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On the Structural Stability of Monotone Flows
(Running head: Structural Stability)

AUGUSTO VISINTIN

Abstract. — Flows of the form D + o(u) > h, with o maximal monotone, are here
Sformulated as null-minimization problems via Fitzpatrick’s theory. By means of
De Giorgi’s notion of I'-convergence, we study the compactness and the struc-
tural stability of these flows with respect to variations of the source h and of the
operator o.

1. — Introduction
1.1 — The Fitzpatrick Theorem

Let V be a real Banach space. For any proper operator o : V — P(V’), in [6]
Fitzpatrick defined the convex and lower semicontinuous function

W [0, v) == (v*,v) + sup { (v — vy, v0 — V) : vy € auwy) }
. =sup {(v",v9) — (vj,v0 — V) : v5 Ealvg)}  V(@,v%) € VXV,

and proved that, whenever « is maximal monotone,
(1.2) fo,v") > (v, v) Y(,v*) € VxV,

1.3) L0 = @) & v €a@).

Extending Fitzpatrick’s result, whenever a convex and lower semicontinuous
function f : Vx V' — R U {+ oo} fulfills the system (1.2) and (1.3), nowadays one
says that f (variationally) represents the operator o. We shall denote by F(V) the
class of representative functions and by R(V) the class of representable opera-
tors. The latter are necessarily monotone, but need not be either cyclically
monotone or maximal monotone.

For instance, for any convex and lower semicontinuous function ¢ :V —
R U {+ 00}, it is known that the Fenchel function F(v,v*) := o) + ¢*(v*) fulfills
the system (1.2) and (1.3). Thus F' represents the operator dg. Other examples are
provided e.g. in [13, 15, 16].
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1.2 — Extended B.E.N. Principle

Let us now assume that we are given a Gelfand triplet of (real) Banach spaces
1.4) V c H=H' c V' with continuous and dense injections,

Let a maximal monotone operator o : V' — P(V’) be represented by a function f;,
and 4 : V — V’ linear, bounded and positive. The operator « + 4 may then be
represented by the function

1.5) Sora(u, v*) = fo(u, v* — Au) + (Au, u) Y(u,v*) € VxV'.

This may be checked directly via the system (1.2) and (1.3).
We shall take A = D; (the time derivative). For any & € L?(0,T; V"), setting

J: {v e L*0,T; V)N H'0,T; V") : v(0) = u"} — R U {+00},
(1.6) F

J) = | [fu(v,h — D) — (h,v)] dt +1||v(T)||§1 1 |3,
2 2
0

we may then reformulate the equation
1.7 Dyu +a(u) > h inV’, ae.in 10,77

as a null-minimization problem: J(v, h) = infJ = 0.

We shall refer to this representation as the extended B.E.N. principle, since
it generalizes an approach that was pioneered by Brezis and Ekeland [3] and by
Nayroles [9] for o cyclically monotone; see also the more recent works [10, 12]
and references therein.

1.3 — Variational Convergence and Structural Stability

The above representation of maximal monotone operators offers the possi-
bility to apply variational techniques to monotone flows like (1.7) as well as to
other monotone problems, that so far were regarded as nonvariational. An im-
portant role is here played by De Giorgi’s notion of I"-convergence, see e.g. [4, 5].
The structural stability of the corresponding null-minimization problem may
thus be addressed. By this we mean that the mapping that transforms the data
(including the operator) into the solution is sequentially closed w.r.t. preseribed
topologies. This extends more customary results on the closure of the depen-
dence of the solution on data, by including variations of the operator.

In Sect. 2 we deal with the I'-compactness of representative functions. In
Sect. 3 we then apply these results to the compactness and structural stability of
the monotone flow (1.7).



ON THE STRUCTURAL STABILITY OF MONOTONE FLOWS ETC. 473

This note announces results that are expanded and proved in [16]. This is
part of an ongoing research on the variational representation and structural
stability of nonlinear P.D.E.s, along the lines that were indicated in [12];
see also [15]. A somehow comparable program, based on the use of the
Fitzpatrick theory, has been accomplished for the homogenization of non-
linear flows, see e.g. [13, 14] and references therein. This theory opens the
doors to further developments, that will be addressed apart. These include
e.g. the onset of long memory in monotone flows; the formulation of a notion
of convergence of representable functions, based on the I'-convergence of
the representative functions; the (variational) representation of pseudo-
monotone operators; the identification of I'-limits of sequences of repre-
sentative operators, and others.

2. — Convergence and Compactness of Representable Operators

In this section we deal with the I'-compactness of representative functions.

2.1 — I'-Compactness and Stability of Representative Functions

Henceforth we shall assume that V' is separable. Let us define the following
nonlinear notion of convergence: for any net {(v,,v})} in VxV’, we set

(g, ) = (,0") InVxV' &
2.1 "
ve—v inV, vivt in V', (0 v) — (0F,).

This convergence determines the n-topology, in which a set B ¢ V x V"’ is closed
if and only if it contains the limit of any n-convergent net of B. Let us also define
the ws-topology as the product of the weak topology of V by the strong topology
of V'. This topology is clearly finer than n. The “strong-weak star” topology of

V xV’ might be defined similarly.

THEOREM 2.1. — Let a sequence {w,} of functions VxV' — RU{+c0} be
equicoercive in the sense that

22) VCeR, sup {|vlly+ vy : @, v") € VXV, y,(0,0*) < C} < + oco.
neN

Then, up to extracting a subsequence, vy, sequentially I'-converges to some
Sfunction w w.r.t. the topology n. The same applies to the topology ws, and the I'-
limit may depend on the topology.
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This statement rests upon the separability of V' xV’, and on the I'-compact-
ness of any subset of a topological space X with a countable basis, see e.g. [2;
p. 152], [4; p. 90]. The role of equicoerciveness in providing the sequential I'-
convergence is illustrated in [1].

THEOREM 2.2. — Let {w, },cy be a sequence tn F(V) that sequentially I'n-
converges to a function y. Then w € F(V).

Moreover, denoting by o, (x, vesp.) the operator V — PV') that is re-
presented by v, (y, resp.), for any sequence {(v,,v})} in VxV’,

2.3) vy € oy(vy) Yn, (v, )—>(v ) = v ea).

The same results hold if © is replaced by the topology ws.

2.2 — Representation of Time-Dependent Functions

Let us fixany T > 0, any p € 11, +oo[ and set V := LP(0, T; V). Let us define
the topology = in Vx V' as in (2.1), by replacing the space V by V and the asso-

ciated duality pairing (-, ) by ({ f v* (), v()) dt for any (v,v*) € Vx V.

The results above take over to tlme—dependent operators and to their time-in-
tegrated representative functions, simply by replacing the space V by V.

It is promptly seen that, whenever a function y € F(V) is coercive in the
sense that

24) VCeR, sup{|v|ly + vy : w,0%) € VXV, y(w,v") < C} < + o0,

w represents an operator o : V — P(V’) if and only if the functional

T

2.5) Y(,v") = f w(t), v*(t)) dt Y(v,v*) € Vx V'
0

represents the operator @ : V — P(V') : v+— a(v(-)).
Next we relate the n-convergence in V' xV’ a.e.in ]0,T[ with the r-con-
vergence in Vx V',

THEOREM 2.3. — Let p € 11,400, and {(v,,v})} be a bounded sequence in
Wer(0, T; V) x WeP' (0, T; V') for some ¢ > 0. If

(2.6) (Vn, V) — (0,v%) m VxV'ae. in 10, T,
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then
2.7 (O, v;) — (0,0%) n VxV'.

On the other hand, (2.7) does not entail (2.6), not even for a subsequence.

3. — Compactness and Structural Stability of Monotone Flows

On the basis of the previous results, in this section we study the compactness
and the structural stability of the variational formulation of the equation (1.7)
w.r.t. variations of the operator o and of the source #.

More specifically, for any » we prescribe a pair of admissible o, and A,
and denote by u, the solution of (1.7) coupled e.g. with the condition of time
periodicity. We fix a representative function y,, of o,, and reformulate (1.7)
variationally. Under the hypothesis of equicoercivity, by Theorems 2.1 and 2.2
the y,’s accumulate at some y € F(V) w.r.t. the n-topology. As h, — h in a
suitable topology, we then show that the solutions accumulate at some w,
which solves the corresponding limit equation (1.7), where o is the operator
that is represented by .

3.1 — Abstract Quasilinear Parabolic Operators

LetV c H=H' C V'be asin (1.4), here with V and H Hilbert spaces and V’
separable. For any n € N, let us assume that

3.1 oy : V — P(V’) is maximal monotone,

3.2) Jda, > 0: V(v,w) € graph(a,), (w,v) > an||v|\?,,
3.3 AC1, Coy > 0 : V(v,w) € graph(ay,), HWHV/ < ClnHUHV + Cap,
(34)  h, e L>0,T;V").

Let us fix any T € 10, +oc] (T = +oc included), and set
X :=L*0,T;V)nH\0,T;V"), Y :=HY0,T;V)nH*0,T;V,
3.5)  HO0,T;V"):={v e H'O,T; V') : v(0) = o(D)},
X, .= L0, T;V)NH}(0,T; V),  Y;:=YnXy
here we set v( 4 o0) := tlirg(} v(t). Next we shall deal with the sequence of flows

(8.6) Uy € Xz, Dy, + o (uy) 3 hy, inV’, ae.in 10, T[.
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Note that X; = {v € X : v(0) = 0} if T = +oc0. The Cauchy problem for all
t > 0 with vanishing initial datum may thus be regarded as a periodic problem
with infinite period. The condition u,(0) = 0 is not restrictive, since it may be
retrieved by shifting the unknown function u. Next we review a result of ex-
istence, uniqueness and boundedness.

PRrROPOSITION 3.1. — Let (3.1)—(3.4) be fulfilled, for 0<T < +oo. Then:
(i) Problem (3.6) has a solution. This is unique if either T = + oo or ay, is
strictly monotone. The sequence {u,} is bounded in X; whenever

3.7 sup {]a,, ' + [Cual + Conl + 1l 20737y} < + 00,
n

(i) If hy, € H}O,T; V") and
3by, > 0 : V(v1,w1), (v2, w) € graph(e,),

3.8) ’
(w1 — we,v1 — V) > byllvr — ey,

then w, € Y. Moreover {u,} is bounded in Y; whenever

(3.9) sup {|a,, '+ 10| + |Cuul + |Coul + Veullpo vy } < + 00
n

For any n, let the operator o,, be represented by a proper function y,, € F(V),
so that @, (defined as in Sect. 2) is represented by the time-integrated functional
¥, € F(V), see (2.5). Let us assume that

(3.10) hy — h inV'.

THEOREM 3.2. — (Global Formulation)
(i) (Compactness) Let (3.1)—(3.4) be fulfilled, and let each operator o, be re-
presented by a function y,, : V — PV'). Let us assume that

(.11 VC eR, sup {|v[ly + [v*|ly : (0,0") € VXV, y,(0,0*) < C} < + o0,
neN

and define ¥, as in (2.5). Then there exists ¥ € F(V) such that, up to extracting
a subsequence,

3.12) ¥, sequentially I'-converges to ¥ w.r.t. the topology m of VxV'.

@) (Structural Stability) Let @ :V — PO)') be the operator that is re-
presented by Y. For any n, let hy, €V, and u, be a solution of problem (3.6). If
(3.7) is fulfilled, then there exists w € X; such that w, — w in Xy, up to extracting
a subsequence. This entails

(3.13) Dy +au) > h inV.
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3.2 — Outline of the Proof

The [I'-compactness stems from Theorems 2.1 and 2.2. By part (i) of
Proposition 3.1, the sequence {u,} is bounded in X;. Hence there exists u € X;
such that u,, — » in X}, up to a subsequence. It is easily seen that

(8.14) (U, hyy — Dyuty) - (u, h — D) in VxV.
The flow (3.6) may be reformulated in global form as

3.15) Uy € Xy, Yoy, Ry, — Dytty) < (U, I ).
By Theorem 2.2 then

(3.16) u € Xy, Y(u,h — D) < ({u,h)),

and this is tantamount to (3.13). O

THEOREM 3.3. — (Pointwise Formulation)

(1) (Compactness) Let (3.1)—(3.4) be fulfilled. For any n, let the operator o, be
represented by a function w, : V. — P(V"), and (3.11) be fulfilled. Then there
exists w € F(V) such that, up to extracting a subsequence,

3.17) w,, sequentially I'-converges to w w.r.t. the topology = of VxV'.

(i) (Structural Stability) Let o« :V — P(V') be the operator that is re-
presented by y. For any n, let h, € H jl(O, T; V"), and u, be a solution of problem
(3.6). If (3.8) and (3.9) are fulfilled, then there exists w € Yy such that w, — u n
Y;, up to extracting a subsequence. If the canonic injection V. — H is compact,
this entails

3.18) Dyu +a(u) > h m V', a.e. im0, T[.

The proof of this result follows the lines of Theorem 3.2. Part (ii) of
Proposition 3.1 provides the boundedness in Y}, and this allows one to derive the
pointwise formulation.

The global and a pointwise formulations and the two latter theorems may be
extended to the Cauchy problem for the equation (1.7) on a bounded time in-
terval, see [16].

By Theorem 2.3, the pointwise formulation (3.18) entails the global problem
(3.13). A priori the converse might fail: for any instant ¢, [a(%)](-, £) might depend
not only on u(-,¢) but also on g, 1 4. This would correspond to the occurrence of
long memory in the equation. Even the proof of the causality of the operator o
does not seem obvious.



478 AUGUSTO VISINTIN

3.3 — Applications to P.D.E.s.

Let Q be a bounded Lipschitz domain of RY (N >1) and {7,(x, )} be a se-
quence of maximal monotone mappings R — P(RY), that are Lebesgue-mea-
surable w.r.t. x € Q. One may select

(3.19) V=H\Q), H=L*Q), &, =-V7,x Vv) inD(Q).
For N = 3, one may also take
V = {3 e LXQP: Vx¥ e LXQ)?, ¥x¥=0in H 202},

(3.20) 5 5
H = L*Q), %,@) =V x 7,(@, Vx?¥) in D(QP VieV,

where by v we denote the outward-oriented unit normal vector-field on 0Q.

Theorem 3.2 applies to both sequences of operators (3.19) and (3.20), whereas
Theorem 3.3 only applies to (3.19), since the canonic injection V' — H is compact
just in this case. For (3.20) onset of long memory may thus be expected in the
limit.

This may be compared with an example due to Tartar. The equation D;u +
ay(@)u =0 is obviously associated to the linear semigroup S,(): v(x) —
exp{— a, ()t} v(x). This converges to a semigroup if the sequence a,, strongly
converges in L1 (Q). If instead a,, converges only weakly, the exponential form is
lost in the limit, and a long memory effect does occur; see [11; Chap. 23] and
references therein.
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