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Approximation by Multivariate Generalized Sampling
Kantorovich Operators in the Setting of Orlicz Spaces

DANILO COSTARELLI - GIANLUCA VINTI

In memory of Professor Giovanni Prodi with deep respect and high esteem

Abstract. — In this paper we study a linear version of the sampling Kantorovich type
operators in a multivariate setting and we show applications to Image Processing. By
means of the above operators, we are able to reconstruct continuous and uniformly
continuous signals/images (functions). Moreover, we study the modular convergence
of these operators in the setting of Orlicz spaces L?(R"™) that allows us to deal the case
of mot necessarily continuous signals/images. The convergence theorems in LP(R™)-
spaces, L*log” L(R")-spaces and exponential spaces follow as particular cases.
Several graphical representations, for the various examples and Image Processing
applications are included.

1. — Introduction

In [1] the problem of convergence for a family of linear generalized sampling
operators in the Kantorovich sense has been studied in the setting of Orlicz
spaces in one-dimensional case. Later these results have been considered in a
more general context in [36].

The main purpose of this paper consists on the extension of the above results
([1]) in the multivariate setting.

The treatement of the theory in multivariate setting is important also from
the point of view of the applications; indeed in signal theory, in order to deal with
image processing, one has to work with multivariate signals. This explain the
presence on this paper of concrete examples showing how the theory can be
applied to image approximation. As concern the multivariate theory for the
classical generalized sampling series, see [10].

The family of operators we take into consideration are of the form

M SN@ = 3 rowr—to| 5 [ du|  @e R,

kez" SRy

where f : R" — R is a locally integrable function such that the above series is
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convergent for every x € R". Here y : R” — R is a kernel function satisfying
suitable properties, , = (tkl, - ,tkn) is a vector where (&, )y,cz, 1 =1,...,mis a
sequence of real numbers with some properties and where

w [tﬁ’tkl_“] « {tﬁ,tkz—“} X ... X [tk—",tk”—ﬂ] (w > 0),
k w ow w’ w w' w

andAE = Akl ~Ak2 et Akﬂ with Aki = tki+1 — tki’ 1= 1,.. ., N.

The above family (I) represents a Kantorovich version of the generalized
sampling operators (see e.g. [10]) where instead of the sampling values f(k/w)
one has an average of f in a small pluri-rectangle around k/w (here instead of k,
we have a general sequence ;, obtaining a non uniform sampling).

This situation very often occurs in Signal Processing, when one cannot match
exactly the “node” t; /w: this represents the so called “jitter-error”.

Therefore our theory reduces jitter-errors calculating the information in a
neighbourhood of a point rather than exactly at that point.

The generalized sampling series have been introduced by P.L. Butzer and his
school at Aachen in the years 80 as an efficient approximation process to reconstruct
signals (see e.g. [8, 13, 32, 9, 14, 15, 4, 11, 16, 17, 5, 34, 6, 27, 35]); for the theory of
classical sampling operators, the reader can see e.g. [33, 23, 18, 20, 7, 21, 22].

The present paper deal with convergence for the family (I) to the function f
both in case of pointwise and uniform convergence for bounded and continuous or
uniformly continuous functions and in the more general setting of functions
belonging to Orlicz spaces. In this case, the convergence considered here is the
modular convergence of Orlicz spaces. This approach allow us to work even with
discontinuous signals, treating in this way a problem not covered by the classical
theory, which considers only continuous functions. The importance of this fact,
release just in the multivariate setting, where the possibility of approximating
images in case of discontinuous functions means to detail the countours of the
image itself, since discontinuities represent jumps of grey levels that imply high
contrast. Therefore our theory becomes very important when one deals with
image enhancement, in particular in case of biomedical images where the shape
of the countours can suggest some specific patology.

The paper is organized as follows: Section 2 is devoted to notations and
preliminaries while in Section 3 we define our operators and give some basic
results. In Section 4 we present convergence results both in classical setting,
i.e. pointwise and uniform convergence and in the setting of Orlicz spaces.
Section 5 shows the unitary approach given by the treatement in Orlicz spaces,
giving us the possibility to consider particular cases as, LP(R")-spaces,
L*1og’ L(R™)-spaces and exponential spaces. Finally, Section 6 is devoted to
particular examples with special kernels and to graphical representations.
Here we also consider how the theory can be applied to image approximation
(Section 6.1).
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2. — Notations and preliminaries

In the following, let N” denote the set of all n-tuples k = (kq, ..., k) of ele-
ments from N; Z" and R" are definided analogously. In particular, R" is the
Euclidean n-space endowed with the norm |jully = (u2 + ... 4+ u2)"/?, where
w=(Up,...,u), u; € R, i=1,...,n. Further, B(x,r) is the closed ball of R" of
center ¢ and radius r > 0 containing all the vector € R" such that ||z — u||, < 7.

n

Finally, ou = (outy, . . ., 0uy,) is the product of u with « € R and w - v = > u;v; is
the scalar product of u, v € R". =1
We denote by C(R") (resp. C°(R")) the space of all uniformly continuous and
bounded (resp. continuous and bounded) functions f : R" — R endowed with
the usual sup-norm || f{|ozry = [ £l := sup |f(@)], and by C.(R") € C(R") the
ucR”

subspace of the elements having compact support. Moreover, M (R") will denote

the linear space of all (Lebesgue) measurable real functions defined on R".
We now recall some basie facts concerning Orlicz spaces.

Let ¢ : Rj — Ry be a p-function, i.e. ¢ satisfies the following assumptions:

1. ¢(0) =0, p(u) > 0 for every u > 0;
2. ¢ is continuous and non decreasing on R;
3. lim ¢(u) = +o0.

U—00

For a fixed ¢-function ¢, one can consider the functional 1? : M(R™) — [0, + oo]
defined by

IiL= [ of@h dz (f € M(RY).
I{H
As it is well-known I? is a modular functional on M(R"), i.e. I? satisfies the fol-

lowing assumptions (see e.g. [28, 3]):

(@) I?[f] = 0if and only if f = 0;

() I?f1 = I - f};

(e) Ilaf + pg]l < I’[f]1+ I’[g], for every o, § > 0 such that o + f = 1.
The Orlicz space generated by ¢ is defined by

L*(R") ={f e M(R"): I’[\f]1<oo, for some A > 0}.
The Orlicz space L?(R") is a vector space and a norm on L?(R") is given by
Ifll, = inf{i>0: ILf/7] < 4},

(in case of ¢ convex, | f|, = inf{4 >0: I?[f/A] <1}).

| - 1l, is called Luxemburg norm and defines a strong notion of convergence in
L?(R™). Tt is easy to show that, a net of functions (f,,),~0 C L?(R™) is norm
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convergent to a function f € L?(R"), i.e. || fi, —fll, — 0 for w — oo, if and only if
IPLA(fy — )] — 0 for w — oo, for every 4 > 0. We can also introduce in L*(R"), a
weak notion of convergence, called “modular convergence”, which induces a to-
pology (modular topology) on the space.

We will say that a net of functions (f,),,~0 C L?(R") is modularly convergent
to a function f € L*(R") if

lim I°[(fu = )] = 0

for some 1 > 0. Obviously, the norm convergence implies the modular con-
vergence, while the converse implication is true if and only if the p-function ¢
satisfies the As-condition, i.e., if there exists a constant M > 0 such that

1) pQu) < M) (€ RY).
The space
E?(R") = {f e M(R"): I’[.f]1<oo, for every / > 0},

is a vector subspace of L?(R"™) and it is called the space of all finite elements of
L?(R™). Tt is easy to show that C.(R") c E*(R"). In general E*(R") is a proper
subspace of L*(R") and these two spaces coincide if and only if ¢ satisfies the 4o-
condition.

As a last basic property on Orlicz space, we recall that C.(R") is modularly
dense in L?(R").

We now give some interesting examples of Orlicz spaces. First, we consider
the Orlicz spaces generated by the convex g-functions p(u) = u”, 1 < p<oo and
goaﬁ(u) =u” logﬂ (e +u) for « > 1 and f > 0; they both satisfy the As-condition
and so, in these cases, modular convergence and norm convergence are equiva-
lent. Moreover, E(R™) = L?(R") are respectively LP(R") and L* logﬁL(R”), both
treated in Section 5, as particular cases.

On the other hand, the exponential spaces, generated by the convex p-func-
tion p(u) = ¢*" — 1 for « > 0, are examples for which E(R") is included but not
equal to L?(R™) and norm convergence is stronger than modular convergence.
Indeed, it is easy to see that this ¢p-function does not satisfy the 4.-condition.

For further details concerning Orlicz spaces, see the following monographs
[25, 28, 24, 26, 30, 31, 3] and [29].

3. — The multivariate generalized sampling Kantorovich operators

In this section we introduce the class of operators we will discuss in this
paper. Let /1" = (f;)rc» be a sequence defined by t; = (t,, . . ., t,), where each
(te)kez, © = 1,...,nis a sequence of real numbers with —oo < #, < #;,,, < + o0,

i+1
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lim ¢, = £ o0, for every ¢ =1,...,n and such that there exist 4, J > 0 for

ki—+o00
which 0 < 4y, = t,41 — b, < 4, foreveryi=1,...,n.

In what follows, a function y : R”—R will be called a kernel if it satisfies the
following properties:

e (K1) y € LY(R") and is bounded in a neighbourhood of 0 € R";
e (K2) ForeveryueR", > y(u—t) =1;

kez™
e (K3) For some >0,

mp () = sup Y xlw — t)] - [lu — Bl < + co.

ueR" kez"

We define the set
B _ ey iy o by by v x | (w > 0)
k w’ w w’ w T lw w '
For every ke 7" and w>0, R}’ is a subset of R"; if we denote by
- A
A =y, - M, - ... - 4, the Lebesgue measure of B} is given by —:f and satisfies
the following inequality - w
5% Ak An
o< =<
wr oWt T Wt
We can now introduce the definition of our operators.

DEFINITION 3.1. — Let y be a kernel. We define a family of operators (S0 by

SN@ = Y sz -1 |5 [fw du| @e R,

on
ke7: = R};

where f: R" — R is a locally integrable function such that the series is con-
vergent for each x € R".

SL 1 (w > 0), will be called the multivariate generalized sampling Kantorovich
operator.

1
The term i{;— f f(u) du represent a mean of the function f on a pluri-rec-
tangle of R". s RY
We begin giving the proof of the following lemma.

LEMMA 3.2. — Let y be a kernel. We have

() mo () = sap > [x(u —tp)| < + o005

ueR" keZ
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(ii)) Foreveryy >0
lim > [ —t)| =0,

—
l[eow—t [l >70

uniformly with respect to u € R™.
(iii) For every y > 0 and ¢ > 0 there exists a constant M > 0 such that

fwn

l[zello>M

1(wu — )| du < &,

for sufficiently large w > 0 and t), such that |||y < yw.

ProoF. — (i) By (K1), there exists a closed ball B(0, @) and a positive constant
T, such that [y(w)| < T, for every u € B(0,a). We can assume a < J. We write

le(%—t@)l( >+ > )|X(%—t@)|11+12-

kez" lu—tl,<a lu—tells>a
Since a < 9, the sum in /7 contains at most 2" terms and so I; < 2"T < 4 oo. For
I, we have
1 J; 1
L <5 > ldu—tllu—tl < —ZmpmG)<+oc.

le—ti |l >a

Sinee I + Iz < + oo for every u € R, (i) is proved.
(ii) Let y > 0 be fixed. For every w > 0 we obtain as above,

1
> bwu—to)l < —my (),
oot} >y (yw)

and so the assertion follows. B
(iii) Let & > 0 be fixed. Since y € L1}(R"), there exists a constant M > 0 such
that

[ @ide <o
> M
Let now y >0 and for every w > 1 consider all the elements ¢, such that
ltk|l < wy. Further, let M > 0 such that M — y > M. We have

f w" |y (wu — t)|du = f ()| dae
llull>M N+t [l >Mw

< f lx@)|dx < f r(@de <e,
llell > @) lzlly>M

and so (iii) is proved. Od
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REMARK 3.3. — (a) We note that, if f € L>*(R"), using Lemma 3.2 (i), the op-
erators S7,f are well-defined. Indeed,

(SEN@I < mom ISl < + o0,

for every x € R", i.e. S}, : L°(R") — L®(R").

(b) Instead of assuming that the function y is bounded in a neighbourhood of
0 € R™ and satisfies (K3), one can directly assume that for y hold the properties
(i) and (ii) of Lemma 3.2.

(¢) If we consider the equally spaced sequence t, =k = (ki,...,k,), k € 2",
the boundedness assumption on y and the hypothesis (K3) can be replaced by

sup > |x(u —tr)| < + oo, where the convergence of the series is uniform on
ueR" ez
compact sets. In this case, (ii) of Lemma 3.2 becomes an easy consequence of the
property

lim 3wk =0,

R—oo
lu—Fkl;>E

uniformly with respect to u € R".

4. — Convergence results
We are now ready to prove the following convergence theorem.

THEOREM 4.1. — Let f € C°(R"). Then, for every x € R",
”%ljrolo Sz N(@) = f(w).
In particular, if f € C(R™), then
Tim S5 ~fl. = 0.
PRrOOF. — Let x € R" be a point of continuity of /. We first note that S%,f is

well-defined by boundedness of f and let ¢ > 0 be fixed. Then there exists y > 0
such that | f(u) — f(2)| <& whenever ||u — z||, <y (w € R"). By (K2) we obtain

@ —f@l < 3 -ty 1w - f@) du

]ﬁez” - RZ'
wn
< o )Ix(w&twl = 1w - @) du
oz —tglly<wy/2  |lwe—ty|ly>wy/2 IﬁR}Lf

=1+ 1.



452 DANILO COSTARELLI - GIANLUCA VINTI
For every u € R" with u € Ry, if [lwa — tg]l, < wy/2, we have

1

V|
Ju—ay < b te-g] < a5+

u——1l
'k

DO~

2 2

A
Since there exists w; > 0 such that v/n - ” < % for every w > wy, we obtain

w/ﬂ
L < Z Z(w@*ti_cﬂA—k ff du < mo (e

v —tg[lp <wy/2 =Ry

Moreover,

L <2|fle D Ixwz—ty)

l[ww—tl>wy/2
and for the property (i) of Lemma 3.2, there exists ws > 0 such that

ST rwe—t)| < e

vz~ [ly>wy/2
for every w > w; and so the assertion follows taking w = max{w;, w2} and being
& > 0 arbitrary.
In particular, if f € C(R"), the inequality
IS N)@) —f@)] < Ii+1z <e

holds for every x € R" and for w > w, for some 7 > 0 that does not depend
on x. O

REMARK 4.2. — We note that, if f € C.(R") and supp f C B(0,y), we have that
Rg N B(0,7) = 0 for every t;, ¢ B(0,wy) and therefore

[raw du=o.
Ry
It follows that (S5, f)(x) = > |x(wx —t)| B f fw) d%} is well-defined for
IS tell,<y k

ko
every x € R” and S, f € E?(R") c L?(R") where ¢ is a convex ¢-function, for
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every w > 0. Indeed, for 1 > 0, by Jensen’s inequality, we have

rus < [oa 3

2wz — tp)l[| fllo) da

R" it lla<y

< o (X)HfHoo)f g — 1) g
12t llo<y moﬂ"()() 0 k

< Y P lady < 4o

wmy g (/)
llatellz<y ’

As noted in Remark 4.2, we can now prove the following theorem of norm-
convergence for the family of multivariate sampling Kantorovich operators in
the setting of Orlicz space generated by a convex ¢-function.

THEOREM 4.3. — Let ¢ be a convex p-function. For every f € C.(R") we have
Tim S5/~ f1l, = 0.
Proor. — We will prove that

Tim 1T, f =N = Tim [ p(I(Sf) @) — f@)) dz = 0,
]R’ﬂ

for every A > 0, that is equivalent to show that the family (p(1|S%f — f)w>0

converges to zero in L'(R"), for every . > 0. We will use the Vitali convergence

theorem in L'(R"). Let A > 0 be fixed. Using Theorem 4.1 and for the continuity
of ¢, we have

Jim oGS f = fll.) = 0.

Now, let ¢ > 0 be fixed. Moreover let y and 7 be two positive constants, such
that supp f C B(0,7) and y>7y+ 4. Then, if t; ¢ B(0,wy) we have that
RN B(0,7) = 0 and therefore

Jir@lax - o.

w
By

By Lemma 3.2 (iii), for such y, ¢ > 0, there exists a constant M > 0 (we can
assume 7 < M), such that

f w'|y(we — )] da < e,
lallz>M
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for every sufficiently large w >0 and t; such that {; € B(0,wy). Then, by
Jensen’s inequality and Fubini-Tonelli theorem we have

| eGlSLN @) da
llcllo>M1

oG i GOl 1] o)
Mo, (W"

<

w" [y (we — t;)|da

(1t ll2<ewy )l >M

o 200 QI fllso)
mo, i GOW"

)

where L > 0 represents the number of terms of the above series in fact corre-
sponding to the number of sets R}’ having non-empty intersection with B(0, ).
We note that, for every w > 1 we obtain

v< (B =2 SO == 1)
()] =z [ ) ]
< wn.{zﬂ{([%bﬁq@([%})n1+...+1H = w"-K;

(here [-] denotes the integer part).
Thus,

o QO £l o)
Mo, (%)

[ vai(sin @D dz < e K = ¢-C,

for every w > 1.
Therefore, for ¢ > 0 there exists a set £, = B(0,M) such that for every
measurable set F', with F N E, = (), we have

[ovi(sin@-r@b dz = [o0l(S5) @) da
F F

< f oG (SLf) @) de < - C.
llcll>M
Finally, for || f||,, > 0, let ¢ > 0 and B C R" be a measurable set with

&
9@imo i GO fllo0)”

Then, by Remark 3.3 (a) and since my ;(x) > 1, in corrispondence to ¢ > 0 and

|B| <
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for every w > 0,

[ovisin@ - @z

B

IN

1 1
5 Bf 0@ASLN@) de + 3 Bf 9@ f(@))) dx

IN

1 1
5 Bf o@imorD|fI|.) dz + 5 Bf 02|l da

IN

[ o@imo £ dz = |Blo@imom 1) < &
B

Thus, the integrals
[ o1 n@ - @l de
O]

are equi-absolutely continuous. Since A >0 is arbitrary, we obtain the
assertion. m

In order to obtain a modular convergence result in L?(R"), we need a modular
continuity property for the operators S%,. We have the following.

THEOREM 4.4. — Let ¢ be a convex gp-function. For every f € L?(R") there
holds

llxlls )
[ AS% < WAL g9 "
I[A8%, f1 < 5 mo (X)I [2mg (GO 1,

for some A > 0.
In particular, S%, maps LY(R™) in LP(R™).

PROOF. — Since f € L#(R"), there exists /> 0 such that I?[/f]< + oc. Let
/> 0 such that Amg 2 (y) < 4, then applying twice Jensen’s inequality we obtain

1I°US,f1 = [ oGl N@) de

R™

1 n
> o | G imom () [ 1fl du | [ oz~ 1) da

awig (){ ) ren P R
= k

1 w'
< o 2| A [ otima ol fawpauc- [ zwz — ty)\de

- Ré” R"
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With the change of variable wx — f; = v in the last integral, we have

IUSLf1 = [GlSEN@)D de

R™

1 1

S o Gy GO (w)]) du 3 ||
oG 2| ;| P L) d iy
- k

1

< -
= mo (1)

1
5 2l 22D 1 (O f1 < + oo,

since I7[2mo i+ (0)f1 < I°[Af1< + oo. O

Theorem 4.4 says that the family of operators S% : L?(R") — L?(R") is
modularly continuous, for every w > 0.

We can finally prove the main theorem of this section, which provides a result
of modular convergence.

THEOREM 4.5. — Let ¢ be a convex p-function. For every f € L*(R™), there
exists A > 0 such that

Tim 108, f = f)] = 0.

PRrOOF. — Let f € L?(R") and ¢ > 0 be fixed. Since C.(R") is modularly dense
in L?(R") (see e.g. [2]), there exists A > 0 and a function g € C.(R") such that
I’IA(f — 9)] < & Letnow / > 0 such that 34(1 + mq ;2 (x)) < 2. By the properties
of ¢ and Theorem 4.4, we have

LS, )]
< IPBUSLT — Shl + IP31(Skg — ) + IPI3(f — 9)]

; 017, _ » v o7 B

1 N
— N 14 Ay
=< (mo,m(x) " llxlly + 1>6+1 [BA(S%g — 9)].

The assertion follows from Theorem 4.3. O

5. — Approximation in L”(R") and some other particular cases

We will now apply our convergence theorems to some special spaces. First we
study the important case of L?(R™) = LP(R") that occurs when ¢(u) = u?,
u € Ry and 1 < p<oo.
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Inthis case I?[f] = ||f ||z, and it is well-known that ¢ satisfies the 4»-condition
and so LP(R") coincides with its space of all finite elements and the modular
convergence and usual norm-convergence are equivalent. Then we obtain the
following corollary.

COROLLARY 5.1. — For every f € LP(R"), 1 < p< oo, we have
Tim |84,/ /], = 0.
Moreover, the following inequality holds
1S5f1, < 07 Pano,m GNP P IAPIF,  (f € PR,

As another particular case, we can apply our result developed in the
previous section to the space L“ logﬁL(R”), generated by the g-function
(oaﬁ(u) =u” logﬁ (e +u), u >0 for o« >1and f > 0. The modular corresponding
to (ﬂi,ﬂ is

190 f] = f [f@)|*log’(e + | f(@)]) da.
R"

Note that the function ¢, ,; satisfies the 4s-condition, which means that, as in the
case of LP(R"), L* logﬁL(R"’) = L?#(R") = E?-#(R") and the norm convergence
is equivalent to the modular convergence.

We obtain the following, for the most interesting case o = ff = 1.

COROLLARY 5.2. — For every f € Llog L(R") and for every A > 0 we have

Tim [ |(S5f)(@) — f@)log (e + |(Shf) @) — f@)) dz = 0
R"

or equivalently,
M%I_IEOHS@.](‘ _fHLlogL =0,

where || - [|1,1q1, S the Luxemburg norm associated to 1”11
Moreover, we have

[1(str)@Nog e + 1(Sf) @)D d

R

< b [\ ritogte + imo ol @D
R"

for every 4 > 0,i.e. S5 : Llog L(R") — Llog L(R").

Finally, we consider the case of the exponential space generated by the g¢-
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function ¢, (u) = ¢*" — 1, u > 0 for some « > 0. The Orlicz space L?:(R") consists
of those function f € M(R") for which

I7[)f] = f(e(l\f@)\)’ ~ 1) dx< + oo,
R"

for some /. > 0. Since ¢, does not satisfy the 4;-condition, the space L?-(R") does
not coincide with the space of its finite elements E?:(R"). Moreover, modular
convergence does not imply norm convergence. We obtain the following.

COROLLARY 5.3. — For f € L#(R"), there exists /. > 0 such that

lim f (@ASN@~F@D" _ 1) dge = 0.

W—00
R"

Moreover,

f (SN _ 1y g < llxll1 f (emom D@D _ 1y do.
o - oG 4, -

for some A > 0.

6. — Examples with special kernels and graphical representations

In our theory, the choice of the kernels becomes important; indeed, in general
it is not so easy to verify if a multivariate function satisfies the conditions (K1),
(K2) and (K3). Therefore may be useful to use the well-known examples of
univariate kernels to construct those in more variables (see e.g. [10]).

To this aim, consider the following procedure: let for simplicity /7" = (;)c 7,
tr, = ki, fori=1,...,m, the equispaced sequence, and let y1,..., %, € LY(R) such
that

mo e (x;) = supz lxiw — k)| < + oo,
UER ke,

where the convergence of the series is uniform on compact sets of R, and assume
n
that > y;(uw — k) =1,foreveryu € R, for? =1,...,n. Setting y(u) := [] x;(wy),

ke, =1
we obtain that y € L1(R") since

[t dw = [ Tl dus...du, = T] [ L] dui< + oo,

R" R" =1 =1 R
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and

mo Q) = sup > [y -k = [[mom )< + o,

ueR” kez" i=1
and the convergence is uniform on compact subsets of R”. Further,
n
doaw—k =] D wwi—k) =1,
kez" i=1 ke’
for every u € R". Thus, by Remark 3.3 (b) and (c), we can say that y is a kernel.
For example, the univariate Fejér’s kernel (see Figure 1) defined by

Flz) = %sincz (g) @ € R),

where the sinc-function is given by

sin (7x)
- 0
sine (x) = e © e R\ {0},

1, x=0,

satisfies the condition above mentioned, as shown in [1].

Fig. 1. — Univariate Fejér’s kernel F.

n
Then, F,(x) = [] F(x;) is the multivariate Fejér’s kernel (see Figure 2) and
i=1
satisfies the condition upon a generalized kernel.

Fig. 2. — Bivariate Fejér’s kernel F,.



460 DANILO COSTARELLI - GIANLUCA VINTI

The multivariate sampling Kantorovich operator of f € LP(R"),
1 < p<oo, takes now the form

@ = S | w' [ f@ du|  Fuwe -k @eRY.

7n
ke RY

From Corollaries 5.1, 5.2 and 5.3 we now obtain the following.

COROLLARY 6.1. — (@) For every f € LP(R™), 1 < p< oo, we have
] Fn _
Tim (IS5 — £1], = 0.
(b) There holds for f € Llog L(R") and every A > 0,
Tim [ 1(S5) @~ F@)log e + A (S5)@) ~ f@)) dz = 0.
R"

or, equivalently,
Tim (1S5~ ll1ogs, = 0.

(¢c) For f € L*+(R"), there exists i > 0 such that

lim [ (e (S WD) 1) 4 = 0,

W—00

R"

For example, we apply now the sampling operator S72 to the particular dis-
continuous function f € LP(RZ), for every 1 < p< oo, defined by (Figure 3)

3, —1< 2 <land —1< y <1,
2 p—
@) flay 6 ., otherwise.
X2 + 9y

Fig. 3. — Graph of the function f.
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The two-dimensional sampling Kantorovich operators for the function f de-
fined in (2) in case of w = 5 and w = 10 are given in Figure 4 (in an octant of the
plane).

-A‘\“ ““‘T

Fig. 4. — The function f (black) with respectively the two-dimensional sampling
Kantorovich operator S“T 2 f (grey) and S10 f (grey).

The graphs show how the operator approximates the original function, and to
give a better view of this fact, the function f and the operators S5F 2f and Sﬁf are
plotted all together, as before, in an octant of the plane (Figure 5).

Fig. 5. — f (black), 7> f (grey), Si; f (dark grey).

Since Fejér’s kernel F,, has unbounded support, one needs an infinite hum-

ber of mean values w" [ f(u) du in order to evaluate the corresponding sampling
R

series (S7+f)(x) at anylﬁgiven x € R". If the function f has compact support, this
problem does not arise, while, if the function has unbounded support (as in our
example), one can only take a finite number of these mean value into account, so
the infinite sampling series must be truncated to a finite one, which leads to the
so-called truncation error.

In order to avoid the truncation error, one can take kernels y with bounded
support. The most convenient examples here are the multivariate kernel gen-
erated using the univariate B-splines of order k € I, defined by

k-1

M) = D,Z()Z()( +xz> (e R),

+

(where the function (x), = max{x, 0} is the positive part of x).
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As shown in [1], M|, satisfies the conditions of univariate kernels, so

Mi(x) = HMk(%i%
i=1
is the multivariate B-spline kernel of order k € I\N.
Hence, we obtain the following, again from Corollaries 5.1, 5.2 and 5.3.

COROLLARY 6.2. — (a) For the multivariate sampling Kantorovich operator

(Sﬁ)/l;éf)(&) - Z w”ff(@)d?_/v Miwe —k)  (xeR"),

kez" Ry
of f € LP(R"), 1 < p<oo, there holds
lim (18%F ~ 1], = 0.
(b) Likewise, one has for f € Llog L(R") and every A > 0,
Tim [1(8357) @ - f@ltog (e + A1 S4F ) @) ~ f@l) da = o,

R"

or, equivalently,
. M
Tim S5 — fll g, = O
(c) For f € L«(R"), there exists /. > 0 such that

lim [ (eCl( w-rwl) _ 1) d = o.
wW—00
R’ﬂr

Fig. 6. — Univariate B-spline kernel M;.

Let now consider the particular case k¥ = 3 in detail. The B-spline M3 (see
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Figure 6) is given by

3 1
°_ <Z
1" el <35,

1/3 2 1 3

My(@) = i(é—m), <l <2,
3

The two-dimensional sampling Kantorovich operators generated by Mg (see
Figure 7), for the function f defined in (2) in case of w = 5 and w = 10, are plotted
in Figure 8.

Fig. 8. — The function f (black) with respectlvely the two dimensional sampling
Kantorovich operator S ; f (grey) and 3103 f (grey).

The graphs show how the operator approximates the orlgmal functlon and to
give a better view of this fact, the function f and the operators S 3 f and S are
plotted all together in Figure 9.

Fig. 9. — f (black), S f (grey), S\ f (dark grey).
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Moreover, if we compare the graphs of the multivariate sampling Kantorovich
operator generated by the spline kernel and the Fejér kernel, it is clear that the
approximation by the series based on M3 is considerably better than the ap-
proximation by the series based on F5 kernel (see for example Figure 10). This

2
means that applying the series Sufﬁ 3f a reasonably good approximation can be
achieved by taking into account fewer mean values of f than for the series S72f.

Fig. 10. — f (black) with respectively S5M§ f (dark grey), S2* f (grey) and Sj\o/@ f (dark grey)
and Slfo'2 f (grey).

One can also use linear combination of univariate B-spline of different degree,
such as

@) = AM3(x) — 3My(x), xo(x) = 5M4y(x) — 4Ms5(x) (x € R),
or linear combinations of translates of B-splines, e.g.
5 1
15@) = TMy@) — My + D)+ Myw =D} (@ e R),

to construct examples of multivariate kernels, in order to improve the rate of
approximation.

6.1 — I'mage Processing

An interesting application of our theory concerns the image processing. A
two-dimensional static image is represented by a function (signal) of two
variables; similarly, a digital (static) image is a discrete signal and it is re-
presented by a two-dimensional matrix. Every matrix can be modeled as a step
function (with compact support) belonging to LP(R?), for every 1 < p<oo.
Thus, one can use the two-dimensional sampling Kantorovich operator to ob-
tain approximations of digital images. Then, we can build a function corre-
sponding to the matrix (input image) in order to obtain a new matrix (image)
that approximates the original one by using the bivariate sampling Kantorovich
operator. If the sampling rate is chosen higher than the original sampling rate,
one can get a new image that has an higher resolution than the original one, i.e.
it is built with a larger number of pixel compared to the original image.

For example, in Figure 12 and 13 we have approximations of the image in
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Figure 11 obtained by the bivariate sampling Kantorovich operators S7: and
2
Su/\,/l 3, for w = 5 and w = 10. The sampling rate is the same of the original image.

Fig. 11. — Original image.

Fig. 12. — Approximation by S{ 2 and Sﬁf.

Fﬁ

) S M; M;
Fig. 13. — Approximation by S5 and S;,*.
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In Figure 14 and 15 we have approximations of the image in Figure 11 ob-
tained by the two-dimensional sampling Kantorovich operators S72 and SQ,/IS, for
w = 5 and w = 10 obtained taking into account a number of sample values bigger
than the image in Figure 12 and 13 (twice the samples for each spatial variable).

Fig. 14. — Approximation by S and S} with increased resolution.

Fig. 15. — Approximation by SQAﬁ and Sﬁf% with increased resolution.
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