown.

3. – The finest X-proper topology on $\mathcal{O}_Z(Y)$

In this section we study the finest X-proper topology on $\mathcal{O}_Z(Y)$ for several metrizable spaces X.

THEOREM 3.1. — Let H be a quotient map (see [3], page 125) of a space X_1 onto a space X_2 . Then, we have

$$\tau(\{X_1\}) \subseteq \tau(\{X_2\}).$$

PROOF. – We prove that the topology $\tau(\{X_1\})$ on $\mathcal{O}_Z(Y)$ is X_2 -proper. Let $F: X_2 \times Y \to Z$ be a continuous map. We prove that the corresponding map

$$\overline{F}: X_2 \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \tau(\{X_1\}))$$

is continuous with respect to the first variable.

Let $U \in \mathcal{O}(Z)$. We prove that the map

$$\overline{F}_U: X_2 \to (\mathcal{O}_Z(Y), \tau(\{X_1\}))$$

is continuous.

We consider the map $F^1: X_1 \times Y \to Z$ defined by

$$F^{1}(x, y) = F(H(x), y),$$

for every $(x,y) \in X_1 \times Y$. The map F^1 is continuous. Indeed, let

$$F^1(x,y) = F(H(x),y) = z \in Z$$

and U_z be an open neighborhood of z in Z. Since F is continuous at the point $(H(x), y) \in X_2 \times Y$, there are open neighborhoods $U_{H(x)}$ and U_y of H(x) and y, respectively such that

$$F(U_{H(x)} \times U_y) \subseteq U_z$$
.

Since $H: X_1 \to X_2$ is a quotient map, we have that H is continuous. Thus, there exists an open neighborhood U_x of x in X_1 such that $H(U_x) \subseteq U_{H(x)}$.

For the open neighborhood $U_x \times U_y$ of (x, y) in $X_1 \times Y$ we have

$$F^1(U_x \times U_y) = F(H(U_x) \times U_y) \subseteq F(U_{H(x)} \times U_y) \subseteq U_z.$$

Thus, the map F^1 is continuous.

Since the topology $\tau(\{X_1\})$ is X_1 -proper, the map

$$\overline{F^1}: X_1 \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \tau(\{X_1\}))$$

is continuous with respect to the first variable. Thus, for every $U \in \mathcal{O}(Z)$ the map

$$\overline{F^1}_U: X_1 \to (\mathcal{O}_Z(Y), \tau(\{X_1\}))$$

is continuous.

Let $U \in \mathcal{O}(Z)$. Then for every $x \in X_1$ we have

$$(\overline{F}_U \circ H)(x) = \overline{F}_U(H(x)) = \overline{F}(H(x), U) = \overline{F^1}_U(x).$$

So we have $\overline{F^1}_U = \overline{F}_U \circ H$, for every $U \in \mathcal{O}(Z)$.

Since the map H is quotient, $\overline{F^1}_U$ is continuous, and $\overline{F^1}_U = \overline{F}_U \circ H$, we have that the map \overline{F}_U is continuous. Thus, the topology $\tau(\{X_1\})$ is X_2 -proper and, therefore,

$$\tau(\{X_1\}) \subseteq \tau(\{X_2\}).$$

COROLLARY 3.2. – Let X_1 and X_2 be two topological spaces. If there exists a quotient map H_1 of X_1 onto X_2 and a quotient map H_2 of X_2 onto X_1 , then

$$\tau(\{X_1\}) = \tau(\{X_2\}).$$

COROLLARY 3.3. — Let X be a connected locally connected compact metrizable infinite space X. Then, we have

$$\tau(\{X\}) = \tau(\{[0,1]\}).$$

COROLLARY 3.4. – Let C be the Cantor set. Then, we have

$$\tau(\{C\}) \subseteq \tau(\{[0,1]\}),$$

COROLLARY 3.5. – Let X be a sequential space (see [3], page 134) and β the family of all sequences x_0, x_1, x_2, \ldots of points of X such that $x_0 \in \lim x_i$. For every $c = \{x_i\} \in \beta$ let $X_c = \{c\} \times \{0, 1, \frac{1}{2}, \ldots\}$, where $\{c\}$ is the one-point discrete space and $\{0, \frac{1}{2}, \ldots\}$ has the topology of subspace of R, where R is the set of all real numbers with the usual topology. Then, we have

$$\tau(\{\bigoplus_{c\in\beta}X_c\})\subseteq\tau(\{X\}).$$

PROOF. – Let $f_c: X_c \to X$ be the map definened by

$$f_c((c,0)) = x_0 \text{ and } f_c((c,\frac{1}{i})) = x_i, \text{ for every } i = 1,2,\ldots.$$

The map

$$f_X = \nabla_{c \in \beta} f_c : \bigoplus_{c \in \beta} X_c \to X$$

(see [3], page 134) is a quotient map. Thus, by Theorem 3.1, we have

$$\tau(\{\oplus_{c\in\beta}X_c\})\subseteq\tau(\{X\}).$$

THEOREM 3.6. – Let X be a locally compact space and $f: Y \to Z$ a quotient map. Then, we have

$$\tau(\{X\times Y\})\subseteq \tau(\{X\times Z\}).$$

PROOF. – The map

$$id_X \times f : X \times Y \to X \times Z$$
,

where $id_X: X \to X$ is the identity map, is a quotient map (see [3], page 200). Thus, by Theorem 3.1, we have

$$\tau(\{X \times Y\}) \subseteq \tau(\{X \times Z\}).$$

DEFINITION 5. – Let R be the set of real numbers with the usual topology. The subspace of R^{n+1} , where n is a positive integer, consisting of all points $(x_1, x_2, ..., x_{n+1})$ such that $x_1^2 + x_2^2 + ... + x_{n+1}^2 = 1$ is called the unit n-sphere and is denoted by S^n . The 1-sphere is a circle and the cartesian product $S^1 \times S^1$ is a torus.

COROLLARY 3.7. – Let X be an arbitrary discrete space. Then, we have

- (1) $\tau(\{X \times R\}) \subseteq \tau(\{X \times S^1\})$.
- (2) $\tau(\{X \times [0,1]\}) \subseteq \tau(\{X \times S^1\}).$
- (3) $\tau(\{X \times [0,1] \times [0,1]\}) \subseteq \tau(\{X \times S^1 \times S^1\}).$

PROOF. – (1) Let $f: R \to S^1$ be a map defined by

$$f(x) = (\cos 2\pi x, \sin 2\pi x),$$

for every $x \in R$. The map f is a quotient map (see [3], page 127). Also, the space X is locally compact. Thus, by Theorem 3.6,

$$\tau(\{X \times R\}) \subseteq \tau(\{X \times S^1\}).$$

(2) We consider the map $f: R \to S$ of (1). Then, the map

$$g = f|_{[0,1]} : [0,1] \to S^1$$

is a quotient map (see [3], page 127). Since the space X is locally compact, by Theorem 3.6, we have that

$$\tau(\{X \times [0,1]\}) \subseteq \tau(\{X \times S^1\}).$$

(3) We consider the map $g = f|_{[0,1]} : [0,1] \to S^1$ of (2). The map

$$g \times g : [0,1] \times [0,1] \rightarrow S^1 \times S^1$$

is a quotient map (see [3], page 127)). Thus, by Theorem 3.6,

$$\tau(\{X\times [0,1]\times [0,1]\})\subseteq \tau(\{X\times S^1\times S^1\}).$$

In a similar way the following corollary can be shown.

COROLLARY 3.8. – The following relations are true:

- (1) $\tau(\{R^{n+1}\}) \subseteq \tau(\{R^n \times S^1\})$, and
- (2) $\tau(\{R^n \times [0,1] \times [0,1]\}) \subseteq \tau(\{R^n \times S^1 \times S^1\}).$

THEOREM 3.9. — Let X be a Hausdorff space, C(X) the family of all non-empty compact subspaces of X, and $X^* = \bigoplus_{K \in C(X)} K$ (see [3]). If a set $A \subseteq X$ is closed provided that the intersections $A \cap K$ are closed in K for all $K \in C(X)$, then

$$\tau(\lbrace X^* \rbrace) \subseteq \tau(\lbrace X \rbrace).$$

Proof. – We consider the map

$$f = \nabla_{K \in C(X)} i_K : X^* \to X,$$

where i_K is the embedding of the space K into the space X (see [3], page 201). The map f is a quotient map. Thus, by Theorem 3.1, we have

$$\tau(\{X^*\}) \subseteq \tau(\{X\}).$$

THEOREM 3.10. – Let $f_i: X_i \to Y_i$ be quotient maps for i = 1, 2 and X_1 , $X_1 \times Y_2$ k-spaces. Then, we have

$$\tau(\{X_1 \times X_2\}) \subset \tau(\{Y_1 \times Y_2\}).$$

PROOF. – We consider the map

$$f = f_1 \times f_2 : X_1 \times X_2 \rightarrow Y_1 \times Y_2.$$

By [3] (Theorem 3.3.28, page 203) f is a quotient map. Thus, by Theorem 3.1, we have

$$\tau(\{X_1 \times X_2\}) \subseteq \tau(\{Y_1 \times Y_2\}).$$

THEOREM 3.11. – Let $f_i: X_i \to Y_i$ be quotient maps for $i = 1, 2, X_1$ a locally compact space, and Y_2 a k-space. Then, we have

- (1) $\tau(\{X_1 \times X_2\}) \subseteq \tau(\{X_1 \times Y_2\}).$
- (2) $\tau(\{X_1 \times X_1\}) \subseteq \tau(\{X_1 \times Y_1\}).$
- (3) $\tau(\{X_1 \times Y_2\}) \subseteq \tau(\{Y_1 \times Y_2\}).$
- (4) $\tau(\{X_1 \times X_2\}) \subseteq \tau(\{Y_1 \times Y_2\}).$

Proof. - (1) We consider the map

$$id_{X_1} \times f_2 : X_1 \times X_2 \longrightarrow X_1 \times Y_2$$
,

where $id_{X_1}: X_1 \to X_1$ be the identity map. Then, by Theorem 3.3.17 of [3], the map $id_{X_1} \times f_2$ is a quotien map. Thus, by Theorem 3.1, we have

$$\tau(\{X_1 \times X_2\}) \subseteq \tau(\{X_1 \times Y_2\}).$$

- (2) In a similar way (2) can be shown.
- (3) We consider the map

$$f_1 \times id_{Y_2} : X_1 \times Y_2 \to Y_1 \times Y_2$$

where $id_{Y_2}: Y_2 \to Y_2$ be the identity map. Then, $f_1 \times id_{Y_2}$ is a quotien map (see [3], page 204). Thus, by Theorem 3.1, we have

$$\tau(\{X_1 \times Y_2\}) \subseteq \tau(\{Y_1 \times Y_2\}).$$

(4) We consider the map

$$f = (f_1 \times id_{Y_2}) \circ (id_{X_1} \times f_2).$$

Since the maps $f_1 \times id_{Y_2}$ and $id_{X_1} \times f_2$ are quotient, the map f is quotient (see [3]). Thus, by Theorem 3.1, the relation (4) of the theorem is true.

DEFINITION 6 (see [3], page 178). – A space X is called a sequential space if a set $A \subseteq X$ is closed if and only if together with any sequence it contains all limits.

THEOREM 3.12. – Let X be a sequential space and let Seq the subspace of the real line (with the usual topology) consisting of the points $0, 1, \frac{1}{2}, \frac{1}{3}, \dots$ Then,

$$\tau(\{Seq\}) \subseteq \tau(\{X\}).$$

PROOF. – We prove that the topology $\tau(\{Seq\})$ on $\mathcal{O}_Z(Y)$ is X-proper. Let $F: X \times Y \to Z$ be a continuous map. We prove that the map

$$\overline{F}: X \times \mathcal{O}(Z) \to (\mathcal{O}_Z(Y), \tau(\{Seq\}))$$

is continuous with respect to the first variable. Let $U \in \mathcal{O}(Z)$.

Since the space X is sequential, the map

$$\overline{F}_U: X \to (\mathcal{O}_Z(Y), \tau(\{Seq\}))$$

is continuous if and only if for every net $\phi: N \to X$, where N is the set of all positive integers, we have

$$\overline{F}_U(\lim (\phi(i))) \subseteq \lim \overline{F}_U(\phi(i)).$$

(see [3], Proposition 1.6.15).

Let $\phi: N \to X$ be a net in X and $x \in \lim \phi(i)$. We prove that

$$\overline{F}_U(x) \in \lim \overline{F}_U(\phi(i)).$$

Let

$$\phi_{Seq}: Seq \rightarrow X,$$

be the map defined by $\phi_{Seq}(i/i) = \phi(i)$, for every i = 1, 2, ..., and $\phi_{Seq}(0) = x$. By Proposition 1.6.6 of [3] and by the fact that X is a sequential space, we have that the map ϕ_{Seq} is continuous.

Let

$$F_{Seq}: Seq \times Y \rightarrow Z$$

be the map defined by

$$F_{Seq}(x_1, y_1) = F(\phi_{Seq}(x_1), y_1),$$

for every $(x_1, y_1) \in Seq \times Y$. Since the maps F and ϕ_{Seq} are continuous, the map F_{Seq} is also continuous.

Since the topology $\tau(\{Seq\})$ is Seq-proper we have that the map

$$\overline{F_{Seq}}: Seq \times \mathcal{O}(Z) \rightarrow (\mathcal{O}_Z(Y), \tau(\{Seq\}))$$

is continuous with respect to the first variable.

Thus, for every $U \in \mathcal{O}(Z)$, the map

$$\overline{F_{Seq}}_{II}: Seq \rightarrow (\mathcal{O}_Z(Y), \tau(\{Seq\}))$$

is continuous. For every $x_1 \in Seq$, we have

$$(\overline{F}_{U} \circ \phi_{Seg})(x_1) = \overline{F}_{U}(\phi_{Seg}(x_1)) = \overline{F}(\phi_{Seg}(x_1), U) = \overline{F}_{Seg}(x_1).$$

Thus,

$$\overline{F_{Seq}}_U = \overline{F}_U \circ \phi_{Seq}.$$

So, we have

$$\begin{split} \overline{F_{Seq}}_{U}(0) &= (\overline{F}_{U} \circ \phi_{Seq})(0) = \overline{F}_{U}(\phi_{Seq}(0)) \\ &= \overline{F}_{U}(x) \in \lim \overline{F_{Seq}}_{U}(1/i) = \lim (\overline{F}_{U} \circ \phi_{Seq})(1/i) \\ &= \lim \overline{F}_{U}(\phi_{Seq}(1/i)) = \lim \overline{F}_{U}(\phi(i)) \end{split}$$

and, therefore,

$$\overline{F}_U(\lim (\phi(i))) \subseteq \lim \overline{F}_U(\phi(i)).$$

This means that the map

$$\overline{F}_U: X \to (\mathcal{O}_Z(Y), \tau(\{Seq\}))$$

is continuous. Thus, the topology $\tau(\{Seq\})$ on $\mathcal{O}_Z(Y)$ is X-proper and

$$\tau(\{Seq\} \subseteq \tau(\{X\}).$$

COROLLARY 3.13. – Let X be a compact metrizable space having infinitely components. Then, we have then

$$\tau(\{Seq\})\subseteq \tau(\{X\}).$$

COROLLARY 3.14. – Let C be the Cantor set. Then, we have

$$\tau(\{Seq\}) \subseteq \tau(\{C\}).$$

Acknowledgements. We are grateful to the referee for a number of helpful suggestions that contributed to the improvement of the article.

REFERENCES

- R. Arens, A topology for spaces of transformations, Ann. of math., 47 (1946), 480-495.
- [2] R. Arens J. Dugundji, Topologies for function spaces, Pacific J. Math., 1 (1951), 5-31.
- [3] R. Engelking, General Topology, Warszawa 1977.
- [4] R. H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc., 51 (1945), 429-432.
- [5] D. N. GEORGIOU S. D. ILIADIS B. K. PAPADOPULOS, Topologies on function spaces, Studies in Topology, VII, Zap. Nauchn. Sem. S.-Peterburg Otdel. Mat. Inst. Steklov (POMI), 208 (1992), 82-97. J. Math. Sci., 81, No. 2 (1996), 2506-2514.
- [6] D. N. GEORGIOU S. D. ILIADIS B. K. PAPADOPOULOS, On dual topologies, Topology and its Applications, 140 (2004), 57-68.
- [7] R. McCoy I. Ntantu, Topological properties of spaces of continuous functions, Lecture Notes in Mathematics, 1315, Springer Verlag.

Dimitris N. Georgiou: Department of Mathematics, University of Patras 265 04 Patras, Greece E-mail: georgiou@math.upatras.gr

Received May 6, 2011 and in revised form October 24, 2011