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Bollettino U. M. 1.
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Structural Stability of Doubly-Nonlinear Flows

AUGUSTO VISINTIN

To the memory of Giovanni Prodi

Abstract. — To any maximal monotone operator o : V.— P(V') (V being a real Banach
space), tn [MR 1009594] S. Fitzpatrick associated a lower semicontinuous and convex
Sunction f : VxV' — R U {+ oo} such that

(%) S, ) > @, v) V0, S, )= @, v) & v ea).

On this basis, in this work two classes of doubly-nonlinear evolutionary equations
are formulated as minimization principles:

(k%) Dyo(u) — div ¥(Vu) 3 h, a(Dy) — div ¥ (Vu) 3 h;

here o and ¥ are maximal monotone mappings, and one of them is assumed to be
cyclically monotone. For associated initial- and boundary-value problems, existence
of a solution is proved, as well as the stability with respect to variations of the data
and of the operators Dy, V, o and 7.

Foreword

Giovanni Prodi was widely recognized not only as a leading researcher but
also as a distinguished mathematical educator. I met him mainly through two of
his books, that from time to time I still revisit; I would like to mention them here,
although his contributions go far beyond these works. Unfortunately both vo-
lumes are just available in Italian language.

At Pavia in 1971 I had my first impact with mathematical analysis through the
course held by Claudio Baiocechi, who used Prodi’s newly published textbook:
Analist matematica (Boringhieri, 1970). This book introduces notions like
mathematical logic, set theory, abstract algebra, metric and topological spaces
from the very beginning. This approach was quite at variance with the more
traditional teaching of basic analysis of that time. Although just freshmen, we
were aware of the chance we had to enter mathematics from the main door, and I
got a sort of Lorenz imprinting from that text.

As a teacher, several years later I met another of Prodi’s books: Metodi
matematici e statistici per le scienze applicate (McGraw-Hill, Milano 1992). This
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is a broad spectrum introduction to the tenets of logic, linear algebra, analysis,
geometry, probability, statistics, modeling, up to representing Bayesian in-
ference as an extension of Aristotle’s logie. A rich undergraduate text, aimed at
integrating different disciplines, enlightened by a vision of the interplay between
mathematics and science.

It is with those pages in mind that I devote this work to the memory of
Giovanni Prodi, appreciating of having been given this opportunity.

1. — Introduction

Several evolutionary phenomena of mathematical physics may be modeled
either by monotone flows or more generally by doubly nonlinear equations of the
form

1.1 Dio(u) — V- 5(Vu) 3 h,
1.2) a(D) — V- 5(NVu) > h

(V- = div), with o and ¥ maximal monotone operators; see e.g. [56,62]. Maximal
monotone relations may be represented variationally. This property is here used
to formulate the flows (1.1) and (1.2) as minimization principles, and to show
existence of a solution. Our main concern is to prove that these problems are
stable with respect to variations of the data and of the operators D;, V, o and j
(structural stability).

1.1 — The Fitzpatrick Theory

Let us first recall a classical result of Fenchel [28], that mutually relates a
convex and lower semicontinuous function(al) ¢ : V — R U {+ o0}, its convex
conjugate ¢*, and the subdifferential operator d¢, see e.g. [27; Chap. 1]:

(1.3) o)+ @) > (W, v)  VY,v) e VxV,
(1.4) p) + ") = V', v) & V€ Ipw).

In the seminal paper [29] Fitzpatrick extended this system to more general
monotone operators o : V — P(V’). First he introduced the convex and lower
semicontinuous function (afterwards named the Fitzpatrick function of «)

. [, ) := (v, v) 4 sup { (v — v, v9 — ) : vy € a(vy) }
- =sup {(v/,v0) — (v}, v0 — ) : vy € alwg)}  V(v,v') € VxV';
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he then proved that whenever « is maximal monotone (in the sense e.g. of
[11,15])

(1.6) fu, v > (V' v) Y(w,v) e VxV,
a.m L V)= vy < v ea).

After several years, this result was independently rediscovered by Martinez-
Legaz and Théra [41] and by Burachik and Svaiter [18]. This started an intense
research about relations between monotone operators and convex functions; see
e.g. [19, 34, 42, 43, 53, 54], just to quote few contributions. See also the related
notion of bipotential [17].

The above result of Fitzpatrick has been further extended. Nowadays one
says that a convex and lower semicontinuous function f: VxV’' — R U {+ oo}
(variationally) represents an operator o :V — P(V’) whenever it fulfills the
system (1.6), (1.7). Accordingly, we shall say that f is a representative of «, and
that o is representable; we shall denote the class of these functions by F (V). So
e.g. the Fenchel function f(v,?') := ¢(v) 4+ ¢*(v') represents the operator dp. But
representable operators need not be either cyclically monotone or maximal
monotone, although they are necessarily monotone. Some results of this theory
are briefly reviewed in the parallel work [67; Sect. 2].

1.2 — Variational Formulation of Monotone Flows.

Prior to Fitzpatrick’s [29], Brezis and Ekeland [16] and Nayroles [51] in-
dependently proposed a first example of variational formulation of a nonlinear
evolutionary P.D.E. of first order. Let V be a (real) Banach space and H a
Hilbert space such that

1.8) V c H=H c V' with continuous and dense injections.

They associated the functional

1.9  @:X,:={veLl*0,T;V)NH 0,T;V'): v(0) =2’} — RU{+00},
T

1 1
110) &) = f (@) + 9" (b = D) = ()] dt + 5 oDy — 5 10l
0

to the Cauchy problem

1.11) {Dtu +0pu)>h inV’, ae.in0,T[

w(0) = u°.

They pointed out that @ > 0, and that this Cauchy problem is equivalent to
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@d(u) = 0, namely
1.12) ®(u) =inf & =0 (a null-minimization principle).

The solution # may thus be computed by means of a descent procedure,
provided that it has already been established that a null-minimizer does exist,
namely, @ 1(0) # (. The latter property is nontrivial; this issue was settled by
Auchmuty [8], and was then extensively studied by Ghoussoub in a series of
works; in particular see e.g. [34, 36], the monograph [35], and references therein.

The Fitzpatrick theorem allows one to extend the formulation (1.12) to non-
cyclically-monotone operators as follows. Whenever an operator o : V — P(V') is
(variationally) represented by a function f, for any h € L” (0, T; V') the Cauchy
problem (1.11) is equivalent to (1.12), provided that in the definition (1.4) the term
o) + ¢*(h — Dyv) is replaced by f(v, h — D;v); see [63].

This variational approach allows one to apply a different viewpoint: instead of
prescribing %, one may deal with the family of all pairs (u, k) that fulfill the
Cauchy problem (1.11). One may then use variational techniques, e.g. De Giorgi’s
theory of I"-convergence (see e.g. [25, 24]), to study the qualitative properties of
the dependence of the solution on the data and on the operator, viz., d¢ or more
generally o. In this work this point of view is applied to two classes of nonlinear
flows.

1.3 — Doubly Nonlinear Flows

The equation (1.1) occurs in several models. For instance, it may represent
the entropy balance in diffusion phenomena, as in the Eckart theory of irre-
versible thermodynamics; see e.g. [47; Chap. 8], [62; Sects. V.4, V.5]. The
equation (1.2) also arises in thermodynamics, with o equal to the subdifferential
of a dissipation potential. In the last years much attention has been paid to rate-
independent evolution, as it occurs in hysteresis phenomena; this may be re-
presented by (1.2) with « homogeneous of zero degree. For the latter equation an
alternative approach, which has become known as the energetic formulation, has
been introduced by Mielke and coworkers [45, 46], and then applied to a multi-
tude of physical models; see e.g. the survey [44] and references therein.

For both the equations (1.1) and (1.2) existence of a solution, its large time
behavior, and other results have already been proved in a number of works:
see [1, 2, 4, 5, 6, 10, 12, 13, 14, 22, 23, 26, 30, 32, 37, 38, 52] for (1.1), [3, 9,
22, 23, 33, 55, 58, 57, 60] for (1.2), and also the monographs [31; Chap. V],
[66; Chap. 11], [62; Chap. III] for both classes.

In particular in [55] Rossi, Mielke and Savaré provided a detailed analysis of
the equation (1.2) in the case of o homogeneous of degree zero in the more
general environment of metric spaces. In [60] Stefanelli extended the Brezis-



STRUCTURAL STABILITY OF DOUBLY-NONLINEAR FLOWS 367

Ekeland-Nayroles principle to (1.2), including the case of o homogeneous of
degree zero. Assuming that both « and y are cyclically maximal monotone and
using the corresponding Fenchel functions, he reformulated the equation (1.2) as
a minimization prineciple, introducing an expedient that here we also use in for-
mulating Problems 3.2 and 5.2 as the minimization of a single functional. [60] also
addressed the dependence of the solution on the (potentials of) the operators o
and 7, mainly using Mosco-convergence. The present work deals with a weaker
notion of convergence, in the spirit of [67]; see Theorems 4.1 and 6.1 ahead.

The uniqueness of the solution of (1.1) was proved by Carrillo [20] via the
notion of entropic solution and the use of L!-contractions, see also [14, 21, 39]; on
the other hand, for (1.2) uniqueness is still an open question. The homogenization
of (1.1) was also addressed in [40, 49, 50].

Here we provide a variational formulation of the equations (1.1) and (1.2) via
the Fitzpatrick approach. For both equations, we retrieve existence of a weak
solution via an approximation procedure. We then prove the structural stability
with respect to variations of the data and of the operators Dy, V, o and 7, in the
following sense.

Let us first denote by D the set of the admissible data (e.g., the initial datum and
the source term); by O the set of the operators D;, V, and those associated to the
mappings o and ¥; by S the set of the admissible solutions. These three sets must be
equipped with appropriate notions of convergence. By the existence theorem,
there exists a (possibly multivalued) resolution operator, R : D x O — S. We shall
show that this operator is sequentially closed; that is, for any sequence {(d,, 0,)}
that converges to some (d, 0), and for any corresponding sequence of solutions
{sn € R(dy,04)}, the following occurs: (i) there exists s, such that s, — s, up to
subsequences; (ii) this entails that s € R(d, 0). This also applies to the discretiza-
tion of the operators D; and V, e.g. by finite difference or by finite element.

In this paper we proceed as follows. In Sect. 2 we display some examples of
representative functions of monotone operators (more may be found e.g. in [67]).
In Sect. 3 we formulate equation (1.1) as a minimization principle, and prove
existence of a solution. In Sect. 4 we show that the solution is stable with respect
to variations of the mappings «, 7, and illustrate how this stability may easily be
extended to allow for variations of the differential operators V and D; and of the
domain Q. In Sects. 5 and 6 we proceed similarly for equation (1.2).

The results of this work are not conclusive, and some issues seem worth of
further consideration. These include an analysis of the hypotheses that are here
assumed for the stability theorems, see (4.1)-(4.5) and (6.1)-(6.5); questions of this
sort are addressed in [67] for evolutionary equations with a single nonlinearity.
Another issue of interest is the variational representation of the equation (1.2)
for o homogeneous of degree zero, which is pursued in the parallel work [68]. The
application of null-minimization principles to specific physical models looks a
fertile field, too.



368 AUGUSTO VISINTIN

In the last five years, the representation of nonlinear flows as null-mini-
mization has also taken this author to apply variational techniques to the analysis
of homogenization, see e.g. [64, 65, 66] and references therein.

2. — Some Examples of Representative Functions

In this section we exhibit some representative functions of maximal monotone
operators. We shall still denote a real Banach space by V.

ExaMpLE 2.1. — We already pointed out that for any proper, convex and
lower semicontinuous function ¢ : V.— R U {+ oo} the subdifferential operator
d¢p : V — P(V’) is represented by the Fenchel function

2.1) f@, )=o)+ 9" @)  Y@,2)eVxV.

ExampLE 2.2. - Let L:V — V' be a bounded skew-symmetric (hence
monotone) operator. For instance, this holds for H(l)(.Q)2 — HY(Q):
(v1,v2) — ( — Avs, Av1); here Q2 is a domain of RY and N > 1. Let us denote by
I}, the indicator function of the graph of L, that is

I;(w,2):=0 if v = Lo, I, (0,v) :=:= +00  otherwise.
It is easily seen that the operator L is represented e.g. by the functions
2.2) fr,v) = I(v,7) Y(,v) e VxV',
2.3) @) =Iv)=1_{) Y(,v) € VxV'.
ExampLE 2.3. — Let L : V — V'’ be a monotone, bounded, linear operator,

that we write as the sum of its symmetric and skew-symmetric parts:
L = L + Lg. Let us then set

1
2

A direct computation shows that the operator L may be represented for
instance either by

2.5) fi,v") = @) + ¢* (W' — L) Y(v,v) e VxV',

24) o) ::%(st, vy (=5Iww) WweV, fr, =I, nVxV.

or, if L is invertible, by
2.6) L@, ) = o + (Lg) W) + 9" @)  V,0) € VXV

EXAMPLE 2.4. — Let Q be a bounded domain of RY (N > 1, p € 11,4+ o[, and
set V.= Wé"p (). Let a maximal monotone mapping ?:RN — P(RN) be
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represented by a function f € F(RN). If
2.7 Jai,a2 € R :Vio € RN V2 € 7@),  [2] < aa|id]” + az,

then the operator E :V— PV :v— — V-%(Vv) is maximal monotone. This
includes e.g. the case of the p-Laplacian: —V - (Vo) = -V - (|Vo|’ “2yp).
We claim that f may be represented by the following function ¢ € F(V): for

any (v,v') € VxV/,
- _’v/ 6 VHl Q N7
28 o) = f f(vo,&)de with S € VH ()
J V&, =y inDQ

(Ev, is thus deﬁtermined by finding 0 H})(.Q)N such that —40 = v’ in D'(2), and
then setting &, = V). Indeed,

2.9 oW, sz(Vv, Ev/)dx'fEfz(R‘ )va-Ev/ de = —(0,V-&) % (v,0).
Q Q

Moreover as f (Vv év,) > Vo- év/ pointwise, in (2.9) equality holds if and only if
f (Vv, év/) =Vv- fv/ a.e. in Q. As f represents y, this equality is equivalent to
,fv, € (Vo) a.e. in 2, namely by (2.8)

(2.10) v € —V-H(Vv) in D'(Q).
Notice that the curl-free Ev/ is just one of the many selections 7j € (Vo) such

that 77 € L2(Q)N and —V-7j = v in D/(Q).

ExamMpPLE 2.5. — Let L : V — V' be a monotone, bounded, linear operator. If
another operator o : V — P(V’) is represented by a function f, € F(V), then the
operator o + L is represented for instance by the function

2.11) F,v) = f,(0,v" — Lv) + (Lo, v) Y,v') e VxV'.

In some cases L is a first-order operator, as in the next example.

ExAMPLE 2.6. — Let us fix a triplet of Banach spaces as in (1.8), any T > 0,
any p € |1, +oc[, and set

2.12) X0 = {v € LPO,T; V) N\ W' (0, T; V') : v(0) = 0}.

7
As [(Dp,v)dt =L|jo(D)|7 > 0 for any v € X2, the linear operator o : X} —
0

L?(0,T;V") : v— Dy is maximal monotone. Its Fitzpatrick function (see (1.5))
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reads

1 )

=T fo/ =D
@19 S {2 MOl =Dy
+ 00 if v # D

One may also deal with the periodicity condition v(T") = v(0).

ExampLE 2.7. — If an operator f: LP(0,T;V) — PP 0,T; V") is repre-
sented by a function f3, then the operator y: D; + f :Xf)’ — PP 0,T; V") C
P((X})') may be represented by the function

1 /
Sy, =Dy + 3 oDy it o € L0, T:V")

400 otherwise

2.14) fw,0) = {

for any (v,v) € X} x(X!). This applies to a number of quasilinear parabolic
equations of applicative interest. These include e.g. the operator v — D; — Ax(v),
that occurs in the weak formulation of the classical Stefan problem, see e.g. [62].

3. — A First Class of Doubly-Nonlinear Parabolic Equations

In this section we formulate a minimization principle that is equivalent to an
initial- and boundary-value problem for a doubly-nonlinear parabolic equation of
the form

3.1) Dyo(u) —V -7(Vu) > h in @ :=Q x10,TT.

Here Q is a bounded domain of RN of Lipschitz class, o : R — P(R) and
y: RY — P(RY) are maximal monotone mappings such that

Je, e €ERT W ER,  |a@)] < 1 + ey,

3.2) L 3
deg,cs eRT VO ERY, [F(@)] < c3+ caltl],

and the source field % is prescribed. The inclusion (3.1) also reads

3.3 Dw—-V-Z=h in @,
3.4) w € au) in @,
3.5) Z € ¥(Vu) in Q;

each of these two inclusions is tantamount to a variational inequality.

We shall couple this system with appropriate initial- and boundary-condi-
tions, prove existence of a weak solution, and show its stability with respect to
variations of the data £, o,y and of the operators Dy, V.
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3.1 — Weak Formulation

For the sake of simplicity, we prescribe the homogeneous Dirichlet condition
for u on (02) x 10, T[. We set

(3.6) V= HyQ) Cc H:=L*Q)=L*Q) cV' = H\Q),
assume that
3.7 w' e H,  hel*0,T;V),

and introduce a weak formulation of the Cauchy problem for the system (3.3)-(3.5).

PROBLEM 3.1. — Find u € L2, T; V), w € L0, T; H) and Z € L2Q)" such that

T
(—wvy + Z-V)dedt = | v (h,v)y dt + v (w®,v(-,0))
3.8) J Qf Of ’ v
Vo e HY0,T; V), v(-,T) = 0,
3.9 w € a(u) a.e. m Q,
(3.10) Z2ejy(Vu) ae. in Q.
The equation (3.8) yields (3.3) in V' = H~1(Q) a.e. in ]0, T[. By comparing the

terms of (3.3), we see that w € H'(0, T; V"); from (3.3) and (3.8) we then retrieve
the initial condition

(3.11) wl_o = .

Let us now select a representative functional ¢ € F(V) of the maximal
monotone operator V — P(V'):v+— — V -)(Vv), see Example 2.4 of Sect. 2.
Thus ¢ is lower semicontinuous and convex, and (cf. (1.6) and (1.7))

8.12) o, V) > (V' v) Y(,v) e VxV,
(3.13) o, ) =@ v) & v e-V-JVv) inDQ).

T
We claim that the functional (v,v')— [ @(v,v')dt is then an element of

0
F(L?0,T;V)), and represents the operator

7 L20,T; V) — PALAO, T; V) : v— — V - H(V),
that is,

T T
3.14) f o, o) dt > f Wonydt  Yw,w) € L2, T; V)x LA0, T; V'),
0 0
T

T
3.15) f o, v) dt — f W dt o o e—V 3V in D(Q), ae.in 10, T].
0 0
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The inequality (3.14) and the implication “<” of (3.15) directly follow from (3.12)
and (3.13). Because of (3.12),

T

T
fgo(v,v’)dt:f<v’,v> dt = W)= (,v) ae. in]0,TT;
0 0

by (3.13) the latter equality yields v € —V - (Vo) in D'(Q), a.e. in 10, T[. The
implication “=" of (3.15) is thus established, too.

As the variable u is scalar, the maximal monotone operator o is cyclically
monotone; indeed,

(3.16) 91R—>RU{+OO}:v—>Ofa(s)ds

is convex and lower semicontinuous, and dg = o.

Denoting by g* the convex conjugate function of g, we have « = dg and o~! = dg*;
see e.g. [27; Chap. 1]. By (3.2); the growth of g is at most quadratic; hence

(3.17) AL >0,3M cR:WweR, g >Lpw*-M.

Let us define the integral functional

318) R:H—RU{+o0}, RW)= f gw@)de  (whence R*(v) = f g (@) dx).
Q Q

3.2 — Null-Minimization.
Next we reformulate our problem.

PROBLEM 3.2. — Find w € L?(0,T; V) and w € L3, T; H) N H0, T; V') such
that w|,_y = w° and

T
o, w) = [ [Raw + R@w)] dt — [ [wududt +
0 Q

(3.19) r

+
{f [p(u, h — Daw) — (h,w)] dt + R* (., T))—R*(WO)} <0.
0

(The idea of using the positive part in a functional like this was introduced by U.
Stefanelli in [60].) The functional @ : L*(0, T; V) x (L*0,T; H)NH'(0,T; V")) — R
is convex and is finite on the whole space. As g(u) + g*(w) > wu for any u and w,
the difference between the first two integrals is nonnegative. The inequality (3.19)
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is thus a null-minimization principle, cf. (1.12), and is equivalent to the system
T

(3.20) [ R +R*@w) dt < [ [ wuduat,
0 Q

T T
3.21) f o, h — D) dt + R* (-, T)) < R* ) + f (h, ) dt.
0 0

Each of these inequalities may also be rewritten as a null-minimization principle.

PRroPOSITION 3.1. — If the triplet (u,w, Z) solves Problem 3.1, then the pair
(u, w) solves Problem 3.2. Conversely, if (u,w) solves Problem 3.2, then there
exists Z € LQ(Q)N such that (u, w, Z) solves Problem 3.1.

Proor. — By the Fenchel system (1.6), (1.7), the inequality (3.20) is equivalent
to the inclusion (3.9) a.e. in Q. Let us next recall the chain-rule

vu € L20,T; V), Yw € L*0, T; H) n H(0, T; V"),
(3.22) if w € a(u) a.e. in @, then
R*(w) € W0, T), and DiR*(w) = (Dyw,u) a.e.in 10, TT.

By (3.9) and (3.11), the inequality (3.21) is then equivalent to
T T
f o(u, h — D) dt < f (h — Dyw, u) dt;
0 0

as ¢ represents 7, this is tantamount to (3.3) and (3.10). As we saw, (3.8) is
equivalent to (3.3) an (3.11). The desired equivalence is thus established. O

THEOREM 3.2. — (Existence) Let us define g as in (3.16), assume that (3.17) is
satisfied, and that

(3.23) w € H,  hel*0,T;V,
(3.24) Ja>0,3b € R : V(¥,2) € graph (7), 23 > alF]® + alt]® — b.

Then Problem 3.2 has at least one solution such that w € L>0,T; H).

The function w may then be identified to a weakly continuous mapping
[0,7] — H.

Proor. — The existence of a solution of the equivalent Problem 3.1 was al-
ready proved e.g. in [26]. Here we use an argument that refers to the null-
minimization Problem 3.2; this will also pave the way to the proof of the stability
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Theorem 3.3. We shall approximate Problem 3.1 by an implicit time-discretiza-
tion scheme, reformulate it as a minimization principle analogous to Problem 3.2,
derive a priori estimates, and pass to the limit in this variational formulation.

(i) Approximation. Let us fix any m € N, set k := T /m, and

nk
825 ) =ul, A ;:% f h@de iV, forn=1,...,m.
n—1k

PROBLEM 3.1y. — Find u, € V,w", € LX(Q),Z", € LXQ~ for n=1,...,m,
such that

(3.26) w!, —kV-Z0 =wl kR in VY,
(3.27) w,, € ou,,) a.e. in Q,
(3.28) Zn, €7(Vuy, a.e. in Q.

Existence of a solution of this problem can be proved step by step. Defining
the operator

(3.29) B:V — PV :v—oa) —kV-7(Vv),

the equation (3.26) reads B(u},) > wﬁz‘l + kR in V' forn=1,...,m. By (3.24),
the operator B is monotone and coercive on V; it is then maximal monotone and
surjective. Problem 3.1,, thus has a solution.

In view of providing a time-continuous reformulation of Problem 3.1,,, let
us set

(3.30)  wy(x,-) := linear time-interpolate of {w,,(x, nk) := wj,(x)},_,

,,,,, mo

3.31) Wi (2, 1) == wy () if (m—Dk<t<nk, forn=1,...,m,

for a.e. x € Q, and define #,,, h,, similarly. The system (3.26)-(3.28) thus also
reads

(3.32) Doy — N - 2y =l in V', ae.in 10,77,
(3.33) Wiy € 0(iy) a.e. in Q,
(3.34) Zm € P (Vi) a.e. in Q.

(i1) Reformulation and a Priori Estimates. Similarly to what we saw for
Problems 3.1 and 3.2, the system (3.32)-(3.34) is equivalent to the inequality

T
¢m(71m7770m) ::f [R(ﬂm) + R*(ﬁ}m)] dt *‘l-fwmam dadt +
(3.35) ‘ ©

T +
{ f [(p(ﬁma B — D) — (Ewu szﬂ dt + R*(wp (-, T)) — R*(wo)} <0.
0
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In passing note that this inequality is equivalent to the separate null-
minimization of two functionals: the difference of the first two integrals,
and the bracketed term. Note that, denoting the N-dimensional measure of
Q by |2,

. (3.17) 5
R, (1) = L[ [, D do - M2,
Q

T T
_ (3.12) _ =
f (,’)(am, I, — Dywy) dt > <a7n7 h —V - zm> dt,
0 0

T
f (@i, —V - o) dt = ] Vi, -3, div
(3.36) i 5

(3.24),(3.34) _ 2 S 2
> 0| Vin|7a gy + allZn]7eoy — 0lQ-

Moreover, in the last four formulas 7" might be replaced by any T 10,71 By
inserting the three latter formulas into (3.35) and recalling (3.23), a simple cal-
culation then yields

B30 Nl 20,27y 1%0m | 0 7.0 [E 2@y < Constant (independent of m).
By comparing the terms of (3.32), we then get

(3.88) (120 || HOTV) < Constant (independent of m).

(i11) Passage to the Limit. By these estimates there exist u,w such that,
possibly taking m — oo along a subsequence, ()

(3.39) Uy Wy, — U in L0, T:;V),
(3.40) Wy, — W in L0, T;H)nH(0,T; V"),
(8.41) Wi, T) — w(-, T) in H.

By the regularity of 2, the injection V' — H is compact; the same then applies to
the injection H — V' (by Schauder’s theorem). By the classical Lions-Aubin
compactness lemma (see e.g. [59]), (3.40) then entails that

(3.42) Wiy, Wy — W in L2(07 T;V');

(") We denote the strong, weak, and weak star convergence respectively by —, —, —.
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joined with (3.39), this yields

T T
(3.43) f f ol diedt = f (i, i) dt — f (w, 1) dt — f f wu ddt,
Q 0 0 Q
By passing to the inferior limit in (3.35), we then get (3.19). O

4. — Structural Stability of Problem 3.2

In this section we deal with the dependence of the solution S := (u,w) of
Problem 3.1 on the data D := (w”, k) and on the operators V,, 7 (this might also
be extended to include dependence on the operator D;). Here by

a:H—H, 7:LAQ"N — LAQN

we denote the operators that are respectively associated to the mappings « and ,
respectively. The hypotheses on @ may also be expressed in terms of its potential
R, see (3.16)-(3.18). We shall show the structural stability of Problem 3.2, in the
sense that we illustrated in the introduction. First we deal with variations of the
two nonlinear operators above.

THEOREM 4.1. — Let {on}, {7,,}, {hm}, {00, } be sequences such that:
@) For any m, o, =09, with g, as n (3.16), and the mapping
7., : RN — PRYN) is maximal monotone; similar properties are assumed for o, 7
and g.
() The sequences {9y} and {7,,} fulfill 3.17) and (3.24) uniformly with
respect to m, and

4.1) wd —w' imH,  hy—h inL*0,T;V).

(iii) There exists a lower semicontinuous and convex functional
R :H — R U {+ oo} such that (defining R, as in (3.18))

4.2) v sequence {vn}, vm —vinH = R, (v,) — R'©W),
V sequence {v,,}, if v, — v in L*0,T;V),
4.3) ’

T
then timinf [ Ry, (v, dt > f R)dt,
m— 00 ° 0

V sequence {v.,}, if v, — v in L*0,T; V),
4.4) - F 3
then limint [ R;,(f,)dt > [ R0
0 0

m
mM—00
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@iv) For any m, let ¢,, € F(V) represent the operator v— —V -7%,,(Vv),
cf. (2.8); define ¢ similarly with ¥ in place of 7,,, and assume that

Y sequence {(vm,v;n)h if W, 0,,) — ,0) in L0, T; VX V')

and limsup f (W, vp) dt < f (W', v)dt
(4.5) o i

T
then hgl _ilip f PO, vy, At > f o, dt.

For any m, let (U, wy,) be a solution of Problem 3.2, corresponding to the
data o, Py oy w?n. Then there exists a pair (u,w) such that, up to subsequences,

4.6) Uy — U in L*0,T;V),
4.7 Wy — W in L0, T;H) nH 0, T; V"),
4.8) W, T) — w-,T)  in H.

Moreover, this entails that (u,w) is a solution of Problem 3.2 corresponding to
the data o, 7, b, wP.

Note that (4.5) is fulfilled whenever the functional f ¢,, dt I'-converges to
f o dt with respect to the product of the weak topology of V by the weak star

topology of V'. But (4.5) is a weaker hypothesis, because of the condition that is
written in the second line of (4.5). This will allow us to take advantage of the
specific form of the P.D.E., see (4.11) below.

Proor. — Uniform estimates like (3.37) and (3.38) may be derived by mimicking
the procedure of part (ii) of the proof of Theorem 3.2; these details are here left to
the interested reader. The convergences (4.6)-(4.8) then hold up to subsequences.

Let us next label by the index m any equation written in terms of o.,,, 7,,,, and so
on. As above, by the Lions-Aubin compactness lemma, (4.7) entails (3.42) (here
written without the bars); (3.43) then follows as above. By (3.43) and (4.4), we then get

T

[ [Re) + By dt — [ [ wudaat
0 Q

T
@9 <timinf [ Ry + R0, dt — lim [ [ w0, dedt
Q

mM—00 mM—00

T
(3.35)
.8 lim inf { f [Rm(um) + R;‘n(Wm)] dé _f f Homtm dwdt} SE) >
Q

m—00
0
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namely, (3.20). On the other hand, as w,,(-,T) — w(-,T) in V' because of the
compactness of the injection H — V7,

(4.4),4.8)
4.10) liminf R (w,,(-, 7)) > R*(w(,T));
mM—0o0

moreover,

T
lim sup f (R, — Dy, Uy ) dt
m—0o0
@11) G0 f (s ) dt — Himinf R, (a0, (-, 1) + Tim_ R;, ()
mHOO

T
@nm%@m
f h,w)dt — R*w(-, T)) + R* (") <322)f h — Dyw, u) dt.
0
We may then apply (4.5) to the sequence {(e,, b, — Dywy,)}, and thus get

(4.12) lim sup f O U, ey, — Dywy,) dt > f o(u, h — Dyw) dt.

mM—00

By passing to the upper limit in (3.21),,, we finally get
[ ot~ Davydt + B ot )
0

(4.10),(4.12)
< lim sup f 01Ot ey, — Do) b+ Yim inf R;, 10, T))

m—0o0

4.13)

< lim sup {f (ﬂm(%m, m — Dywy,) dt + Rjn(qu(7 T))}

mM—00
(3.21)y,
S lim sup R,*n(w?n) + f <hm;um d “ 1) = R*( O) +f h/ u
mM—00 0

The inequality (3.21) is thus established. O

4.1 — Variations of the Differential Operators and of the Domain

Variations of the operator V are accounted for by variations of the potential ¢,
see (4.5). This may also include approximations of interest for the numerical
analysis of the problem, e.g. by finite difference or by finite element.
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The operator D; may also be varied; for instance, for any m € N one may set
(4.14) D, () := mlv@) — vt — T/m)],

and replace the exact time-derivative D; by the discretized derivative D,, in
(3.19),, (after extending the function u for ¢t <0).

The domain Q may be replaced by a sequence of Lipschitz domains {Q,,}. In
this case we extend any functions ©,, — R to the whole RY with vanishing value,
thus preserving the H}-regularity. Denoting the indicator function of V,, by Iy, ,
we may thus reformulate (3.1) in Q,, as
(4.15) Dyou(u) — V-5(Vu) + Iy, () 3 b in D'RY).

m

The extension of the associated Problem 3.2 is obvious.

REMARKS. — () If @:RY — P@RY) and y: RN — PR™Y), the above
analysis may easily be extended. In this case & must explicitly be assumed to be
cyclically monotone.

(ii) The results of this sections might easily be extended to several other
equations. These include the case of time-dependent o and %, and abstract
equations of the form

(4.16) Dio(u) + pu) > h in V', a.e.in 10, 7T,

for a maximal monotone operator f:V — P(V’), which might also explicitly
depend on time.

For instance, taking V = L?(Q) c H . =H Y Q) =H' Cc V' = H%(Q), (4.16)
also encompasses the equation

4.17) Dy — Aov(u) = f in H*Z(.Q), a.e. in 10, 7T,

that may represent the weak formulation of the classical Stefan problem, see
e.g. [62].

(iii) As (4.5) involves weak convergences, it does not seem obvious to retrieve
this condition from properties either of the corresponding time-independent
operators v— — V - 7, (Vo) or of the mappings 7,,s. Similarly, it is not clear how
(4.2)-(4.4) might be reduced to properties of the mappings o,s.

(iv) The above analysis may also be extended if the elliptic term is of the form
—V -%,(Vu), where the multivalued mapping V — PLAQ") : u—7,@) is
weakly closed for any % € L2(Q)".

(v) The use of the Murat and Tartar notion of compensated compactness
(see e.g. [48,61]) allows one also to deal with equations in which the injection
V — H is not compact. This includes the following system, that occurs by
coupling the Maxwell equations of electromagnetism with two nonlinear
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constitutive relations:

(4.18)

Here B is the magnetic induction, H is the magnetic field, E is the electric field,
and J is the density of electric current. j accounts for a nonlinear Ohm’s con-
duction law, and a multivalued & may represent the ferromagnetic behavior.

(vi) If the mapping 7 is cyclically monotone, one may prove the further reg-
ularity

(4.19) we HW,T; Hyn L=, T; V).

A uniform estimate for u,, in this space may indeed be derived by multiplying the
approximate equation (3.32) by D;u,,, provided that the mapping o is strongly
monotone, and under stronger regularity hypotheses for the data. When dealing
with a vector field 4, this applies also if & is not cyclically monotone; in this case in
the minimization principle (3.19) the Fenchel function g(u) + ¢*(w) must be re-
placed by any representative function of 2. |

5. — Another Class of Doubly-Nonlinear Parabolic Equations

In this section we study an initial- and boundary-value problem for a doubly-
nonlinear parabolic equation of the form

(GRY) aDw) — V-5 (Vu) 3 h in Q.

As in the previous section, «: R — P(R) and 7 : RY — P(RY) are maximal
monotone mappings, Q is a bounded domain of Lipschitz class, and £ is a pre-
scribed field. We reformulate this inclusion as a null-minimization problem,
prove existence of a variational solution and its structural stability with respect
to variations of the data and of the operators Dy, V, o and y. In spite of several
analogies, the analysis of this problem will differ from that of the previous sec-
tion. The structure of the two equations is indeed different, and here we deal with
a stronger notion of solution: D;u € LP(Q).
The inclusion (5.1) is tantamount to the following system:

5.2) w—V-Z=h in @,
(56.3) w € a(Dsu) in Q,
(5.4) 7 €y(Vu) in Q.
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5.1 — Weak Formulation

We define V,H,V' as in (3.6), and fix any p € [2,6[. Thus, setting p’ =
p/(p—1) €16/5,2],

V=H\QCL'(Q, L'QcV =HDWYQ.

We assume that

(5.5) w eV, h e L (Q),
(5.6) Jes,c6 € RT:VweR,  |u)] < ¢+ cgv]f
5.7 Jer,cs e RT VB e RN, [7®@)| < 7 + csli,

and introduce a weak formulation of the Cauchy problem for the system (5.2)-
(5.4).

PROBLEM 5.1. — Find u e W20, T; LP(Q)) N L2(0,T;V), we L’ Q) and
7 e L2@Q)Y such that

) f f v + 2-Vo) dadt = f fhv dedt Yo e L0, T:V) N L'(Q),
Q Q

(5.9) w € (D) ae. in Q,
(6.10) ZeY(Vu) a.e.m Q,
(511 u(-,0) =u’ a.e. in Q.

Note that (5.8) is equivalent to (5.2) in L0, T; V') + LP(Q). Let w € F (RY)

represent the maximal monotone mapping «. In analogy with (3.12)-(3.15), one
T
easily sees that (v,v)— f w,v')dt then represents the maximal monotone

0
operator 3 : LP(Q) — P(LP(Q)), namely,

(5.12) f f v, ') dudt > f f Yvdedt  Y@,0) € LPQ XL (Q),
Q Q

(5.13) fft//(v,v’) dadt =ffv’v dedt < v € a() a.e. in Q.
Q Q

We shall assume that } is e¢yclically monotone, i.e., ¥ = 9, the subdifferential
of a lower semicontinuous convex function 7 : R¥ — R U {+ co}. We also sup-
pose that

Jeg > 0,dcg €R VU € RN, @) > Cg|1_)'|2 — €10,

(5.149)
rVu)< + oo a.e. in Q.
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5.2 — Null-Minimization
Next we reformulate Problem 5.1.

PROBLEM 5.2. — Find w e WH(0,T;LP(Q) N L*0,T;V),Z € LZ(Q)N such
thatV - Z € LP'(Q), (5.11) s fulfilled, and

Y (u,7?) ::ff [7(Vu) +1r(F) — Z-Vu] dadt +
Q

(5.15) N
{ [ w0, 1+-2) — wDwi] dudt + [ 1V, ) = (V)] dac} <0,
Q Q

Note that the functional ¥ is convex. As the first integral is nonnegative for any
pair of functions « and Z, (5.15) is a null-minimization principle, cf. (1.12).

As r(Vu) + r*(Z) > Z-Vu for any u and Z, the inequality (5.15) is equivalent to
the system

6.16) [ [ (VW) + @) — 2 V] dedt < 0,
Q

617 [ [ [y@u, h+2) — kD] dadt + [ [r(TuC, 1) = 1T de < 0.
Q Q

PROPOSITION 5.1. — If the triplet (u,w,Z) is a solution of Problem 5.1, then
V- Ze LY (Q)andthe pair(u, Z) solves Problem 5.2. Conversely, if (u, Z) is a solution
of Problem 5.2, then there exists w € LY (Q) such that (u, w, Z) solves Problem 5.1.

Proor. — First note that (5.8) entails (5.2) in the sense of distributions, and a
comparison of the terms of this equation yields V - Z € L (Q).

We already pointed out that (5.16) is equivalent to the inclusion (5.10). It then
suffices to show that, defining V - Z via (5.2) and assuming (5.10) and (5.11), the
inclusion (5.9) is equivalent to (5.17).

For any u € W»(0, T; LP(Q)) and any 7 € L2(Q)" such that V-7 € L”(Q),
by (5.12)

(5.18) f f WDy, b+ V -7) dedt > f f (D + (V-2)Dyu] deedlt;
Q Q

the opposite inequality is equivalent to (5.9). By the chain rule, cf. (3.22),

f (V) dee € WH(0,T),
Q

% f (Vi) dae 20 f 7.D,Vude = — f (V-H)Daude  ae.in 10, TT.
Q Q Q
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By (5.11), the inequality (5.18) then also reads

6.19) [ [[pDae, b+ V-2 — kD] ddt + [ [1(Vu., T) = r(Va®)] do > 0;
Q Q

assuming (5.10) and (5.11), the opposite inequality is equivalent to (5.9). O

THEOREM 5.2. — (Existence) Assume that (5.5)-(5.7) and (5.14) are satisfied,
and that

(5.20) Jer1, c12 > 0 V(u, w) € graph ()  wu > cqp|uf’ + cn\w|p' — 2.

Then Problem 52 has at least one solution such that w € L*0,T;V) and
7 e L=, T; LAQM).

The function » may then be identified to a weakly continuous mapping
[0,7]— V.

Proor. — The existence of a solution of the equivalent Problem 5.1 was al-
ready proved e.g. in [23]; for Problem 5.2 here we use a different argument, that
rests on the approximation of this null-minimization principle. We shall meet a
similar procedure in the stability Theorem 6.1. Let us first notice that, by (5.12)
and (5.20),

(5.21) ffz//(v, Vdxdt sz(cn|v|p+ cn\v’|pl—(:12)dacdt V(v,0') € LP(Q) x LY (Q).
Q Q

Next we fix any m € N, set k := T /m, u), := u°, define 1", as in (3.25), and ap-
proximate Problem 5.1 by an implicit time-discretization scheme.

PROBLEM b5.1y,. — Find u, €V, w' € LP(Q) and Z7 € LX@Q~ for
n=1,...,m, such that for any n
(5.22) wy, —V -2l =h], in V',
(5.23) wl € ol —uN/k)  ae. in Q,
(5.24) 2 e p(Vul) a.e.in Q.

Existence of a solution of this problem can be proved step by step, as we did
for Problem 3.1,,. Defining the operator

(5.25) CL oV — PV v alw—ul k) — V- 5(Vo),
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the system (5.22)-(5.24) reads C), (u},) > k!, in V' for any n. By (5.14) and (5.20),
the operator C, is monotone and coercive, hence also maximal monotone.
Problem 5.1,, then has a solution. In view of reformulating Problem 5.1,,, let us
define time-interpolate functions as in (3.30) and (3.31), so that the system (5.22)-
(5.24) also reads

(5.26) Wiy — V2 = hom in L2(0, T, V') + L*(Q),
(5.27) W € a(Dytty,) a.e. in Q,
(5.28) Zm € 7(Vily) a.e. in Q.

Similarly to what we saw for Problem 5.1, this system is equivalent to the fol-
lowing inequality

1‘17(@7%7?7n) isz [T(Vﬂm) + /i"*(?m) — ?mvflzm] dxdt +

Q

(529) {ff [W(Dtumy ;Lm + v'gm) - }_Lthum] dadt
Q
+
+ f [1(V il (-, T)) — (V)] doc} <0.

Q
Notice that here T might be replaced by any T €10,T). By (6.5) and by the
coerciveness properties (5.14) and (5.21), we then get
(6.30) [ Dysm | Loy, IV - Zol| 17@ 1m0 7.y < Constant (independent of m).
By (6.5) and (5.24), then

(5.31) 1Zl I~or12@Y) < Constant (independent of m).

By these estimates, there exist u, Z such that, possibly taking m — oo along a
subsequence,

(5.32) Uy — U in W20, T; LP()) N L=(0, T; V),
(5.33) Zm — 7% in L>(0, T; L*(Q)N),

(5.34) V-Zy—V-Z in L”(Q),

(5.35) U, T) —u(-,T) in V.

As p € [2,6[ and by the regularity of Q C RS, V=H (1)(9) C LP(2) with compact
injection. By the classical Lions-Aubin lemma (see e.g. [59]), (5.32) then yields

(5.36) Uy — U in L(Q),
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so that by (5.34)

f f Z - Vi, davdt = — f f (V-2 )iion dxdt
Q Q

— [ [V Duduit = [ [z Tudeat.
Q Q

By passing to the inferior limit in (5.29), we then get (5.15). O

(5.37)

6. — Structural Stability of Problem 5.2

In this section we prove that Problem 5.2 is structurally stable, in the sense
that we illustrated in the introduction, and along the lines of Sect. 4.

THEOREM 6.1. — Let {0}, {7,n}s {hm}, {5} be sequences such that:

@) For any m, o, : R — P(R) is maximal monotone and 3,, = 0ry,, with
o i RN — R U {+ 0o} lower semicontinuous and conver; similar properties are
assumed for o, ¥ = Or and r.

(i) Letp € [2,6[, and the sequences {ay} and {¥,,} fulfill (56.5)-(5.7), (5.14),
(5.20) uniformly with respect to m. Assume that

6.1) W —u’ inV, h,—h inL’@Q),

m

v sequence {@, 51}, if @, ) — @,5") in (LA@Y)”

6.2) and fbfﬁm'ﬁ;n dadt _’foﬁ'Q_}/d%dt, then

timint [ [ (@) + 75,0, ) dwdt > [ [ 0r@) + 9@
Q Q
(6.3) Y sequence {U,,}, Uy — TV in L2V = f P (V) die —»f (V) du,
?) 7]

(6.4) V sequence {Vp}, Uy —Vin LAY = liminf | 7,@,)dx > f () dx.
m—0o0
7] I?)

(iii) For any m, let y,, (w, resp.) € F(LP(Q)) represent the operator that is
assoctiated to the mapping o, (o, resp.), and assume that
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o sequence {(un, U} i @, v),) — @,0) in LP@xLY @)

and limsup | (v, vp) dt < | (V' ) dt
6.5) mwpf m) Of W)

m—oo

then limsup f f Wi Oy, v),) diedt > f w(, ") dadt.
Q

For any m, let (um,zm) be a solution of the corresponding Problem 5.2,,.
Then there exists a pair (u,Z) such that, up to subsequences,

(6.6) Uy — U in W0, T; LP()) N L0, T; V),
(6.7) B — 7 in L0, T; LA QV),

(6.8) VZy—V-Z in P (Q),

(6.9) U (-, T) — u(-, T) inV.

Finally, this entails that (u,2) is a solution of Problem 5.2 corresponding to the
data o, 7, h, u®.

ProOF. — Uniform estimates like (5.30) and (5.31) may be derived mimicking
the above procedure; this is here left to the interested reader. The convergences
(6.6)-(6.9) then hold up to subsequences.

Let us label by the index m any equation written in terms of a,,, %,, and so on.
Problem 5.2,, thus consists in coupling the inequality (5.29),, (here rewritten
without the bars) with the initial condition

(6.10) u(-,0) = u?% a.e. in Q.
By the Lions-Aubin lemma, (6.6) yields (5.36) (this one also without the bar). By
(6.2), (6.6) and (6.7),

611)  liminf f [t + 7, Gordadt > [ [ (o) + @)1 dudt
Q

m—00

By passing to the lower limit in (5.16),, and recalling (5.37), we then get (5.16).
Moreover,

WLHOO

T
lim supf hw +V - 2, Dityy,) dit
m—0o0
T
= Tim_[ (b, Dyty) dt — limin f f Z,0- Dy, dacdt
(6.12) . @
(5»33),,1, lim <hmv D tum> dt — lly{Lriloréf f [/}/‘77/L(vu771/(x7 7)) - Tm(vugn)] dx
2

T
(h, Dyu) dt — f (Vule, T)) — r(Vul)] da @2 f (h 4 VZ,Dyu) dt.
2 0

T
(6<1)4(6‘3),(6.4)

0
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By (6.5), then

m—0o0

6.13)  limsup f f W (Dt o + ¥ - B) dicdt > f f wDyu, b+ V - 7) dudt.
Q Q

By passing to the upper limit in (5.17),,, we finally get

f j WDy, b+ V-Z) daedlt + f WYl T)) da
Q Q

(6.2),(6.13)
< limsup f f W (Dt Fopy + V' -Zy) daedt + Hmiinf [ 7, (Vat (-, 7)) dex
Q

m—o0 m—0o0
(6.14)
610m lim sup f rm(Vu,(,)n) dx + lim f f R Dy, docdt
M— 00,
Q Q

M—0Q

(6.1),(63) f (Vul) dx + f f hDyu dxdt.
Q Q

The inequality (5.17) is thus established. O

REMARKS. — (i) Variations of the operators V, D; and of the domain Q may be
dealt with as we pointed out in Sect. 4, see (4.14) and (4.15).
(ii)) The first three remarks at the end of Sect. 4 may easily be extended to
this section.

(iii) The above analysis may also be extended if the parabolic term is of the
form o,(D;u), where the multivalued mapping V — P(LA(Q)) : u— o, (v) is
weakly closed for any v € L2(Q).

(iv) One may deal with the equation (5.1) also if the maximal monotone
mapping 7 is not cyclically monotone. In this case an alternative variational for-
mulation is easily given, using any representative function of 7. If 7 is strongly
monotone, i.e.

(6.15) Je >:V(@;,7) € graph () (i = 1,2), (31 — ) (@) — Bo) > [ty — Bo",

then the further regularity u € H'(0,T; V) may also be proved. In this case, the
cyclical monotonicity of o plays a role, see (3.16).

This is based on an estimate procedure, that we briefly outline operating on
the exact equation formally. By differentiating (5.1) in time, we have

(6.16) D0 —V -DyZ = D;ih with 0 € a(Dyu).
Notice that

- . (6.15) )
[ D&Dwdx = [ DEDYude > ¢ [ 1DVl do.
Q Q Q
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Moreover, as by (3.16) D;u € o 1(0) = 0g*(0), we have D;0Dyu = D;g*(0). By
multiplying the equation (6.16) by D;u, one then gets the desired estimate on
[ DV ul? dadt.

9 This takes over if u is replaced by a vector field % : @ — RM with M > 1,
provided that & : RY — P(RM) is cyclically monotone; namely, « = dg, with ¢ as
in (3.16). In the physical literature g is known as the dissipation potential.

(v) If o is homogeneous of zero degree, that is, a(lv) = a(v) for any v € R and
any A > 0, then the equation (5.1) corresponds to a rate-independent flow, and
may thus represent hysteresis phenomena. The variational formulation of this
equation and its structural stability are addressed in [68], where a non-cyclically-
monotone mapping 7 is also considered, and the estimate procedure outlined in
the latter remark is used. O
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