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Weakly Subharmonic Function

JAMES SERRIN

Dedicated to the memory of Giovanni Prodi

We introduce a class of functions u : @ — R, closely related to and general-
izing the concept of subharmonic function; here 2 denotes a domain in R",n > 1
and R, the extended reals [ — oo, +oc]. Functions in this class, which can be called
weakly subharmonic, have many of the properties of subharmonic functions, and
moreover, as we shall show, are equivalent to subharmonic functions on the natural
subclass of upper semi-continuous functions whose Lebesgue set is all of Q.

In Section 1 we recall various properties of subharmonic functions, and in
Section 2 define the class of weakly subharmonic functions. In Sections 3 and 4
we show that weakly subharmonic functions share many of the properties of
subharmonic functions. In final remarks we discuss the possibility of future in-
vestigation.

1. — Subharmonic Functions

By a subharmonic function we mean (see Hayman and Kennedy [2], or Helms
[3]) an upper semi-continuous function u : Q — R, with the property that

(i) u is not identically — oo on Q.
(ii) for each xy € 2 and all sufficiently small 6 > 0, we have

L(w; 9, 0) > ulxo),

where L(u : &9, 6) denotes the average of u over the sphere S;: {|y — | = 6}
centered at xy with radius 0.

Clearly L(u;x,0) is well-defined for all 0 <dist(x, 982) since u is measurable
and bounded above on S; (u is upper semi-continuous and hence attains its
maximum on any compact subset of Q). It is of course possible that both
L(u; %y, 8) and u(xy) are —oo (1).

(") Kellogg [4] considers only continuous functions as candidates for being subharmo-
nic, making the entire theory somewhat simpler, but it seems best to maintain generality
here.
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Obviously any harmonic function is subharmonic, in view of the Gauss mean
value theorem. Here we recall several of the principal properties of subharmonic
functions.

THEOREM 1.1. — If u € C3(Q), then u is subharmonic in Q if and only if

M > 0, where A denotes the Laplace operator

ox2”

A= 4.
D2

See Hayman and Kennedy, p. 41 or Helms, Theorem 4.8.

[Helms considers only superharmonic functions in his results, but it is routine
to rephrase them for subharmonic functions.]

THEOREM 1.2. — Let u be subharmonic in Q. Given any domain Q with
compact support in Q, and a function h(x) harmonic in Q and such that

u(x) < hx)

on 02, then also u(x) < h(x) in . See Hayman and Kennedy, Th. 2.4, or Helms,
p- 60.

[Here by u(x) < v(x) on 02’ is meant explicitly that for every ¢ > 0 there is a
neighborhood U of 9¢€' such that u(x) < v(®) +¢in UN Q']
It is exactly Theorem 1.2 which justifies the terminology “subharmonic”.

THEOREM 1.3. — Let u and v be subharmonic in . If ¢ = const. > 0, then also
cu, U+, max{u, v}

are subharmonic in Q. See Hayman and Kennedy, p. 41, and Helms, Theorem
4.12.

Two somewhat more delicate properties of subharmonic functions, not always
emphasized, are given in the following results. For a function v € L}OC(Q) we use

the notation A(v;x,d) to denote the average of v over the (open) ball B(x,d)
centered at x with radius J, of course with ¢ so small that B(x, d) C Q.

THEOREM 1.4. — Let u be subharmonic in Q. Then u € L}OC(Q) and
A(u; 20, 0) > ulxo)

at each point xy € Q2 and for 0 > 0 sufficiently small. See Helms, Theorem 4.10
and Lemma 4.9.

THEOREM 1.5. — Let u be subharmonic in Q. Then each point of Q is in the
Lebesgue set of u.
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1
loc

[The Lebesgue set of a function v € L
that

() consists of all points x( of 2 such
};irr(l)A(v; 29, 0) = v(xp).

The possibility that both A(v;xg,0) and v(xy) are +oo is allowed. Lebesgue’s
great differentiation theorem states that almost every point of Q is in the
Lebesgue set of v.]

Proor or THEOREM 1.5. — By upper semi-continuity, for each &g in 2 we have
w(y) < ulxg) + &) for y € B(xy, d), where &) — 0 as & — 0. Thus

Au; w9, 0) < ulao) + &(0),
while on the other hand, for sufficiently small o,
A(u; a9, 0) > ulo))

as a direct consequence of the subharmonic condition L(u;xg, ) > u(xg) and a
simple integration. It then follows that

gin(l]A(u; %0, 0) = u(2xp),
for each xy € Q, as required.

Theorem 1.5 shows that the “typical” subharmonie function ecan be considered
as continuous at each point where the function is finite, and to satisfy

lim u(y — xp) = —oc0
Y—oo
whenever u(x)) = — oo, with of course u being integrable in the neighborhood of

2. The finer structure of « is discussed by Helms (Section 4.6).
A final result of interest is the following Liouville theorem.

THEOREM 1.6. — Let u be subharmonic and bounded above in R If also
u € C%(Q) then u = constant in R

The background of Theorem 1.6 is not known to the author; he first learned it
in 1950 from David Gilbarg. A proof appears in the monograph [5] of Protter and
Weinberger, and a related proof can be found in [6], page 100.

In the Corollary to Theorem 3.6 below we show that the differentiability
condition % € C%(Q) in Theorem 1.6 can be omitted.
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2. — Weakly Subharmonic Functions

A function u : Q@ — R, with u € L}OC(Q) will be called weakly subharmonic
provided that

@.1) f udy >0
Q

for all non-negative functions # of class C%(Q2) with compact support in Q.

Expressed in the language of distribution theory, this says that u is weakly
subharmonicin Q if A > 0 weakly in ©, this being a natural extension of the fact
that C? subharmonic functions satisfy the condition A% > 0 in the usual point-
wise sense. It is obvious from a direct integration by parts that every harmonic
function in Q2 is also weakly subharmonic.

Before turning to the main results of the section, we first introduce the useful
concept of mollified functions.

Let v € L} (Q). The standard p-mollification v,(x) of v is defined by

loc

V(@) = f Wk, (y — 2)dy,

where k,(t) is a (2 standard mollification kernel with k,(t) = 0 when [t| > p (see
Evans [1], Appendix C5). Putting

Q, = {x € Q : dist(x,00Q) > p},
it follows that, e.g. Evans, Appendix C5,

(i) v, is of class C? in Q,, with
Div,(x) = f WDy — )dy,  i=1,2,

(i) v,(x) — v(x) for every x in the Lebesgue set of u, and consequently al-
most everywhere in Q,

(ili) ¢, = c for constants ¢ and &, = & for harmonic functions 2 = k(x),

(iv) 0 <k, < C/p" for some constant C.

LEMMA 2.1. — Let v € L} _(Q). Then for every x € Q and for all sufficiently

loc
small values o, p, we have

A(/U/); X, 5) - A(’I); X, a)p

ProoF. — With J + p<dist (x, 0Q) we find (with w,, being the volume of the
unit ball in R™)
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1
Ay, 0) = f v,(y)dz y=x+2
n

lel<o
1 N .
= P f f’l)(y)kp(y —y)dzdy
n |Z‘§(5
1
= f fv(w +y) k,(w)dw dz
n
<o

using the substitution w = ¢ — y. Then by Fubini’s theorem there follows

:ﬁfk,,(@v)( f v(w+y)dz) dw

2|<6

= [ K )A@; 2 + w0, )

~ [ A@;3,006, - @) di = {A@;,0)},,

as required
The first main result of the section is the following

THEOREM 2.1. — Ifu is subharmonicin Q, then u is weakly subharmonic in Q.

ProOF. — Let % be subharmonic. It follows from Theorems 1.4 and 1.5 that
2.2) w(w) < A(u;, 0)
Then, for an appropriate constant C, for fixed x € Q, and for p sufficiently small,
uy() — u(x) = f (u(y) — w@) k,(y — x)dy < CA(u — u(x); 2, p) >0

ly—a|<p

by (2.2), that is
u,() > ulx).

We claim, moreover, that u, is subharmonic in s,. Indeed, by Lemma 2.1 and
the fact that u is subharmonic,

L(upv x) 5) = L(uv x7 5)/7 2 u/)(gc)v

as claimed. Then since u, € C? it follows also that 4u, > 0 by Theorem 1.1.
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Let 5 be a non-negative C? function with compact support Q' C Q; clearly
Q' C s, for sufficiently small p,. Then obviously

2.3) f ndu, >0
Q

when p < p,. Hence integrating by parts twice in (2.3) gives

2.4) fupAn >0, p<po.
Q

Since u is upper semi-continuous it is bounded above on 2, , We can now let
p — 0in (2.4) and apply the dominated convergence theorem. Indeed u, — u
almost everywhere according to property (ii) of mollified functions. Moreover
u, <m in Q' for sufficiently small p, while equally u, > u in Q' for sufficiently
small p. That is, using Theorem 1.4, |u,| is dominated by an integrable function on
. Hence by the dominated convergence theorem,

quﬂ = limfupzm >0
ol Q

by (2.4). That is, u satisfies (2.1) and is weakly subharmonic.

The converse result, that a weakly subharmonic function is subharmonic
clearly cannot be valid unless one assumes also that % is upper semi-continuous,
nor by Theorem 1.5 can it be true unless every point of Q is a Lebesgue point of .
With this in mind, the following converse holds.

THEOREM 2.2. — Let u be weakly subharmonic, and assume also that u is
upper semi-continuous with every point of 2 a Lebesgue point of w. Then u is
subharmonic in Q.

In Section 4 we shall give an improved version of Theorem 2.2, see
Theorem 4.3.

Proor. — Let u, be a standard p-mollification of u. By property (i) of molli-
fication,

(@) = f wly) A,y — )dly

= [ e,y — w)dy > o,
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by the definition of weakly subharmonic functions. Thus by Theorem 1.1 the p-
mollification u, of u is a C* subharmonic function in Qy,.

Let « be fixed in Q, and set dy = do(x) = 1/4 dist(x, 9Q). Then for p<Jy the
mollification u, is defined in 5, D B(x,2dp). Then by the definition of sub-
harmoniec function we have

2.5) L(uy;2,0) > uy(x),  p, 0<dp.

Since u is upper semi-continuous it is bounded above on the ball B(x, 3dy), say
u < m on B(x,30). Defining f, =m —u,, then f, > 0 on B(x,26) for p < dy.
Obviously u, — u everywhere by the Lebesgue set hypothesis (use property (ii)
of mollification), therefore f, — m —u >0 on the sphere S(x,0d) C B(x,2d).
Thus by Fatou’s lemma, as p — 0,

lim L(u,; %, 6) = lim L(m — f,; ®, ) = m — lim L(f,; x, 5)
<m — L(m — u;x,0) = L(u;x,0).

Hence using (2.5) we obtain
Lw;w,0) > limu,(x) = u(x),

and u is subharmonic, as required.

Of course, as noted at the beginning of the paper, L(u; x, d) can take the value
—00, in which case also v(x) = — oo at the given point .

Theorem 2.2 can be considerably simplified when the class of subharmonic
functions is restricted to those which are continuous and satisfy the condition (ii).
In this case we have the simplified

THEOREM 2.3. — Let u be weakly subharmonic and continuous in Q. Then w is
subharmonic (and continuous) in Q.

The proof involves noting only that the Lebesgue set of a continuous function
in Qis all of Q.

3. — Properties of Weakly Subharmonic Functions

With the close connection of weakly subharmonic functions and subharmonic
function thus established, one may ask whether weakly subharmonic functions
share any of the properties of subharmonic functions. The following results settle
this question for the principle properties considered in Section 1.

THEOREM 3.1. — If u is weakly subharmonic in Q and of class C*(Q), then
Au > 0.
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PROOF. — Since u € C? we can integrate by parts in the definition (2.1) to
obtain

[nau> o,
Q

and the result follows at once since the non-negative function 7 can be chosen
arbitrarily.

THEOREM 3.2. — Let u be weakly subharmonic in Q, and define u to equal u
on the set of Lebesgue points of u, and to be —oco otherwise. Then 4 < A(u;x, d),
and u s locally bounded above in Q.

ProoF. — Let €' be a compact subset of Q, and fix J so small that Q' C Qss. As

in Theorem 2.2, u,, is a C% subharmonic function in ' when p < 5. Consequently by
Theorem 1.4
uy, < Alupsa,0), xeQ, p<o,

whence by Lemma 2.1
u, < A(u; x,0),, xeQ, p<d.

Now let p — 0. Then, for x € &', u, — u = % on the Lebesgue set of u, so that
(note A(u;x,d) is continuous in the variable « by Helms, Theorem 1.14),

1 1 m
_< N = — <— = —
u < Alu;x, d) w&"ﬁf‘)u _wné"’fu 5

x,0 )
where m is finite because u € L}OC(Q). A local upper bound for A(u;x,d) also

arises independently from the fact that A is continuous.

THEOREM 3.3. — If u is weakly subharmonic in Q and the representative u
reaches a maximum value M in Q, then uw = M in Q.

ProOF. — We can assume that M = 0 without loss of generality. Then if
u(xy) = M = 0 we have
0> A(u, x9,0) > uxg) =0

by Theorem 3.2, that is
A, x9,0) =0

for suitably small 6. Since # < 0 this implies that # = 0 in B(xy, J). By a chaining
argument it follows that % = 0 in , and the proof is complete.

The next lemma is crucial for the proof of Theorems 3.4 and 3.5.
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LeMMA 3.1. — Suppose that v € L}OC(Q) 1s such that
3.1 v(x) < A(v;x,d)
for any fixed x € Q and for ¢ sufficiently small. Then
V(@) > v(w)

for p sufficiently small.
If moreover v € C*(Q) then Av > 0.

PRrOOF. — First part. As in the first step of the proof of Theorem 2.1 we have
for an appropriate constant C

vp(x) — v(x) = f (y) —v@) k,(y — 2)dy < CA(v — v(x);20,p) > 0

ly—x|<p

by (3.1), as required.

Second part. — If Av<0 at a point xy € 2, then also Av<0 in the ball
B = B(xy, R) for R small. Suppose r<R and let & be the harmonic function in
B(xg,r) such that # = v on S(xg,7). Then v > k in B(xy,r) by the well known
maximum principle for second order elliptic equations; (more specifically, we have
Av<0and 4h = 0, and the conclusion is immediate, see e.g. [5] or [1], page 327).
Hence in particular

v(xo) > h(xo) = L(h; xo;%,7) = L(v; xo; 0, 7).
We rewrite this as
nw " () > f v(xg + y)do(y).

ly|=r

where do(y) is the element of surface area on the sphere |y| = r. Integration with
respect to » from 0 to J yields (spherical polar coordinates)

0y, 0" V(o) > f v(xo + y)dy,
ly|<o

that is, v(xg) > Av; 29, J), a contradiction with (3.1).

THEOREM 3.4. — Let u be weakly subharmonic in Q. Given any domain Q'
with compact support in Q, and a function hix) harmonic in Q and such that

3.2) u(x) < h(x)

on 0, then also u(x) < hx) in Q.



356 JAMES SERRIN

ProOF. — We interpret (3.1) to mean that u < h(x) + ¢ almost everywhere in
some neighborhood U N €. Let u, be the mollification of «. Then

u, < hy,+e

in any compact subset of U U €, say on 0Q2; for 6 small enough and p <. Then
since u, is subharmonie (so 4u, > 0) and &, + ¢ = & + ¢ is harmonic (4 & = 0) we
get from the maximum principle

uy<h+e inQ.
Using Theorem 3.2, and Lemma 3.1 with v = 4, gives % < u, whence
u<h+e
in €', and the result follows since ¢ is arbitrary.

REMARK. — The above proof gives an alternate method for obtaining
Theorem 1.2.

THEOREM 3.5. — Let u and v be weakly subharmonic in Q. Then if ¢ > 0 also
cu, u~+ v, max{u, v}
are weakly subharmonic in Q.
ProoF. — That cu and u + v are weakly subharmonic is immediate. To prove
the third case, we first observe by Theorem 3.2 that
w(x) < Alu;x.0) < A(max (u,v);x, d)
() < A(w;x.0) < A(max (u, v); %, o)
and therefore
max (u(x), v(x)) < A(max (u,v); x, J).
For simplicity we define
w = w(x) = max (u(x), v(x)) xeQ,

so the previous line becomes

3.3) w(x) < A(w;x, o).
By mollification of (3.3)
(3.4) Wy < {A(w7 X, 5)}/; = A(?/U/,; &L, 0)

by Lemma 2.1. Since mollification produces C? functions, it now follows from (3.4)
and the second part of Lemma 3.1, with v = w), that 4w, > 0 In turn, for a non-
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negative test function #(x) with compact support in 2, and for sufficiently small p
we have

f ndw, > 0.
Q
Integrating by parts twice then gives

3.5) f w,An > 0.
Q

Our purpose is to let p — 0 in (3.5), and to apply (once more) the dominated
convergence theorem. This requires some preparation. First, by (3.3) and
Lemma 3.1, with v = w, we find that

wy(x) > wx) = max (u(x), v(x)) > uw).
Since % = u almost everywhere it follows that w, is bounded below by a locally
integrable function. Moreover
wy, < (U +),),
so by Theorem 3.2 w, is bounded above by a locally integrable function. That is,
|w,| is dominated on £, by an integrable function, for sufficiently small p. But

w, — w almost everywhere, whence by the dominated convergence theorem
applied to (3.5) there follows

[wan>o.
Q

But w = max (i, v) = max (u, v) almost everywhere, whence max (u, v) is weakly
subharmonic. (%)

THEOREM 3.6. — Let u be weakly subharmonic and bounded above in R% Then
u = constant in R

PROOF. — u, is subharmonic in R? and bounded above by hypothesis. Then by
Theorem 1.6 we have %, = constant(p). Letting p — 0 yields # = constant almost
everywhere. By common understanding this means « = constant.

() A surprisingly difficult proof for what at first glance seems an obvious result (as it
is for subharmonic functions, Theorem 1.3.)
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COROLLARY. — Let u be subharmonic and bounded above in RZ Then
% = constant.

PROOF. — Since u is subharmonic it is weakly subharmonic, so Theorem 3.6
shows that # = constant almost everywhere. But by Theorem 1.5 every point of Q
is a Lebesgue point of % and in turn « = constant.

REMARKS. — In view of the conclusions of Theorems 3.1-3.6 one can envision
revising the theory of subharmonic functions by replacing the definition given in
Section 1 by the definition in Section 2, that is by defining % to be subharmonie if
we Ll (Q) and

loc

qunz()

for all non-negative test functions # in Q. The theory developed above in Section 3
is in fact somewhat easier than the standard theory of subharmonie functions, at
least given an acquaintance with basic Lebesgue theory. At the same time it has
two advantages, first the simplicity and transparency of the new definition, and
second the relatively larger class of functions allowed, in particular upper semi-
continuity is no longer required.

The relaxation of the requirement that « be upper semi-continuous is par-
tially paid for by the additional condition that « be locally integrable. Of course,
the latter condition is already a consequence of subharmonicity so in fact nothing
is lost. That is, the relative simplicity of the definition of weakly subharmonic
functions is attained by building into the definition one of the more delicate
aspects of the theory of subharmonie functions.

The author naturally is not willing to go beyond simply raising the question of
whether the above alternate definition of subharmonic functions is worth
adopting as the principal meaning of a subharmonic function. At the same time,
this point of view raises further questions of interest, with main matters being
the Perron method in the new context, and whether the Riesz representation of
subharmonic functions applies in an appropriate sense to weakly subharmonic
functions.

4. — The Lebesgue Set of a Weakly Subharmonic Function

The conclusion of Theorem 1.5 clearly cannot hold for a weakly subharmonic
function since u is only defined almost everywhere. Nevertheless we shall show
that for an appropriate representative of % the conclusion does hold. We need a
further lemma.



WEAKLY SUBHARMONIC FUNCTION 359

LEMMA 4.1. — Let v € C(Q). Then, for fixed x and o sufficiently small, the
average function L(v;x,d) is continuous in the variable x and
P
@.1) Aw; x,6) = (;Z—n f ¥ Lw; 2, 7) dr.
0

Moreover, for 6 <dy and 6y sufficiently small, we have A(;x,6) € CX(0, ) and

dA(w;x,0) n . B )
(42) T = 5 {L(?}, X, 5) A(’U, X, 5)}

Proor. — We have

A(v,,;ac,é):wav(y)dz (=2 +w)

1
= f f v(y) ™ da(w) dr (spherical polar coordinates)
0 |w|=r
" P
:57]1#*1[,(1;; x,7r) dr (recall w, = w,_1/n),
0
proving (4.1).
That L(v;x,0) is continuous when v € C(2) follows at once from the re-
presentation

1
L, 0) =y [ v+ 2dota).

n Iz‘:l
Then from (4.1) we find that
s
dA(w;x,0) n_ w? n1T (.
a5 - gL(v, x,0) — s, f " L(v;x,r) dr,

0

and (4.2) now follows from (4.1).

THEOREM 4.1. — Let u be weakly subharmonic. Then
A(u;x, 0)
18 an increasing function of o.

NOTE. — Theorem 4.1 is essentially Helms, Lemma 4.18. For completeness we
give a somewhat simpler proof.
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Proor. — Fix x and let dy be so small that B(x, dy) C Q. For d <dy and suffi-
ciently small p, define Z(x) to be the solution of the Dirichlet problem 4% = 0 in
B(x,6) with h = u, on 0B(x, ). As in the proof of Lemma 3.1, by the Poisson in-
tegral representation it is clear that & exists. Moreover, using the fact that u, is
subharmonic, we find from Theorem 1.2 that & > u, in B(x, ). We have next (!)

L(uy;x,01) < L(h; 2, 01) = h(x) = L(h; 2, 0) = L(uy; x, 9),
that is, L(u,; x, d) is an increasing function of 6. Thus from (4.1)

)
Aluy;z,0) :5% f Ly @, ) dr
0

J
" —
<% (fr ldr)L(u/,;x,é)L(u/,;x,é).

0

In turn, from (4.2) then follows dA(u,;x,6)/do > 0. Thus A(u,; %, J) is an in-
creasing function of é. Finally by Lemma 2.1

Auy;x,0) = {Au; , 5)}p — A(u; x, 0),

since A(u; x, 0) is continuous. That is, A(u; x, J) is an increasing function of d since
it is the limit of increasing functions.

We can now define the canonical representative it of u by

w(x) = }sirr(l) Au;x,0), xe€Q.

Clearly % = u almost everywhere by the Lebesgue set theorem. In the sequel,
where % is treated as a pointwise extended real valued function u(x) on Q, we
make the following canonical convention:

wu(x) = u(x) = }Sin(l) A(u;x, 0).
We can now state the first main result of the section.

THEOREM 4.2. — Let u be weakly subharmonic in Q. Then each point of Q2
s in the Lebesgue set of .

The proof is obvious once one notes that A(u;x, o) = A(i; x, o).

As an immediate consequence of Theorems 2.2 and 4.2 we obtain the fol-
lowing definitive improvement of Theorem 2.2.

THEOREM 4.3. — Let u be weakly subharmonic. Then u is subharmonic in Q2
if and only if w is upper semi-continuous.
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