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A Class of Weighted Spaces

MICHEL ARTOLA

In honour of Professor B. Muckenhoupt

Abstract. — Hardy’s inequality is used to give trace results, approximation and inter-
mediate derivative properties for some weighted Banach spaces of generalized
Sobolev type.

1. — Introduction

The paper concerns previously unpublished original results by the author
that systematically apply Hardy’s inequality in weighted spaces. The lack of
emphasis on a application in the recent book [14], devoted mainly to the in-
equality and its history, suggests that it might be time to publish these earlier
conclusions.

The paper is dedicated to Professor Muckenhoupt to acknowledge his re-
cognition of the method I developed for treating Hardy’s inequality.

The original objective, explored while studying delay partial differential
equations under the direction of J. L. Lions, was to extend to weighted Banach
spaces certain interpolation results known in unweighted spaces or spaces of
special weight t*. The extension to intermediate derivatives in weighted Hilbert
spaces was achieved in ([2],[3]), but the general extension required Hardy’s
inequality and certain relevant implications. The investigation was completed in
1968 with the statement and proof of a necessary and sufficient condition on the
weight w of the weighted spaces L2 (B) and LY (B), defined in Section 2, in order
that the Hardy operator

t

M f—H(f) =1 [ flo)o

0
is continuous from

LP(B) — L1(B), p,q > 1,

where B is a Banach space.
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Talenti, Muckenhoupt, and others [14] at about the same time, but in-
dependently, obtained similar results for functions with scalar values on
(a,b) C R.

The reason why my own contributions were not then submitted for publica-
tion was partly because at that time my interest included the development of the
inequality not in its own right, but for the purpose of obtaining approximations,
here illustrated in Section 3, that led to new properties of trace spaces described
in Section 4.

Another interest, again concerning the inequality, focused on interpolation
properties for derivatives in weighted Banach spaces of Sobolev type, where the
derivative is the complex operator D" defined, by a convolution whose kernel is
F(%M)Pf [ﬁc;(i”“)], n € R. The symbol Pf, represents “the finite part” or the
“pseudo function” in the sense of Laurent Schwartz, x. = max(0,x) and I is the
usual Gamma function ([4], [5]).

The present paper is devoted mainly to applications of Hardy’s inequality in
some weighted spaces that generalize those with weights ¢* discussed by J. L.
Lions and J. Peetre ([16], [19]). We observe that conditions imposed on o imply
that the weights implicitely belong to the Hardy class. Although the weight does
not need to be specified a priori for our generalisation, nevertheless, it suits our
purpose to impose a restriction.

The paper is constructed as follows. Section 2 contains the definition of the
Hardy class H(p) and the proof given previously by the author of the necessary
and sufficient condition for a weight to be in H(p) and further properties. These
proofs were originally developed in the context of the classic Hardy inequality,
and not in the general case considered by Muckenhoupt et al. Section 2 further
undertakes the extension to the class H;; required subsequently in Section 4 to
establish properties of trace spaces. An application, described in Section 2.7, is
employed later in Section 3.

The spaces W) are introduced in Section 3, existence of traces for a special
case is discussed and some inclusions are proved using complex interpolation and
real methods. Approximation properties are next derived, but, in order to apply
the result of Section 2.7, the derivative is subject to the assumption ¢; € H(py).
This avoids appealing to properties of intermediate derivatives that still await
proof. The proofs of Proposition 3.10 and Corollary 3.11 rely in part on duality.

The discussion in Section 4, devoted to trace spaces and their properties,
assumes that ¢; € H(p;), © = 0,1, to enable application of conclusions obtained in
(101, [16]).

Intermediate derivatives in a trace space are studied in Section 5, using the
Hardy-Littlewood maximal operator which necessitates the assumption

(1.1) C; € /1(]02'), 1= 0,1
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where A(p) is the class of Muckenhoupt [21]. Assumption (1.1) seems sufficient to
extend spaces of weights ¢* to those for which the inclusion A(p) C H(p) may be
proved.

Finally, it is of interest to improve results obtained in [5] using complex and
real interpolation methods.

The outcome will be reported in a forthcoming paper.

2. — A class of weighted L? spaces.
2.1 — Notation and definitions.

Let B be a real or complex Banach space equipped with norm |.|z, and let w a
positive locally integrable function on Q ¢ RN (v € L}OC(RJr)) taking values in
R™. Define the measure v, to be such that dv = w(x)dx, where w > 0, is a density
with respect to the Lebesgue measure in RY. Such a density o will be called a
weight.

We denote by L2(B) 1 < p < 400, the space of functions « strongly mea-

surable with values in B satisfying :
qu@ﬂ@dv<4%m%
Q

with usual modification for p = +oc.
The space L? (B) becomes a Banach space when equipped with the norm

1/p
U [ty = ( [ |u<x>|§dv> -

Q
In what follows, we shall take N =1, Q = Rt = 10, +oo[, and R = [0, + ool.
It is also of interest to set w = ¢P, where ¢ > 0 satisfies

(2.1) ceL?l

loc

1 -
B, —€ LR
1 1
where —+— = 1.
p p
Indeed, when o = ¢, the condition » € L?(B) is equivalent to cu € LP(B)
using Lebesgue measure. Accordingly, we still refer to ¢ as a weight.
In fact, the space LY (B) always denotes the space of functions u, such that

cu € LP(B). The letter w is reserved exclusively for the density w = c?, where ¢
satisfies (2.1).

REMARK 2.1. — Note that the dual space of L?(B) is given by LZ,(B’ ), and
o =o' =¢ P, and B is dual to B. Conditions (2.1), when assumed reasonable
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for ¢, by Holder’s inequality leads to
vT >0, L?(0,T;B) c L'(0,T;B),

with continuous injective mapping.

2.2 — The Hardy class H(p).
Let B be a Banach space and f be a strongly measurable function on R* with

values in B. Consider L?(R*.B) ~ LP(B) and we use here the representation
w = cP, with ¢ satisfying (2.1). We define the Hardy operator H by

t
2.2) M f—>H(f):% f f@)do, t > 0.
0

We set the

DEFINITION 2.2. — For p > 1, we say that w (or c) belongs to the Hardy class
and one write: @ (resp.c) € H(p), f H: f— H(f) ts continuous from LE(B) to

LY (B).
Then there is a positive constant K such that
(23) IHO oz < Kl fllp s for all f € Li(B)

1
REMARK 23. - If c(t) =t*, 0=« +25, we know [12] that ¢ € H(p), with
K= ﬁ to be the best constant in (2.3).

2.3 — A (first) necessary condition for w (resp.c) belonging to H(p).
We have the

PROPOSITION 2.4. — Let the space LE(B) with ¢ satisfying (2.1). Then a
necessary condition to have ¢ € H(p) is

(2.4) VT > 0, % € LP((Ty, +o0); RH).

PRrOOF. — Since step functions belong to L?(R*;B), let b € B, and if x, is the
characteristic function for (0, 7), consider the function

Jo =11, ® b= lxar, — x1,10
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which is in the space L? (B) by (2.1).Then

—T Tob .
H(fo) =0, 0<t< Ty, :tToa t € (To,2T)), :%b if £ > 2T.

Thus, like we have assumed H(f;) € L? (B), the announced result holds

2.4 — A charactérization for w (resp.c) belongings to H(p).

Define for ¢ > 0:

400 ( ) P 1/p
B, t—s By(t) = [f (%f) do] :
t

t d 1/p'
a
Wt Wyt) = UW] .

0

Where 1/p +1/p’ = 1, which exist by (2.1) and Proposition 2.4.

PROPOSITION 2.5. — Assume (2.1) holds. Then
i) ¢ € H(p) if and only if

(2.5) sup [@,(). ¥y (t)] < + oo;
t>0

i) In (2.3) the constant K in the right is

(2.6) K = K(p,0) = ypsup [0y ), 7, = ()P (7
>

The proof given hereafter is the original mine and, as I have already said, was
obtained independently of that of Talenti [26], Tomaselli [28] and Muckenhoupt
[20]. We give it here for the sake of convenience for the reader.

PROOF OF THE PROPOSITION 2.5.

o) Necessity of the condition (2.5).
Let b € B. and consider Ty > 0. From (2.1) the function f = )(Toc‘p' ®bisin
LP(B) and a simple computation gives:

1/p
[ / (C(t)lf(t)lg)pdt] < [#y@0)]" " bl

Rt
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On the other hand

HO =2 [, 0] e 0.1, =2, @), 1> T,

then, if we assume that w € H(p), 1 <p< + oo, there is a constant K (which not
depends on Ty) with

1/p
( J [C(t)IH(f)(t)IB]pdt) < K[y (To)]"" o]

R+

from (2.3). Now a fortiori

+00 1/p
Ve > 0, < f [C(t)|H(f)(t)|B}pdt> < K[Wp’(TO)]p,/p|b|B;

&

Choosing & = T, one has simply
/ P'/p
DI [Zp T < K v, (T0)| ", 9Ty >0,

and finally, we obtain the condition (2.5).

B (2.5) is a sufficient condition to have w (or ¢) € H(p).
Assume that (2.5) holds with

2.7 sup [P,O¥ )] =M< + o0,
t>0

and we have to prove that (2.3) holds with K = K(c, p) given by (2.6).
We are going to estimate

¢ P t P
t t
I = f ?!f(f)df dt Sé[: |:?—0[\|f(7)|3d7:] dt, 1<p< + oo.

A natural idea is to write | f(?)|z= c(®)|f ()| B(c(t))f1 into the integral on (0,%) in
the right side of the last formula, before applying Hoélder inequality; never-
theless, that led to a difficulty, but, if we inspect the particular case studied in the
proof of necessity, we can get up it, writing:

F@)g = lg@w, O1"Ple@ly, 117, g@) = [c@If@)|z) .
Now, applying Holder inequality to the integral on (0, ¢), one has

O\ |
I< é[ ("?) { Of 9O (D)

/

¢ ) p/p
[fensnr]”
0
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where

t t
, 1 -y
Of [,V de = f g Er o) e = f { y (r)]dr—pﬁ” ®.

Thus

P t
1<y f [(ﬁ”) [ f 9Oy (v)de
R+ 0

and exchanging the order of integration, one has

9P () f (C(”) (Y’p«r))”*]dt

Now using assumption (2.5) (i.e.: (2.7))

(avp,(t))’”] dt

1oy

Rt

(¥ ()" < MP L@, ()P

and noticing that

@\ o d
(“{) (2,0) = p 2y

finally we obtain

1< M) 'p [ g0¥, O,0dt <y pM? [ g,
R¥ for

and (2.3) is proved if 1 <p< + co.
The cases p =1 or p = + o0 are obvious and can be checked by continuity.

REMARK 2.6. — With w = ¢P, condition (2.5) reads

+o00 t 1/p
2.8 o(t)dt - . with ot :i(t).
(2.8) sup wa()} wa ] <+ oo, with at) = —

If, X, Y, are two normed spaces, we denote by L(X,)) the space of linear
continuous maps from X into Y and L(X, X) = L(X). ¢
Consider the integral operator I:f—I(f); I(/)®) = f f(o)do; then

H(f) € LWL (B)) is equivalent to I € LILE(B), Lp ,(B)). Speakmg with integral’s
operator, our result for Hardy’s operator is a partlcular case of the following
problem:
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“Given a pair of weights (w1, wg), find conditions to have I € L(LP Lf)z))”.

w1’

This was the point of wiew of Muckenhout, Talenti, Tomaselli, ... see [14]. The
result is

1/p'

+00 1/p t
sup l f wl(t)dt] f )P dt < +oo.
t>0 ; 0

The proof is the same (up to some details) that in Proposition 2.5.

REMARK 2.7. — Observe that if ¢.w is a weight, where ¢ is a positive, non in-
creasing scalar function, then one has

(2.9) If w € H(p) then ¢.w € H(p) , 1 <p <400

Obviously
+00 +00
f $(0).0(0)dr <¢(t) f a)dz,
t t

and

¢ t
1—p' 1 1y
![gbw] P(vydr < M'JW P(1)dr,

so that

0

+00 1/p ¢ 1y
[ f ¢(r)&>(r)dr] ( f [qbw](r)lp’) < @O () < + o0
t

2.5 — The dual operator H* of H.

We denote H* the operator defined by

+00

(2.10) He V>0, $t) — HA(G) = f @da

t

‘H* is the dual operator of H. We want to check the

PROPOSITION 2.8. — Assume that ¢ € H(p), A<p<+ oo) holds true. Then

the operator H* is continuous from L’l”/C(B’) to Lf'/C(B’).



A CLASS OF WEIGHTED SPACES 133

Proor. — Let us consider

+00 i
B 1 |¢(0)| 5
J = f 0 tf - dr} di

and it we write 28 — 0@, @1 “D 1, @) ¥ where 5(0) = |¢C(2l8’,

Hoélder inequality glves

1/p'

+00 +00 Up' - oo
i Mj”dtﬁl [ v e,ma [ Il &)(T)[(Dp(r)]_p/p/drl
t t t

Now, observing that
. I d
OB, (D] P = —p - [#@),

we obtain

<pP! f e f [V(T)]”’cbp(r)dr[(ﬁp(t)]p’—l dt.

Therefore, using Fubini theorem, one has

2.11 J < "o @, 'dt|d
(2.11) _é[[ym] m[f[()]p[ (0] ]

But, as ¢ € H(p), We have [cbp(t)]le < Mp/‘h]/l_p/ and like we know (from
Propositon 2.5) that f 1)] [1//p ®1 Pt = P’ Wy ,(7), thus we deduce from (2.10)

< [Mp] L@V de.
D —

R t

The result is proved.
The adjoint operator of the integral operator I is now I* defined by
+00

I': ¢(t) — [ ¢(x)dr and (see also [20]) [* € L(LY

; ¢, L1),1<g< + o0, if and
only if

+o00

t 1/q
sup fwz(f)df]l/q[ f wl(r)l_q/dr] <+ o0

t>0 0 }

which still gives (2.5), with ¢ = p/, w1 = @1, wp = 0.
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2.6 — A variant : Hy(p), k,1> 0, classes.

More generally consider, with Hardy-Littlewood- Polya ([12] p. 330), the fa-
mily of operators

t

1
(2.12) Hir + f— Hia(f), Hiea(H)E) = tkﬁfrlf(r)dr
0

and when k = [, one write H;; = H;.

Let p € [1,4o00] and LP(R*; R) = L(R) a weighted Banach space whose the
weight is given (following our convention) by c(f) = t*, then :

if o +;0 <l+1,H; € LALR)) and Hy; € LWLR), LY., (R)),
The result can be easily extended to spaces L?(B) where B is a Banach space and
more generally to the weighted spaces Lf(B).
. . i . c(t)

Accordingly with previous notations, we set ¢;(t) = R
and . (t) = t'ei(t), wpi(t) = e, (O).

In what follows, writing “iff” for “if and only if”, we claim

CUl(t) = Cl(t)p) 2f k= la

PROPOSITION 2.9. — i) case k =1 : H; € LILE(B)) iff o, € H(p).
ii) case k#1: one has Hy; € LWLL(B),LE (B)), iff ¢; (or wy) € H(p).

W1

Note that the result holds if w € H(p) and [ > 0 from remark 2.7.

Proor. — 1) H; € L(L?(B)) means that there is a constant K > 0, with:

t P
few [ﬂ% / flf(ﬂdr} at < K? [ )| fy .

R+ 0 R+

which is exactly

[dwmod < & [ dolgold, g =tfo.

R+ R+

i) His € LILE(B), LP (B)) means that

- 1
f(tk lc(t))p [W

R+

¢
f ‘clf(r)dr

0 R*

p
] dt — f POIHQ Gt < K f A @)g) [t
B Rt

The following remark concerning H; will be also usefull in Section 4.
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1
REMARK 2.10. — One notices that one can write H;(f)() = f d'f (to)do

therefore if f is j — time differentiable with values in B, we obtain: ¢

1 t

(213)  DI((f)O) = [ DI t0Ns = o [ FIDIf @z = 11, DO,
0 0

tHi+1

2.7 — A first application.

The following proposition will be usefull in Section 3.

PrOPOSITION 2.11. — Let u be a continuously (m — 1)-time differentiable
Sfunction with values in B and let the distributional derivative D™u, of order
m > 1, be locally integrable and satisfying

c()D™u € LP(R™;B), where ¢ € H(p),

and
Diu0) =0, 0<j<m—1
then
, t .
GOD" € LPR*B), qit)= 2, g€ Hp), 0<j < m.

PRrOOF OF PROPOSITION 2.11. — One has
t
D" \u(t) = f D™u()dr,
0

and
D™ lu(t)
t
Since ¢ € H(p), one obtain the result for j = 1. Now, we note that, from remark

2.7 (with o) = tl])

= HD"u)@).

g € H(p), 1 <j<m,

and since we can write

t
m—j _ 1 _ N-1pm
D" uid) = =y Of (t — 1Y D" u)dr,

lhe
n DWL*] t
|t—:{/()|8 < 7’((|Dm(7fl’)(t)|B)7

therefore the result for j follows, 1 <j < m.
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3. — A class of weighted Sobolev Spaces
3.1 — Notations and definitions

In what follows if X, ), be normed spaces , X C ) means always algebric
inclusion with continuous injective mapping.

Let Ay and A; be two Banach spaces continuously embedded into a (real or
complex) topologic vector space A so that

X = AgNA; is equipped with the norm |u[y= max(|ul 4, [%]4,),
Y = A + A, is equipped with the norm : |u|y=inf (jaols,+]a1],)-

a=ag+a,
of course, we have
XCcA;CcY, =01
and we assume that
(3.1) X is dense into 4; (1 =0,1).

We consider wy = c}* and w; = ¢}, po, p1 € [1,40c], be two weight functions
satisfying

(3.2) Ve,t >0, ¢; € LP(Je, t; RT), ¢;' € LP(e t[;R™), i =0,1.

and we define
W py, co, Ag; p1, ¢1,A1] = W™

Cp,C1

the space of functions u locally integrable on RT, with u € L£(Ao) and such that
D"y € L' (A;).The last condition must be understood as follows: u is m-time
differentiable at the sense of distributions on R* with values in Y and D™ is
locally integrable, so that the product with ¢; makes a sense. Indeed, since D"u
is locally integrable, then D"~ 14 is absolutely continuous, hence continuous, then
we can consider that u is (m — 1)-time continuously differentiable on R*with
values in Y and Diu(t), 0 < i < m — 1, is defined for ¢ € 10, +oo[. Therefore if
tl% Diu(t) = a in Y exists, we shall said that D'u has a trace D'u(0) = a at t = 0.

Equipped with the norm

U — ||ulym= max(|u|Lfg(A0) , |Dmu|Lfll(A1))'

W™ is a Banach space.
In what follows we shall set M;(v) = |v|Lp?-(Al_), 1=0,1.

Now, we define

0 0
W [pq, co, Ag; p1, c1,41] =W ")

Co,C1°?
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the subspace of W™ :

€0,C1°

€o,C1 Co,C1?

0 .
(3.3) wm = {u; we W™  Diu@0)=0,j=01,...,m— 1}

where the dérivatives are ever understood in the sense of distribution on R+ with
values in Y. 0

Equipped with the relative topology, W{") is a Banach space which, some-
times, coincide with W™,

REMARK 3.1. — i) From the the first part of (8.2), ¢y & LP(0,1;R") is au-
thorized and then, one has necessarily: tlimou(t) =01 Y. Indeed, if we have
tlimo ut) =u0) =a # 0 in Y, we can find ¢ > 0 such that |w(@®)|y > f > 0 for all
t € (0,¢), then

&

& &
[1eoulydt > [ 1eoutfpat > p [ eyt =+ oo,
0 0 0

which is a contradiction.

ii) Moreover if tfcy ¢ LP(0,1;R*) for 0 <k <j<m, then tlimoDku(t) =
u®(0) =0 in Y. Similarly, if Ve>0, 35 >0 such that < (0,7 implies
t*|u(t)|y> e, then

7 n
f lcou|”dt 28”0f (theo)™dt = + oo,
0 0

which is a contradiction.
Therefore, we can find a sequence {{,} with liw+z ty =0 such that
g—+o0

linf (t;k]u(tq)‘y) =0, and that, is in contradiction with tlimo Dru(t) =a;, £0
q— +00 —

in Y. The result follows by induction.

iii) A necessary and sufficient condition for D/u to have a trace at t = 0is due
to J. Poulsen [23] only for % such that ¢;D™u € LP*(R"; B) (where B is a Banach
m—j—1 , m—j—1 , i

p € LP1(0,1; RT) and ift . ¢ LP(0,1;R"), uP(0) = 0.
1 1
Thus, if the last property occurs for all j, 0 <j<m —1, we have
W(m) :V%/(m)

€o,C1 Co,C1"

space). It is:

REMARK 3.2. — When ¢;(t) =t%, (¢ =0,1), the corresponding spaces are
mainly studied by J. L. Lions [16] which assume the condition

(3.4) 0; = +l_ €10,1[, i =0,1.

1
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The condition 0; > 0 implies ¢; € LPi(0,T) VT > 0 and 0; <1, involves not only
1 /
that p e LPi(0,T), VYT > 0, but also that ¢; € H(p;).

1
Conditon (3.2) involves also that in the case ¢;(f) = t%

, . pi—1 1 t
1< gen) L) < K(psy 1) =y (p Bi 1) 010" w(H=1 [ Foe
¢ 0

That condition is of the B. Muckenhoupt type A(p) for intervals I = (0,t) ([21])
which implies that ¢; € H(p;) (see section 5).

In what follows some proofs need the condition ¢; € H(p;) either for 7 = 0 or
1 =1, (or both), assumptions which are implicitely assumed in the case where
ci(t) = t%.

3.2 — An inclusion

A first consequence of Proposition 2.11 gives the following result, which is of
interest in itself, but also in some applications to partial differential equations
(see for example [3]).

Before stating the proposition ant its proof, we recall some definitions closed
with interpolation theory.

An ntermediate space “between” Ay and A; is a topologic space V, with

Xcvcy,

so that Ay and A; are themselves intermediate spaces.

Complex and real interpolation methods (see [7], [15], [19], [22], [27]) allow to
built intermediate spaces between Ag, A;, with the following property: every
linear mapping from Y into itself, which is continuous from A; (i = 0 or 1) into
itself is automatically continuous from V into itself. According to complex
method we consider here the space (A, A1)y, 0 € (0, 1) which is obtained like the
image in Y of f(0), where f belongs to the space of real analytic functions with
values in Y, defined on the strip 0<R(z) <1, continuous on 0 < R(z) < 1, with

sup | f (@)l sup [FA + iyl < + o0,
Y y

and equipped with the norm

IF1l = max(sup | f(iy)] 4, sup | fA + i)la,);
Y Y

so that
(Ag, A1)y ={a €Y; a=f(0), equipped with the norm |ja|, = inf |fl}
ffO)=a
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For example, if Ay = Lﬁ%(B), A= ij}l (B), then (Ay, A1)y = L’;’;}(B), where

1 1-0 0
one has — = +—, wy = o} Y (see. [15]).
bo  Po D1
We state

PROPOSITION 8.3. — Let ¢; € H(py). Then

0 0
(3:5) W W™ py, cg, (Ao, A1)g; p1e1Ai],
1 1- .
where 0 € (0,1), ¢g=cy 't — = 0 —+ E, the inclusion is algebrical
Do Po D1

and topological.

Proor. — From Proposition 2.11, tacking B =Y, one can writes u(f) =

1 t
—— [ (t — 0" 'D™u(z)dx, then like ¢;D"™u € LP'(A;), one has
m—1),
C
ue LAy, and u € L (A, gu =5
By complex interpolation ([7], [15]), we obtain:
(3.6) (Lo, Ly AD) = L2 [A0, A, ¢ = cb 'd),

hence the result follows.

REMARK 3.4. — We can apply also the real interpolation method of [19] (see
also [22], [27]) where we can replace [Ag,Aly by [Ao,Anlsy, 0<0<1,
1<p < +o00.

3.3 — Approximation properties

We assume that the couple (49, A1) has the following approximation prop-
erty (P)(V):
“for every m € N, there is P, € L((4;, X), @ =0,1) such that

(3.7) P,a;—a; tn A; as n— + oo, (1=0,1).7

The main consequence of (3.7) is the following result

() Introduced in [15] by J. L. Lions.In particular the property is true for domains of
Semi-Group operators.
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LeMMA 3.5. — The space

W (X) is dense in W™

Cp,C1 Cp,C1°
PROOF. — From (3.7), |Pyly,x)< ki, i =0,1, so that if u € W) letting
Uy = D™y, one has P,u(t) — u(t) a.e. in Ay, P,v,, — vy, a.e. in Ay, therefore
the Lebesgue theorem of dominated convergence gives the result.
Now, consider

Wﬁ{’”)(X) = {u; u e W™ (X), with compact support in R* = 10, +oo[}

Co,C1

one has

0
LEMMA 3.6. — If ¢; € H(py), then Wy (X) is dense in W)

Co,C1 "
ProoOF.

0 0
Step 1 : From Lemma 3.5 obviousely, W is dense in W

€o,C1 CosC1°

0
Step 2 : It remains to prove that W;é”)(X ) is dense in W™ (X).

€o,C2

Let 0 € DRY), 0t) =0 if t >2, 0 =1 if t € [0,1], and 0,() = 0(%) P €
1 2
Cx(RY), p,(B) = 0, ift € [o%),pn(t) = Lift > = with p(0) < en, k=0,1,....
0
If w eW{" (X), we introduce wu, = z,u, %, = p,0n, then u, € WE(X). To

prove the claimed result, we have to show:

Uy = Yyt —u, in LL'(RT;X), D™u, — D™u, in LIN(R; X).

Co
It is obvious that
(3.8) %, D'w— D'w in X; = LEF(RY; X), i =0,1 (D° =1).

Since
D", =z, D"u+ > olg,r,9Dp,D"0,Du,

q+r+s=m,;s#m

and because one has Dip, D"0,, = 0, if ¢ # 7, the sum on the right-hand side in the
last formula reads

—

m— m—1
> o0,m —s5,8)p,D" 50, D%u+ Y olm — 5,0,5)0,D0™ *p, D,
s=0

so that, it is sufficient to check
(3.9) 1) p, D" 0,D’u — 0,
(3.10) 47) 0,D" *p, D°u — 0, i X; :Lfgll(R+;X), asn— +00,0<s<m-—1
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In order to do that, is easy to see, first, that

2n

ko
p D" 0Dl < o [ D Rt
n
t
Now, according to Proposition 2.11: u( ) € Xj, and one has
2n 2n »
1
[ el u@dt < k2o [T Do,
n n
so that
2n

(B11) |p, D" 0Dl < k2 [ (t ) D U@ dt — 0 as n— + 0o

n

and (3.9) holds.
Similarly, we obtain

2/n
(3.12) (0,0"*p, D*uly < kyn=0 [ P Ducolfat
1/n
2/n
< kpz(mfs)pl f (tm é) \D*u (t)l 't — 0 as n— + oo

1/n

and (3.10) also holds.
Now consider the case of W), where here Wi = {u; u € W) with compact
support in [0, + ool }

LEMMA 3.7. — Assume c¢; € H(py), then W};”) is dense in W .

Co,C1"

PrOOF. — According to Lemma 3.5 it remains to prove the density of W;”)(X )
in W™ (X). Let u € W (X) which is (m-1)- time continuously differentiable

Cp,C1 Co,Cm

with values in X. Define a function v (¢) = Z cx(t) u(”(O) where
=0

o € D0, +o0)), alt) =1, if t € [0,R], a(t) =0, if t > 2R.

Actually from the left condition (3.2) we easily see that v ¢ W(m)(X ). Then
wW=v—1u EW(’”) (X) so that, since u = v + w the result follows from Lemma 3.5.
In order to symphfy the notations, we let: Wc(f)”c)l =Wm Wom (X) = W (X).

€o,C1
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3.4 — Duality

We assume now, that the spaces A; (1 =0,1) are reflexive. The dual or an-
tidual of A; is denoted by A’ and the scalar product in the duality (4], A;) is
denoted by (., .),.

Like X is dense in A;, ¢ = 0,1, then we can identify A’ with a subspace of X’ so
that

3.13 Al cX', i=0,1.
3

Indeed if i is the injective mapping of X into Ay (k = 0, 1) its range is then dense
in Ay, and this implies that the adjoint ¢;; is a continuous injective mapping from
A}, into X’ whose the range is dense. Thus A N A} and Aj, + A} are well defined.
Notice that in what follows (4(, A}, X’) will play there the part that (4¢,4:,Y)
played before.

Now, from the structure of the space W, it is straightforward to see that

PROPOSITION 3.8. — Every linear form w— L(u) continuous on W{") =
W can be defined by

+00 +o0

(3.14) L(u) = f (lo(®), co®u®))odt + f (L), ex D™ u(t)), dt,
0 0

where u € W™ and

(3.15) lo € LM(RT; AL, Iy € LM (RT;A)), %+% —1,i=0,1.

? 1

~He1"eafter we denote by W the c}osure of D(0, 4+ oo[, X) in W (X); therefore
if W° denotes the polar set (3) of W in (W(””(X ))', one has

LEMMA 3.9. — Let L with (3.14), (3.15); then L € wo if and only if we can write

+00 +00
(3.16) Lu) = f (4, D™y dt + (— 1"+ f (D™ 2, u)ydt,
0 0
where w € W™ (X) and
m
317 Le i@y, 22 e iy,
C1 Co

(that is /. € W™(p),1/cy, A’; py, /e, Ag) =W)

() that is the orthogonal set in the sense of the duality
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Proor. — We have
WO = {L e (W™X)); (L,u) =0, Vu € DR"; X)}
W = {u e W X); (L,u) =0,vL € W'}

Since L € (W(m)(X))/7 is of the form (3.14) and like ¢; € LI (R"),
cil; € Llloc(R+ ;AY, (1=0,1), then 4; = ¢;l; defines a distribution on R* such
that 4; € Lf}ci(A,’i). Let a € X, we define u € D(R"; X) by u(t) = é(t)a, where
¢ € DIR') and (L,u) =0 gives first (in the sense of scalar distributions)
(o, @)+ (= 1™D" (31, a), =0, then (Jo+(—1)""D") a) =0, Ya € X.
Thus ) = (— 1)™'D" (), a.e. in X'. Letting 1= /;, one get (3.16)-
(3.17).

Conversely if 2 € W, then /is (m — 1)-time differentiable with values in X’
and from remark (3.2) the traces ),(j)(o) = {j for 0 < j < m — 1 exist with values
in X’. Since L defined by 1 € W is continuous on W™ (X), in order to evaluate
L(u) when u € W™ (X) it is enough from Lemma (3.7) to do that when
U € Wg’”. Using the injective mapping 7 and its transposed i, we see that we
can write

“+o00 —+o00
(3.18) Lu) = f (1, D"u)dt + (— 1)+ f (D", u)dt,
0 0

where (.,.) means the product in the duality (X', X).
Since u € Wfé”) is (m — 1)-time differentiable with values in X, we can in-
tegrate by part in (3.18) and we obtain

m—1

(3.19) L(u) = Z( D" i1, Du(0))

which stays valid by density when u € W) (X). Now L(u) = 0 imply D'u(0) =

0 -
0 < i <m — 1, therefore u eW ™ (X) = W (from the definition).
Now, from Lemma 3.5 we deduce

0
PROPOSITION 38.10. — Assume ¢; € H(py), then D(R*; X) is dense in Wg)’”gl

If we use for u € W™ (X), the same decomposition of the proof of Lemma 3.7:

_ 0
u=v+wwhere v € DR ;X), w W (X), shows that from Proposition 3.10
and Lemma 3.5, we have

COROLLARY 3.11. — Assume ¢, € H(py), then DR, X) is dense in W™ .

Co,C1°
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4. — Spaces of traces.
4.1 — The space T](-m)(p(),C(),A() i P1, €1, Aq).
If we assume
(4.1) tico € LP(0,1),

tm—j—l

(4.2) eLM(0,1), 0<j<m—1,

€1

then we can define D/u(0) = u(0) = a; in Ay +A4; =Y.

LEMMA 4.1. — Assume ¢y € L(0, 1); then (4.2) is a necessary and sufficient
condition for , limODfu(t) exists in Y.
—+

PROOF. — 1) Necessity:

Let W(((’fl))(X ) the restriction of W (X) on (0,1). In order to prove the result,
it is enought to find a function u € W((gfbl))(X) such that ‘u(j)(t)‘y — + 00 as
t— +0.

Assume t"*-1erl € LP1(0,1) for 0 < k<j . Therefore if "7 ~1c; ! ¢ LP1(0, 1),
tm—j—l

o) dt = +oo0.

1
there is y € L”1(0,1) such that [ x(t)
0

Consider for t>0, &) =y, fl (t — t)m’lcl‘l(r);((f)dr, Yy = (= 1"/
(m — 1)!. Obviously, we have from asstumptions on ¢y, c; and Holder inequality:
cop € L™(0,1) and like D™¢=Crly, if a#0, a € X, then we can define
u e W((g‘_“l))(X ) by u(t) = ¢(t)a. Now the wanted result for |u'(t)|, follows from

1
Digt) = 3, f (t — " N @p(D)dr — + oo, if t— +0,
t

where 7;,, = (— l)m’j’l/(m —j—1DW

2) (4.2) is a sufficient condition.

If (4.2) holds, Holder inequality gives

(4.3) t"I=1pmy e L10,1,Y).

Then if m —j — 1 = 0, u is absolutely continuous on [0, 1] with values in Y.
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If u=m—j—1>1, we have |D" 'u(®)|,< |[D" u)|,+ f |D™u(t)dz]y .
We deduce, after integration by parts,

1 ! !
!t”_lle_lu(t)’Ydt < |Dm_1%(1)’Y (! tﬂ—ldt) +/% !(r/‘ _ g/‘)|D”zu(T)|YdT

so that, since i — 1 > 0 and thanks to (4.3), one has: t"7-2D"1y ¢ L1(0,1;Y).
Step by step, we obtain D/*1y € L1(0,1;Y) and Du(0) exists.

REMARK 4. 2 — One has that if t"~7~1e; 1 ¢ LP1(0, 1), for allj € {0, 1, ...,m — 1},
then W — 1@

Co,C1 Co,C1"

Thus we can set

DEFINITION 4.3. — If (4.1), (4.2) hold, we denote by T(m)(co,pO,AO, c1,p1,41) =
T(’”) the space spanmned in' Y by u9(0) when u spans the space Wc(g’lc)l
Equipped with the norm

(4.4) ||a||T,,z— wmf ||ulym

uD(0)=a

we obtain a Banach space. The spaces T](.M) are called spaces of traces.

REMARK 4.4. — The definition of the norm of 7" shows that the space can be
interpreted like the quotient space W / WW) where

W™ = {u: we W™, uP(0) = 0}.

The first property is given by the
LEMMA 4.5. — Assume ¢; € LPi(0,T) for all T > 0. Then X is dense in T;"‘).

Proor. - First, actually
(m)
(4.5) X1,

because if a #0, a € X and ¢ € D(R*), with q5(-7)(0) =1, therefore u(t) = ¢(t)a
belongs to W™ and %?(0) = a.

Thus we have the algebrical inclusion and like [lu[|y.. < CMax(|aly,, |al,,);
(4.4) implies that the injective mapping in (4.5) is continuous.

Now, let a € T](-m), with a = u”(0) where u € W™, The claimed result is a
consequence of Lemma 3.5 : Indeed, with the notations of the proof of Lemma
3.5, we know that v, = P,u — u in W, which implies »"’(0) — a in T](W.
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Since P, € £(4;,X) (i =0,1), we have v, € W™ (X), so that v’(0) € X and
Lemma 4.5 is proved.
4.2 — Some other properties of spaces of traces.
First, one has

PROPOSITION 4.6. — Let w € W™ with u'(0) = a; then

(46)  [aj] = inf (Mo My(D" ),

TY)Z .
J+1/po

— ST g<ji<m-—1.
m+1/po—1/p1 J

with y;,, =

PROOF. — Let 2> 0 and f;(t) = f(Jt), then if v (t) = A 7u;(t) then v, €

Wc(z)")c and since v<J)(O) = uP(0) for all u, then the space of traces associated to
that space is T(m) and from (4.4) we deduce

< mf (maxl AP Mo (), 2P M (D))

!a] "=

Choosing / such that AP M) = AT VP ML (D™ ) we obtain (4.6).

COROLLARY 4.7. — Assume that a € X. Then there is a constant k =
k(co, po; c1, p1) such that

(4.7) aly < Klaly, " lal}".

Proor. — Take u(t) = ¢(t)a like in the proof of Lemma 4.5 and apply (4.6).
Next the main result is the property of interpolation: let (By, Bi, B) be a fa-
mily of three spaces with analogous properties like (4, A1, .A4). We shall say that

7€ L(A; By) N L(Ay; By)

if, assuming X = Ay N A; is dense in A;, (1 =0,1), = is a linear mapping of X
into By N By which can be extended by continuity to an element of L(A4;;B;),
i=0,1). If,

(48) iraly, < ilal,, aeX, i=0,1

then it is easily checked that = € £L(Y;By + By). Indeed if a € Ay + A; then,
7o € By + By and |m|30+31§ max(mg, m1)|aly.

Let A and B be two Banach spaces, A C Y, B C By + B;. We say that
(A, B) is an wnterpolation couple if, for every = satisfaying (4.8), one has
n € L(A;B).
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THEOREM 4.8. — Assume c;, © = 0,1, satisfies (4.1), (4.2) and that 7 satisfies
4.8). Then for 1 <p; < +00,1=0,1, and j € {0,1,...,m — 1}, one has

(4.9) n € LT (co, po, Ao; &1, p1,A1; Ty (€, po, Bo, c1p1B1)

Vi 37m

the norm of m in that space is bounded by m , where p; ,,is given by (4.6).

ProOF. — Like T C Y, na is defined if a € T(m) Let a € T(m) and u €
wom W(m) such that «%)(0) = a for all u € ', the mapplng 40— it being con-

tinuous. Since 7u € W™ (cy, po, Bo; ¢1,p1,B1) then 7u?(0)( = na) belongs to
TJW)(CO, Po, Bo; ¢1,p1, B1) and is continuously depending on « in this space. Thus
(4.9) holds true.

Moreover, using the index B for the norms related to the spaces built on the
spaces denoted by B, (4.6) gives

. - . 1Y ~ Vim s o
la| T < meOB(u)l Tion My g(D™ )i < imf g )" Mo(u)' i My (D™ )i
N u

—Vim ,~ }m

that is |a|Tm < mo |G/|Tm

Now we denote by T(COaPOaAOaCI p1. A1 = TP (co, po, Ao; 1, p1, A1) and we
assume

(4.10) ¢ €H(py); i=0,1

then, one has

THEOREM 4.9. — Assume that (4.1), (4.2) and (4.7) hold and 1 < p; < +oo0,
1=20,1, therefore

7}(”1)(60,]007140; ¢1,p141) = Tt co, po, Ao " er, p1, A)
with equivalent norms.

Proor oF THEOREM 4.9. — The proof is an obvious consequence of the fol-
lowing lemmas

LEMMA 4.10. — We assume (4.1), (4.2) hold for j = m — 1 and that (4.7) holds
with m — 2 > 0. Then

(411) T8 (o, po, Ao; o1, p1, A1) = T tco, po, Ao; o1, p1, Ar)
with equivalent norms

LeEmMA 4.11. — Assumptions are those of theorem 4.9 and m — 1 > j. Then
(4.12) T (o, po, Ao; ¢, p1A1) = T (e, po, Aot ¢1, p1, A1)

with equivalent norms.
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For the proof of both lemmas we note

REMARK 4.12. — From the proof of (4.2) (sufficient condition) it results that if
t
[ > 0, is sufficiently large, then [ t'uP(t)dr< + oo, V¢ > 0,Vj € {0,1...m — 1}.
0

In what follows we set y to be some constant which can be distinct from a
formula to another.

4.2.1 — Proof of Lemma 4.10.

a) In order to prove

T (co, podo; 1, p1, A1) C T P(teo, po, Ao; e1,p1, A1)

with continuous injective mapping, consider: F : u(t) — v(t) = (m + DHy 1 (u))(2),
for [ sufficiently large, which makes a sense in Y. We have to show that F is linear
continuous from W (cy, po,Ao; c1,p1,41) into W V(tey, po, Ag; c1, p1, A1) with
v(mfz)(o) _ u(mfl)(o)' (t
From (4.10) and Proposition 2.9-), since H; 1(w)(t) = H(w)t) = u_) -

t
1+1 .
%H;(u)(t) € L (Ap), we obtain [v],0 s )< 7Mo(w).
tco

tC()
From Remark 2.10, one has in Y, ;" (u)(t) = H;,j(uP)(t) forj € {0,1,...,m},
1
which implies H™ P (u)(0) = H—mu(’”’l)(O), so that v 2(0) = u™ Y(0) and
from (4.10) and Proposition 2.9-) then ’Hgm)(u) € LE'(A;); we obtain vV ¢

L (A;) with |1)(m’1)|Lfll < pMy(u™).

(Ay)
b) To prove the reciprocal inclusion, we consider now, always for [ suffi-
l+m—1
m—1

which is linear and continuous from W D(tcy,po,Ao;c1,p1,41) into
W™ (¢, Po,Ao; ¢1, p1A1). Indeed, from Proposition 2.9-i) it is obvious that
M) < V|M|Lﬁ%<Ao>'

Then observing that w/'(t) =wu()—IH(u)t) in Y, we deduce that
wP = w0V —IH; ;@YD) with values in Y for j € {1,2,...,m}.

. 1/}
ciently large, the mapping 1 : u —v = w, with w(t) = i i thu(r)dr,
0

Therefore for j =m — 1, we obtain first that: W™ (0) = mu(’”’z)(()),

as t—0, then v V(0) =« 2(0) and from (4.10) and Proposition 2.9- i)
Mi(@w"™) < yMy®Y).
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4.2.2 — Proof of Lemma 4.11.

a) In order to prove that T("‘)(co, po,Ag; c1,p1,41) C T(m Dco, po, Aot ter, p1, Ar)
with injective mapping, we cons1der here the mapping ]—' defined by # — v such
that, for [ large v(t) = Ay, jw(t), where w(t) = u(t) — IH;_,,(u)(t) and we have to
check that for ! large F is continuous from W®(cy,po,Ao;c1,p1, A1) into
W =D(co, po, Ag; tLe1, p1, A1) with v2(0) = ut(0).

Actually ¢y € H(pg) implies w € Lﬁ’(? (Ap) with My(w) < yMy(u), then as in the
proof of the part b) of Lemma 4.10, we have w’(t) = u(t) — I, ;(u D))
(that implies w'(0) = %u@(m so that v2(0) = u(0) from a choice of
Aim; and after tacking j=m —1 and integrating by parts (), one obtain
wD(t) = tH;(u")(t) which obviously gives

[0 P 4y M),
El

b) In order to prove the reciprocal inclusion, we consider the mapping:
Fi:u—v=~U+j+Dw,

with w(t) = H;(u)(t), for I large.
Next we obtain, follows that: weLﬁ?(Ag) Mo(v) < yMy(u), and also
ul ( )

I+j+1 +7J
follows. Now it remains to prove that w™ ¢ LI (Ay).

Since one has w™ V(@) = Hppm 1™ D)) in Y, we deduce w™(t) =
= 1>(t) th ) J‘ =1y, m— D(T)d‘[ Like -1 ¢ [

we arrive to M 1) < |utmD

w(t) = My jwP)(E) in Y, as before. Thus w'?(0) = and v'(0) = u(0)

(A;) and since t~¢; € H(py),

t1¢

. Thus the map F; is linear continuous

" Ay
Flcl
from W =D(cy, po, Ao;tter, p1, A1) into W(cy, po, Ag; c1,p1,41) and the
Lemma is proved.

4.3 — The space T(co, po,Ao; c1,p1,A1)
Theorem 4.9 reduces the study of T(’") 0<j<m-1 to T(()l) =

T(co, po,Ao; c1,p1,A1), then first, the condition on the weights to have existence
of the trace u#(0) are

(4.13) VT €10, +o0cl, ¢o € L0, T), ¢;* € LP(0,T),

() Tt holds because 1 is large.
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next, recalling Proposition 4.5, we note that for u €¢ W with %(0) = a, one has:

1/po
1+1/po—1/p1-

Now, we want to prove a result of “symmetry” adapted from the case where
¢;(t) = t* studied in [17]. Following [17] we need the

(4.14) |alp< Mow)' "My (Duw)’, where 0 = y,; =

LEMMA 4.13. — Let B be a Banach space. Assuming co € H(py) and
u € WO(B) we have in B equipped with the strong topology:

h s
. ds
(4.15) u0) = lim_ Of e Of [u(s) — u(o)]do.
ProOF. — We use I1I'in identity [13]

h s
(4.16) w(©) = Ha)(h) — f g f [u(s) — u(o)]do
0 0

and it is sufficient to prove that
Hu)(h) — 0 in B strongly as h — + oo.

Like u € LE*(B), applying the Hélder inequality, one obtains

A 1/pg
1 ds
[Hw) ()| < |“|Lfg(B)C(h)’ Clh) = h Lf M}

and we have to prove that C(h) — 0 as h — + oo.

Since ¢y € H(py),
—1/po
j (CO(S)> }

h 1/p;
[f Co(S)p(’]

400

Do
Ch) <K f (g) Co(s)p(’ds]’l/po <K
h

we deduce that

+00

/

-=1/po
co(s)p“ds] =0
[

(R )
Setting ¢; () = ¢; (%), one has

because we have only ¢y € L},
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THEOREM 4.14. — Assuming ¢; € H(p;), 1<p; < +o0, (1 =0,1), then
(417) T(007PO;AO§ ClvplvAl) = T(tl_Z/pl C;plvAl; t1_2/p0037p07A0)

with equivalent norms.

Proor. — Let a be an element of T(cy, po,Ao; c1,p1,A41) = T and let u be an
arbitrary element of W® satisfying u(0) = a. We introduce

1/t

o) = — f g f [u(s) — u(o)]do
0

0

1 . . .
and we set v*(f) = v ( f) . An integration by parts gives

t s t
Vi) = — f (siz f m’(r)dr) ds = — f Hyw)(s)ds.
0

0 0

We know, first that Hi(u') € ngfrl (Ay), if c1t~! € Hy(py) (that is true there) and

next, since v*(t) = —tH o H1(u')(t), one has

(4.18) tepvt € LPY(Ay) ~ 1727ty € LP(Ay).

On the other hand, from the definition of v*(¢) we obtain v*(¢) = % (Hw)(@t) — w(?)),
so that

(4.19) tegv® € LP*(Ag) ~ t1=Pociv € LP(Ay)

Fom (4.18) and (4.19), we deduce
NS W(l)(tliz/plcivplaAl; tliz/pocgap()aAO) - W(D

the mapping u — v being continuous from W® to W,
Then
v(0) € T 2/Pre;, pr, Ars t2/P0¢), po, Ag) = T

and we have
[(0)|7< 1laly, ¢y = constant).

From lemma 4.13, with B =Y and like u € W implies u € W(Y), we see
that v(t) — a, as t — 0 in the strong topology of Y.Therefore v(0) = a and
|a|7< 71]alp. That is

T(COap07A0; cl7plaAl) C T(t172/plcjlﬁapl7Al; tliz/poc(’;p()vAO)a

the identity mapping being continuous.
Now exchanging po and p1, co and t12/Piexq, ¢; and t1-2/Pocxg, Ay and Ay, one
has the inverse inclusion, hence Theorem 4.14 follows.
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4.4 — Duality.

In this subsection:

— Assumptions on (4, A;) are those of Subsections 3.1 and 3.4.
— Assumptions on the weights are (4.1), (4.2) and ¢; € H(p;).

If we set y; : w — y;(w) = uP(0), y; is an isomorphism from W /W(m)
onto T(”’) and its transposed y; is an isomorphism from (T(”’)) onto W} the polar
set of W(m) in W.

Like W° {LeW, (Liu)=0Vu € WW)} with analogous arguments as in
Subsectlon 3.4, we obtain

LemMmA 4.15. — Let L € W. Then L € W0 if and only if we can find
AeW =Wt pl, AL ety pp, Ap) such that

+o00 +00

(4.20) Lu) = f (2, D™y dt + (— 1)+ f (D", ) ot
0 0

where w € W™ and

(4.21) DX0)=0foritm—j—1,0<j<m—1.

REMARK 4.16. — Note that Phe trace D™ 71(0) exists and belongs to
T(m) 1(c1 1AL et py, Ay = T;Z?Fl for 1 € W. Indeed if we apply the ana-
logous of [(4.1), (4.2)] to W, we find again globally [(4.1), (4,2)] that is (4.1) and (4.2)
are exchanged.

Now from (4.19), (4.20), according to the density of Wl(zm)(X) in W in-
tegration by parts gives

(4.22) L(u) = (— )™ (D" 771 )(0), D7u(0)).

On the other hand if be T;Ti;;l there is a function [, € W with
D"=-11,(0) = b and using a straightforward proceeding of Babitch (see [15]
for instance) we can define A,(t) = Z yklb(kt) where the y, are defined by

Zkl 7w =0i#m—j—1, 0<2<m—1 andem‘J 1y, =1.Then /, € Wand
=1 =1
satisfies (4.20), (4.21) and D" 7~1],(0) = b, the mapping b — 1, being continuous

from T;}Z’Zj% — W. Therefore following the outline of [15] we obtain the
THEOREM 4.17. — We assume that hypothesis of Subsections 3.1 and 3.4 hold
true, that c; satisfies [(4.1), (4.2)] and belongs to H(p;) with 1 <p; < + 00,1 =0, 1.
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Then
(423) [T(M)(CO;p07A07 ClaplaAl)] - T(m) (Cl ap/17A/1;C(;11p67A6)~

Ifu e W ) € W, one has

m—1

(4.24) (— " (D™ 10, DIu(0)),
j=o0
where (.,.); means here the scalar product between Ti;") Y= [T(m)} and T;’").

5. — Intermediate derivatives and spaces of traces.

The section is devoted to a particular case of the following problem:

“Find an intermediate space V; between Ay and A; such that for
1 <j < m— 1, the mapping u — D'u is continuous from W into an inter-
mediate space Le,(V;) between LE0 (Ag) and L7} (A;).”

Some results of that type for spaces without weights are given in [4], [9], [17],
(see also the bilbiography therein) and for hilbert or Banach weighted spaces in

(2], [3], [5].

Here we want to extend a result of [17] to the weighted space W using
properties of Hardy-Littlewood functions and the class A(p) of B. Muckenhoupt
[21] (see also [5]).

5.1 — The Class A(p).

DEFINITION 5.1. — Let J be a fixed interval of R. We shall said that a weight
w € A(p), 1<p< + oo, if and only if

p—1
/ 1 1
5.1 t)ldt O Pt <KPIIP, —+==1,
(5.1) (If[w()] )(If[co()] ) <K,

where I 1s any subinterval of J, |I| denotes the length of I, and K is a constant
mdependent of 1.

REMARK 5.2. — Set @ = ¢P. Then (5.1) becomes symmetrical:

) 1/p ) 1/p
(5.2) [m If c(t)”dt] [m If P (Hdt

< K.
We still shall write ¢ € A(p), with such a representation of w, if (5.2) holds.
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Some properties for w € A(p) are summarized in the

LeEMMA 5.3. — 1) If w € A(p) with the constant K, then w € A(r), r > p with
the same constant K.

ii) If w € A(p) with the constant K, then w P+ e A(p') with the constant

K- 114_1:1
p oy

i) If' 1<p < +oc and w € A(p) with the constant K, then there is r,1<r<p,
and a constant K(p, K), such that o € A(r) with the constant K(p, K).

For the proof we send to [21].
Now, taking J = R*, we claim

PROPOSITION 5.4. — If w € A(p), 1<p< + oo, then w € H(p).

ProOF. — Let w € A(p), 1 <p< + oo, with the constant K. F:rom Lemma 5.3
part iii), there is » € 1, p[, such that w € A(r), with a constant K and one has (a
fortiori from (5.1) with p = », I = (0, s))

r—1

<K's" fors>t>0.

s t
(5.3) f w(t)dr [g f o " (D)dr
t 0

t ¢
By Hélder inequality ¢ < [ w(r)dr[ ] a)(r)”"/“dr}r , so that from (5.3) we get
0 0

(5.4) s f o(0de < I g1 f o()dz.

+oo r—p
Because | sT P lds = Py we can integrate (5.4) on (0, +o0) and one has

; —

+00 s = t
K'tp
—p-1

(5.5) tf ls tf w(r)dr} ds <= Of w(z)dz.

Exchanging the order of integrations, the left hand- side of (5.5) reads

400

“+o00 1 +00 ()
f [w(7) f s””lds]dr:p? ﬂd

t

~

400
(5.6) “’T(If) 1 pK f o(t)dr.
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Like w € A(p), from (5.6) one deduces

t Pl ~
/ rKP
(5.7) f (@) P dz @@ ;. - PEEY
0 ;v p=r
that is w € H(p).

REMARK 5.5. — Obviously a non increasing weight belongs to H(p). But if
c(t) = e, t > 0 then ¢ & A(p). Indeed the left side of (5.2) reads

et 1_efpt 1/p l_efp’t 1/p'
t( p > < P )

which is unbounded as t — + oo.

Now we introduce the maximal Hardy- Littlewood function f*, defined for f
with values in some Banach space B by

* _ 1 :
(53) FO=sup f /()|
Therefore

THEOREM 5.6. — The mapping f — f* is contitnuous from L (B) into itself,
Jor1<p < +o0, if and only if, ® € A(p).

ProoF. — The theorem was proved in [21] by B. Muckenhoupt for f defined on
R (resp. RN) with values in R or C. The case where B is a Banach space is obtained
modulo a vectorial extension of inequalities of Calderén-Zygmund [8] and of the
Marcinkiewicz theorem by the methods of J. Schwartz [24].

5.2 — Intermediate derivatives

We set W = W(1,00,Ap; 1, 00,A;). We know that & € W is (m — 1)-
time continuously differentiable with values in Y so that D7 ®(0) is well defined.
Set 7" = T](.m)(l, 00,A0;1,00,A1), then (4.6) becomes

T;»zf Mo(gb)l—j/li(Dm¢)j/m.

(5.9) | D (0)

THEOREM 5.7. — Assume 1 <p; < +ooand w; = cfi € A(p;), 1= 0,1 Then for
all integer j, such that 0<j < m — 1, the mapping u — Diu is continuous from
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W into Lff{f[T ](.m)] = Z;, where

j —j/m j/m 1 ]/m J/m
5.10 wj=c’ ¢ = cl=a/mifm ,
( ) ] g 7 0 1 pj Po P1

Moreover, there is a constant k; > 0 such that, for all u € W, one has the
logarithmic convexity inequality

(5.11) |Dju|z7_§ ijO(u)l_j/mM{/m(Dmu)
PROOF (see also [5]). — Since D(R *; X) is dense in W it is sufficient to prove

the theorem when u € D(R +;X). Then, we can associate to « the function v
defined on R™ x R* by

-+t
1
(5.12) o t) = 5 f w(y)dy
X
and note that for 0 <j < m:
x+t
5.13 Div,t) = — I Diu(y)d
(5.13) o) =7 [ - Diutdy.
x
Therefore
x+t

1
[, )| 4, < Vo) = sup f f [u(¥)] 4,2y,

x4+t

1
\Dv(x, 1) A, S 0 @) = sup - f ID"u(y)| 4, dy.
X

— °m

Thus, from Theorem 5.6, one has v € L V(Ag), v, € L’c"j (A;) and

(5.14) Mo(y) < koMo(w), Mi(v,) < kiMi(D™u).

One deduces that, for almost every «, the function t — v(x, ?) belongs to W) ,

so that DJu(x,0) € T; ), 1

Now from (5.13) We obtain Dj v(x, 0) = —Dfu(x) and from (5.9) we have “a

fortiori” J+1
|DJv(ee, 0)

L .
ﬁg%mJW%mWZ

so that from (5.14) and Hélder’s inequality, we obtain the Theorem 5.7 for
u € DR +;X) with the choice of p;, ¢;, given by (5.10). The proof follows by
density.

1 .
REMARK 5.8. — 1) Since ¢;(t) = ¢ € A(p), o; +— € 10,1[, i = 0,1, theorem 5.7
holds true in the framework of [16], [19]. pi
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ii) In [2], [3], a result of intermediate derivatives is obtained in the framework
of weighted Hilbert spaces with non increasing weights which belongs to H(p)
and are not in A(p). Then the assumption on the weights, in the previous theo-
rem, is only sufficient and depends on the method used. Nevertheless, it seems
that taking weights belonging to .A(p;) should be a good basic assumption to
justify all the previous results.

iii) A set of conditions, both on the spaces and the weights, is given in [5] in the
framework of complex interpolation, using the operator D", 5 > 0, defined in
the introduction. A more complete study will be done in a forthcoming paper [6].
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