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Topologies on Hyperspaces'

DimiTRrIS N. GEORGIOU

Abstract. — Let Y and Z be two arbitrary fixed topological spaces, C(Y,Z) the set of all
continuous maps from Y to Z, and Oz(Y) the set consisting of all open subsets V of Y
suchthat V =f~Y(U), wheref € C(Y,Z) and U is an open subset of Z. In this paper we
continue the study of the A-proper and A-admissible topologies on Oz(Y), where Ais
an arbitrary family of spaces, mitiated in [6] and we offer new results concerning the
finest X-proper topology 1({X}) on Oz(Y) for several metrizable spaces X.

1. — Preliminaries

We denote by Y and Z two arbitrary fixed topological spaces and by C(Y, Z)
the set of all continuous maps of Y into Z. If ¢ is a topology on the set C(Y, 2),
then the corresponding topological space is denoted by Cy(Y, Z).

By O(Y) we denote the family of all open subsets of ¥ and by Oz(Y) the set

{f X)) :feC¥,Z) and U € OZ)}.

Let X be a space, F : X x Y — Z a continuous map, and x € X. Let F;, be the
map of Y into Z, defined by F,(y) = F(x,y) for every y € Y and F the map of X
into the set C(Y, Z), defined by F’(m) = F, for every x € X.

Let G bqva map of X into C(Y, Z). We denote by G the map of X x Y into Z,
defined by G(x,y) = G(x)(y) for every (x,y) € X x Y.

A topology t on C(Y, Z) is called proper if for every space X, the continuity of a
map F: X x Y — Z implies that of the map F:X —C(Y,2). A topology ¢ on
C(Y,Z) is called admissible if for every space X, the continuity of a map
G : X — Cy(Y,Z)implies that of themap G : X x Y — Z (see [1], [2], [4], and [T7]).

If in the above definitions the space X is assumed to belongs to a family A of
spaces, then the topology t is called A-proper (respectively, A-admissible) (see
[5]). For A = {X}, we write X-proper and X-admissible instead of .A-proper and
A-admissible, respectively.

Let H C Oz(Y), H C C(Y,Z), and U € O(Z). We set

(H,U)={feC¥,Z):f1U) e H}
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and
H,U) = {f’l(U) :f € H}.

Let 7 be a topology on Oz(Y). The #(r) topology on C(Y, %) is that having as
subbasis all sets (I, U), where Il € t and U € O(Z). The topology t(z) is called
dual to t (see [6]).

Let ¢ be a topology on C(Y, Z). The 1(t) topology on Oz(Y) is that having as
subbasis all sets (H, U), where H € t and U € O(Z)}. The topology (¢) is called
dual to t (see [6]).

Let 7 be a topology on Oz(Y) and ¢ a topology on C(Y,Z). If = = ©(f) and
t = t(7), then the pair (z,t) is called a pair of mutually dual topologies (see [6]).

Let X be a space and F : X x Y — Z a continuous map. We denote by F the
map of X x O(Z) into Oz(Y), defined by F,U) = Fg;l(U) for every & € X and
U e 02).

Let X be a space and G : X — C(Y,Z) a map. We denote by G the map of
X x O(Z) into Oz(Y), defined by Gxe,U) = (G) " N(U) for every x € X and
U € O2).

Let 7 be a topology on O4(Y). We say that a map M of X x O(Z) into O4(Y) is
continuous with respect to the first variable if for every fixed element U of O(%),
the map My : X — (Oz(Y), 1), defined by My(x) = M(x, U) for every x € X, is
continuous. We denote by CF(X x OZ), Oz(Y)) the set of all continuous maps
with respect to the first variable from the set X x O(Z) to O4(Y).

DEFINITION 1 (see [6]). — A topology t on Oz(Y) is called A-proper if for every
space X € Athe continuity of a map F : X x Y — Z implies the continuity with
respect to the first variable of the map F:X xOZ) — (04),7). For A = {X},
we write X-proper instead of A-proper.

In the set O4(Y) there exists the finest .A-proper topology which is denoted
by (A) (see [6]).

DEFINITION 2 (see [6]). — A topology t on Oz(Y) is called A-admissible if for
every space X € A and for every map G : X — C(Y,Z) the continuity with re-
spect to the first variable of the map G:X x OZ) — (04(Y),7) implies the
continuity of the map G : X x Y — Z. For A = {X}, we write X-admissible in-
stead of A-admissible.

If Ais the family of all spaces, then the A-proper (respectively, .A-admissible)
topology 7 on Oz(Y) is called proper (respectively, admissible).

In this paper we continue the study of the A-proper and .A-admissible
topologies on Oz(Y), where A is an arbitrary family of spaces, initiated in [6] and
we offer new results concerning the finest X-proper topology t({X}) on Oz(Y)
for several metrizable spaces X.
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2. — On A-proper and A-admissible topologies

In this section we describe some properties of A-proper and .4-admissible
topologies on Oz(Y), where A is an arbitrary family of spaces.

THEOREM 2.1. — Let A be an arbitrary family of spaces, T a topology on Oz(Y),
and e the map from Oz(Y) x Y to Z, defined by e(f~1(U),y) = f(y) for every
yeY and f~Y(U) € O4(Y). If the map e is continuous, then the topology t is
A-admissible.

ProOOF. — Let X € Aand G : X — C(Y, Z) be a continuous map such that the
corresponding

G: X x OZ) — (0z(Y),7)
is continuous with respect to the first variable. For every U € O(Z) the map
Gy : X — (Oz(Y), ) is continuous. Also, the identity map id:Y — Y is con-
tinuous. Thus, the map
Gy xid:XxY — Oz(Y)x Y
is continuous for every U € O(Z) and, therefore, the map
GO(EUX’L.d):XX Y7

is continuous for every U € O(Z). We observe that

eo (Gy x id)(w,y) =e((Gy x id)(x,y)) = e(Gy(x),idy))
=e(G@) U, y) = Ga)y) = Gz, y),

for every (x,y) € X x Y. Thus, the map G is continuous and, therefore, the to-
pology t is A-admissible.

THEOREM 2.2. — Let t be a topology on Oz(Y).

(1) Iftislarger than an A-admissible topology, then t is also A-admissible.
2) If © is smaller than an A-proper topology , then t is also A-proper.

ProoF. — (1) Let 7’ be an A-admissible topology on Oz(Y) such that 7’ C 7. By
Lemma 4.2 of [6] we have t(7') C (7). Also, by Theorem 3.9 of [6], the topology #(z’)
is A-admissible. Since t(z') C t(r), the topology t(r) is A-admissible (see [5]).
Therefore, by Theorem 3.9 of [6], the topology 7 is A-admissible.

(2) Let 7 be an A-proper topology and t be a topology on Oz(Y) such that
7 C 7. By Lemma 4.2 of [6] we have t(t) C t(z'). Also, by Theorem 3.5 of [6], the
topology t(z) is A-proper. Since t(z) C t(7’), the topology t(z) is A-proper (see [5]).
Therefore, by Theorem 3.5 of [6], the topology 7 is .A-proper.
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COROLLARY 2.3. — Let t be a topology on Oz(Y).

) If t is larger than an admissible topology, then t is also admissible.
(2) If 7 is smaller than a proper topology, then 1 is also proper.

THEOREM 2.4. — Let (t, 1) and (t1, 11) two pairs of mutual dual topologies such
that Cy (Y, Z) € A. If T is A-admissible and 1 A-proper topology, then t; C .

ProOF. — By Theorems 3.5 and 3.9 of [6] the topologies t(t) =t and t(r1) = t;
are A-admissible and .A-proper, respectively. Since Cy,(Y,Z) € A we have
t(r1) = t1 C t(r) = t. Indeed, let

G:CY,2) — (Y, 2)

be the identity map. Since ¢ is an .4-admissible topology on C(Y,Z) and
C(Y,Z) € A we have that the map

G:C\Y.Z)xY —Z
is continuous. Also, since the topology t; is A-proper, the map
G: CY,2) — Cy(Y,2)

is continuous. We observe that G( f)=fforeveryf € C(Y,Z). Thus, t; Ct. Now,
by Lemma 4.3 of [6],
tt) =1 C(t) =

COROLLARY 2.5. — Let (t, 7) and (t1, 71) two pairs of mutual dual topologies. If
the topologies t and t1 on Oz(Y) are admissible and proper, respectively, then
71 C1t

THEOREM 2.6. — Let A;, © € I, be a family of spaces. Then, the following pro-
positions are true:
M) If A=J{A;:iel}, then
o(A) = (x4 i e T},
@ IfA=N{Ai:tel} #0, then

V{t(Ay) 1 i € I} C t(A).

®3)
o(A) = [{t{X}: X € A}.

ProoOF. — (1) Since A = |J{A; : © € I} we have that every topology which is
A-proper is also A;-proper, for every 7 € I. Thus, the finest .A-proper topology



TOPOLOGIES ON HYPERSPACES 177
7(A) is A;-proper and, therefore,
©(A) C (A,
for every ¢ € I. So, we have
oA C (A i e ).
For the converse relation it suffices to prove that the topology
({4 i€ T}

is A-proper. Let X € Aand let F: X x Y — Z be a continuous map. We prove
that the map

F:X x 0Z) — Oz, {t(A):i e T})

is continuous with respect to the first variable. Since X € A, there exists i € I
such that X € A;. This means that the map

F: X x OZ) — (02(Y), 7(A)
is continuous with respect to the first variable. Since
[e(A) i e I} C (A,
the identity map
1 : (Oz(Y), 7(A) — (Ox(Y), ﬂ{T(Ai) ciel})

is continuous. Clearly, by the above fact, the map F is continuous with respect to
the first variable. Thus, the topology

({x(A4p i e I}

is A-proper.
(2) The proof of this follows by the fact that the topology

V{t(Ay) i e}

is A-proper.
(3) It follows from (1).

DEFINITION 3. — Let Ay and Az be two classes of spaces. We say that these
Sfamilies are equivalent and write A; ~ Ag if and only if:

() a topology © on Oz(Y) is A;—proper if and only if t is As—proper and
(B a topology © on Oz(Y) is A;—admissible if and only if 7 is
As—admissible.



178 DIMITRIS N. GEORGIOU

THEOREM 2.7. — Let A be a family of spaces. Then, there exists a space X(A)
such that

A ~ {X(A}

ProoF. — Let T}, be the set of all topologies on Oz(Y) which are not A-proper
and let 7¢, be the set of all topologies on Oz(Y) which are not .A-admissible. For
each topology t € T, there exists in A a space X? such that 7 is not X?-proper.
Similarly, for each 7 € T¢, there exists in A a space X? such that 7 is not X?-
admissible. Let

Ap=1{XP T e TSy U{X? 1 TSy)

We can suppose that the spaces in Ay are pairwise disjoint. Let X(A) be the
free union of all spaces in Ay. We prove that

A ~ {X(A}

Let t be an A-proper topology on Oz(Y), F : X(A) x Y — Z a continuous
map, and X € A. We prove that the topology t is X(A)-proper. In order to show
that the map

F:X(A) x OZ) — (0;(0),7)

is continuous with respect to the first variable, let F'x be the restriction of £’ on
X xY C X(A) x Y. By continuity of Fly, it follows that

Fx : X x O(Z) — (0z(Y),1)

is continuous with respect to the first variable. Since X(A) is a free union of
X € Ay, we have that

F : X(A) x O(Z) — (Oz(Y),7)

is continuous with respect to the first variable. Thus, the topology 7 on O(Z) is
X(A)-proper.

Now, let 7 be a X(A)-proper topology on O(Y). We assume that 7 is not an
A-proper topology. Then 7 € T, and so 7 is not X?-proper. Thus there exists a
continuous map

FXf XPxY —Z
such that the map
Fxf X‘)[O X O(Z) - (OZ(Y)7 T)

is not continuous with respect to the first variable. The map F'y» can be extended
to a continuous map F : X(A) x Y — Z. Since the restriction of F to XP x O(2)
is not continuous, it follows that F also is not continuous, which contradicts our
assumption that 7 is a X(A)-proper topology.
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In a similar way we can prove that a topology t on O4(Y) is A-admissible if
and only if 7 is X(A)-admissible.

COROLLARY 2.8. — There exists a space X such that:

() a topology on Oz(Y) is proper if and only if this topology is {X }—proper
and

() a topology on Oz(Y) is admissible if and only if this topology is {X}-
admissible.

DEFINITION 4. — Let t be a proper topology on Oz(Y). The exponential
Sfunction

E':CX xY,Z2) - CFX x OZ),04(Y))

is defined by E*(F) = F, for every F € C(X x Y, Z).

We note that since 7 is proper this function is well defined.
It is easy to verify the following theorem:

THEOREM 2.9. — If for every space X the mapping E* is onto, then t is an
admissible topology.

THEOREM 2.10. — The following propositions are true:

(1) A topology t on O4(Y) is proper if and only if it is A-proper, where A is
the family of all spaces having exactly one non-isolated point.

(2) A topology t on Oz(Y) is admissible if and only if is A-admissible, where
A is the family of all spaces having exactly one non-isolated point.

Proor. — To prove (1), let t be a proper topology on Oz (Y). By Theorem 3.9 of
[6] the topology 7 on Oz(Y) is proper if and only if the topology #(z) on C(Y, Z) is
proper. Also, by Theorem I1.2 of [5], i(z) is proper if and only #(z) is .A-proper,
where A is the family of all spaces having exactly one non-isolated point. Thus, the
topology t on Oz(Y)is proper if and only if it is A-proper, where A is the family of
all spaces having exactly one non-isolated point.

In a similar way (2) can be shown.

3. — The finest X-proper topology on O,(Y)

In this section we study the finest X-proper topology on Oz(Y) for several
metrizable spaces X.
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THEOREM 3.1. — Let H be a quotient map (see [3], page 125) of a space X1 onto
a space Xs. Then, we have

(X1} € ({X2}).

Proor. — We prove that the topology ({X:}) on Oz(Y) is Xe-proper. Let
F : X, x Y — Z be a continuous map. We prove that the corresponding map

F: X x O(Z) — (0Oz(Y), 7({X1}))

is continuous with respect to the first variable.
Let U € O(Z). We prove that the map

Fy: Xy — (02(Y), 1({X1}))

is continuous.
We consider the map F! : X; x Y — Z defined by

Fl(x,y) = F(H(x),y),
for every (x,%) € X; x Y. The map F' is continuous. Indeed, let
Fle,y) =FHx),y) =2¢€Z

and U, be an open neighborhood of z in Z. Since F' is continuous at the point
(H(x),y) € Xo x Y, there are open neighborhoods Up,, and U, of H(x) and v,
respectively such that

F(UH(x) X Uy) c Uz

Since H : X; — X3 is a quotient map, we have that H is continuous. Thus, there
exists an open neighborhood U, of x in X; such that H(U,) C Upgy.
For the open neighborhood U, x U, of (x,y) in X; x Y we have

FYU, x Uy) = FHU,) x U,) C F(Unu x Uy) C U..

Thus, the map F' is continuous.
Since the topology ©({X;}) is X;-proper, the map
FL: Xy x OZ) — (04(Y), t1({X1}))
is continuous with respect to the first variable. Thus, for every U € O(Z) the map

Fly: X; — (0z(Y), 1({X1}))

is continuous.
Let U € O(Z). Then for every « € X; we have

(Fy o H)(x) = Fy(H(w) = F(H(®), U) = Fly(@).
So we have Flyy = Fyy o H, for every U € O(Z).
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Since the map H is quotient, F1;; is continuous, and F1;; = Fyy o H, we have
that the map Fy is continuous. Thus, the topology 7({X;}) is Xs-proper and,
therefore,

(X1} € ({Xz}).

COROLLARY 3.2. — Let X1 and Xz be two topological spaces. If there exists a
quotient map Hy of X1 onto Xz and a quotient map Hz of Xz onto X1, then

(X1} = ({Xz2}).

COROLLARY 3.3. — Let X be a connected locally connected compact metrizable
mfinite space X. Then, we have

({X}) = «({[0,11}).
COROLLARY 3.4. — Let C be the Cantor set. Then, we have
{C}) C «({[0,11}),

COROLLARY 3.5. — Let X be a sequential space (see [3], page 134) and f the
Jamily of all sequences xy, @1, %2, . . . of points of X such that xy € lim x;. For every
¢ = {ux;} € plet X, = {c} x {0,1,1,...}, where {c} is the one-point discrete space
and {0,3,...} has the topology of subspace of R, where R is the set of all real
numbers with the usual topology. Then, we have

T({@eep Xe}) C T({X}).

ProoOF. — Let f. : X, — X be the map definened by

1 .
fe((c,0)) = xy and fc((c,g)) =u;, foreveryi=1,2,....
The map
fx = Vce/ffc : Deep X, —X
(see [3], page 134) is a quotient map. Thus, by Theorem 3.1, we have
T({@eepXe}) C T({X}).

THEOREM 3.6. — Let X be a locally compact space and f : Y — Z a quotient
map. Then, we have

({X x Y}) Ct({X x Z}).
Proor. — The map
dy xf: X xY —=>XxZ,
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where idy : X — X is the identity map, is a quotient map (see [3], page 200). Thus,
by Theorem 3.1, we have

(X x Y}) C «({X x Z).

DEFINITION 5. — Let R be the set of real numbers with the usual topology. The
subspace of R™, where n is a positive integer, consisting of all points
(1, 2, ..., Xys1) SUCh that ©f + a3 + ... + a2, = 1is called the unit n-sphere and
is denoted by S". The 1-sphere is a circle and the cartesian product S* x S' is a
torus.

COROLLARY 3.7. — Let X be an arbitrary discrete space. Then, we have
(1) ({X x R}) C t({X x S'}).

2) t({X x [0,1]}) C t({X x S*}).

(8) t({X x [0,1] x [0,1]}) C t({X x S x S}).

PROOF. — (1) Let f : R — S' be a map defined by

f(x) = (cos 2nx, sin 27x),

for every « € R. The map f is a quotient map (see [3], page 127). Also, the space X
is locally compact. Thus, by Theorem 3.6,

({X x R}) C t({X x S}).
(2) We consider the map f : R — S of (1). Then, the map
g =f|[0,1] :[0,1] — S

is a quotient map (see [3], page 127). Since the space X is locally compact, by
Theorem 3.6, we have that

({X x [0,1]}) C t({X x S}).
(3) We consider the map g = f1;y;; : [0,1] — S" of (2). The map
gxg:[0,1]x[0,1] — S! x §*
is a quotient map (see [3], page 127)). Thus, by Theorem 3.6,
t({X x [0,1] x [0,1]}) C t({X x S* x S}).

In a similar way the following corollary can be shown.

COROLLARY 3.8. — The following relations are true:

1) t{R"1}) C t({R" x S'}), and
@) t({R" x [0,1] x [0,11}) C t({R" x S* x S'}).
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THEOREM 3.9. — Let X be a Hausdorff space, C(X) the family of all non-empty
compact subspaces of X, and X* = Ggcox)K (see [31). If a set A C X s closed
provided that the intersections A N K are closed in K for all K € C(X), then

({X"}) C ({X}).
Proor. — We consider the map
/= Vkeewix : X" — X,

where i is the embedding of the space K into the space X (see [3], page 201). The
map f is a quotient map. Thus, by Theorem 3.1, we have

({X"}) € «({X}).
THEOREM 3.10. — Let f; : X; — Y; be quotient maps for 1 =1,2 and Xj,
X1 x Yz k-spaces. Then, we have
T({Xl X Xg}) g ‘[({Yl X Yz})
Proor. — We consider the map
f=f1 ><f2 :X1 XXg — Y1 X Yg.
By [3] (Theorem 3.3.28, page 203) f is a quotient map. Thus, by Theorem 3.1,
we have
T({Xl X X2}) g ‘L'({Yl X YQ})
THEOREM 3.11. — Let f; : X; — Y; be quotient maps for 1 = 1,2, Xy a locally
compact space, and Yy a k-space. Then, we have

(1) ({X; x Xz}) C t({X1 x Ya}).
@) t({X1 x X1}) € t({X1 x Y1}).
B ({X1 x Yo}) C t({Y1 x Ya}).
@) t{X1 x Xo}) C t({Y1 x Ya}).

Proor. — (1) We consider the map
?:Xm ><f2 :Xl XX2 —>X1 X Yg,

where idy, : X; — Xj be the identity map. Then, by Theorem 3.3.17 of [3], the map
idy, X fa is a quotien map. Thus, by Theorem 3.1, we have

(X1 x Xo}) € t({Xy x Ya}).

(2) In a similar way (2) can be shown.
(3) We consider the map

ﬁXidY22X1XY2—>Y1><Y2,
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where idy, : Y2 — Y3 be the identity map. Then, fi x idy, is a quotien map (see
[3], page 204). Thus, by Theorem 3.1, we have
({X1 x Y2}) C 7({Y7 x Yo }).
(4) We consider the map
[ =(fi xidy,) o (idx, x f2).
Since the maps fi x idy, and idyx, x f2 are quotient, the map f is quotient (see [3]).

Thus, by Theorem 3.1, the relation (4) of the theorem is true.

DEFINITION 6 (see [3], page 178). — A space X 1s called a sequential space if a
set A C X is closed if and only if together with any sequence it contains all limits.

THEOREM 3.12. — Let X be a sequential space and let Seq the subspace of the

real line (with the usual topology) consisting of the points 0,1,1, % yo .. Then,

©({Seq}) € t({X}).

Proor. — We prove that the topology ©({Seq}) on O~(Y) is X-proper.
Let F: X x Y — Z be a continuous map. We prove that the map

F: X x OZ) — (0z(Y), 7({Seq}))

is continuous with respect to the first variable. Let U € O(Z).
Since the space X is sequential, the map

Fy: X — (0z(Y), ©({Seq}))

is continuous if and only if for every net ¢: N — X, where N is the set of all
positive integers, we have

Fy(lim (¢(2))) C lim Fy(g()).
(see [3], Proposition 1.6.15).
Let ¢ : N — X be anet in X and « € lim ¢(z). We prove that
Fy(@) € lim Fy(g0)).

Let
¢Seq . Seq — X,

be the map defined by ¢Seq(2‘/i) = ¢(1), for every i = 1,2, ..., and ¢Seq(0) =ux. By
Proposition 1.6.6 of [3] and by the fact that X is a sequential space, we have that
the map ¢y, is continuous.
Let
Fgog:SeqxY — 7
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be the map defined by
Feq(@1,y1) = Fggeqy(@1), y1),

for every (x1,%1) € Seq x Y. Since the maps F' and ¢Seq are continuous, the map
Fg,q is also continuous.
Since the topology 7({Seq}) is Seq-proper we have that the map

Fseq : Seq x OZ) — (O4(Y), ©({Seq})

is continuous with respect to the first variable.
Thus, for every U € O(Z), the map

Fsoqpr : Seq — (O4(Y), 7({Seq})
is continuous. For every x; € Seq, we have
Frr 0 $0)101) = Fir(eg @) = Flgy@1), U) = Fgq, ).
Thus,
Fseqyp = Fu 0 $gpq
So, we have
Fsugy©) = Fr 0 $5,)(0) = Fs(s,,(0))
= Fy(x) € lim Fioq;,(1/7) = lim (Fyy 0 ¢g,,)(1/7)
= lim Fy(¢g,,(1/1)) = lim Fyy(¢(0))
and, therefore,
Fy(lim (¢(2))) C lim Fy(§(2)).
This means that the map
Fy : X — (0z(Y), 1{Seq})
is continuous. Thus, the topology t({Seq}) on Oz(Y) is X-proper and
«({Seq} C w({X}).

COROLLARY 3.13. — Let X be a compact metrizable space having infinitely
components. Then, we have then

7({Seq}) C t({X}).
COROLLARY 3.14. — Let C be the Cantor set. Then, we have
({Seq}) C t({C}).
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