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Bollettino U. M. 1.
9) IV (2011), 321-336

Some Remarks on Nonlinear Composition Operators in Spaces
of Differentiable Functions

J. APPELL - Z. JESUS - O. MEJIA

To the Memory of Giovanni Prodi (1925-2010)

Abstract. — In this note we study the nonlinear composition operator f — g o f in various
spaces of differentiable functions over an interval. It turns out that this operator is
always bounded in the corresponding norm, whenever it maps such a space into itself,
but continuous only in exceptional cases.

Given a function g : R — IR, in what follows we shall be interested in studying
the nonlinear composition operator 7', defined by

@ Tyf:=gof

in various spaces of functions f : [a,b] — R. This operator occurs in many places
in nonlinear analysis and exhibits, inspite of its simple structure, several un-
expected features. Some problems of this kind are treated in the monograph [1]
and, more recently, in [2], with a particular emphasis on differential calculus in
Banach spaces and applications to implicit function theorems and bifurcation
phenomena.

A natural problem related to the operator (1) reads as follows:

e Gwven a class X of functions [ : [a,b] — R, find conditions on the function
g, possibly both necessary and sufficient, under which the operator T, generated
by g maps the class X into itself.

This problem is sometimes referred to as the composition operator problem
(or COP, for short) in the literature, see e.g. [6,7]. Following [6] we introduce the
notation

@) COPX) :={g: T,(X) C X}.

The explicit description of the set COP(X) for given X is sometimes very easy,
sometimes highly nontrivial. For example, it follows from the classical Tietze-
Uryson extension lemma for continuous functions that COP(C) = C, where
C = C([a, b)) denotes the set of continuous real functions on [a, b].
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When analyzing the set (2) for given X, one may establish, loosely speaking,
the following “golden rule” which applies quite frequently:

e If X contains not only differentiable functions, then COP(X) = Lip;.(R).
e If X contains only differentiable functions, then COP(X) = Xj,.(R).

In other words, in the first case the operator (1) maps X into itself if and only
if the corresponding function g is locally Lipschitz continuous on the real line, and
so the COP has an extrinsic and universal solution. This was proved for X = BV
(functions of bounded variation) in [11], for X = WBYV,, (functions of bounded p-
variation in Wiener’s sense) in [3], for X = RBV,, (functions of bounded p-var-
iation in Riesz’s sense) in [18], for X = AC (absolutely continuous functions) in
[16], and for X = Lip (Lipschitz continuous functions) and X = Lip, (Holder
continuous functions) in [9]. In all these spaces X it is rather easy to see that the
local Lipschitz condition

3) lgw) —g@)| < kMu—v|  (ul,|v| <7)

implies that 7y maps X into itself. To prove the (nontrivial) converse, it was
shown recently in [4] that, if (3) fails, one may construct a function f € Lip([a, b])
such that g o f & BV([a, b]). Since

Lip([a, b)) € RBV)([a,b]) € AC([a,b]) € BV ([a, b)),

the necessity of (3) for T;(X) C X follows.

On the other hand, in the second case the operator (1) maps X into itself if and
only if the corresponding function g belongs (locally) to the same class, which is
therefore an algebra with respect to composition, and so the COP has an in-
trinsic and individual solution. This is obvious for X = C' (continuously dif-
ferentiable functions) and was shown for X = WBVI} (primitives of functions
belonging to WBV),) in [7]. We remark that the space WBVI} is particularly im-
portant in applications to differential equations, since it is closely related to the
Besov spaces B;,fll/ P and lefoi/ P see [6].

We point out that the above alternative is not exhaustive, since other possi-
bilities may occur in certain spaces. For example, it was shown in [13,14] that

COP(W;) = {g € Lip,,(R) : ¢ is bounded on R},

where Wg denotes as usual the first order Sobolev space with integrability index
p € [1,00). A particularly drastic example of degeneracy [5] is the space X = D!
of all functions having a primitive (sometimes called “Darboux continuous
functions” in the literature, since such functions share the intermediate value
property with continuous functions): Here the set COP(D!) is extremely poor: it
consists only of affine functions g(y) := ay + f (o, f € R).

The aim of this paper is to describe the set COP(X) for the spaces X = C?,
X = RBV;, X =ACY, and X = Lip' (for the precise definition see below). In
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particular, we will show that all these spaces fall into the second category, i.e.,
fulfill COP(X) = X;,.(R). Moreover, we will be interested in conditions on g,
possibly both necessary and sufficient, under which the operator (1) is continuous
or bounded in X. (Recall that, in contrast to linear operators, a nonlinear op-
erator may be continuous and unbounded, or bounded and discontinuous.) Such
continuity and boundedness conditions are important in view of applications of
existence principles of nonlinear analysis to specific problems like integral
equations, functional differential equations, boundary value problems, or ei-
genvalue problems.

Now we start with the definition of the four spaces we are interested in. To
this end, we first recall the definition of their “parent spaces” X = C, X = RBV),
X =AC, and X = Lip. As usual, the space C = C([a, b)) is equipped with the
norm

IFlle = ma [/@).

By AC = AC([a,b]) we denote the linear space of all absolutely continuous
functions f : [a,b] — R. Since a function is absolutely continuous if and only if it
is the primitive (a.e.) of some L; function (see, e.g., [12]) it seems natural to
consider on AC([a, b]) the norm

b
Iflac = @] + [ roldt

which turns AC([a, b)) into a Banach space. Similarly, we consider the Banach
space RBV,, = RBV)([a, b]) (1 < p<oo) of all functions f : [a, b] — R which have
bounded p-variation in Riesz’s sense, equipped with the natural norm

1f | rgv, = £ (@] + Var,(f,[a,bD"?,

where

f&) —ft_ )l

4)  Var,(f,[a,b]) := sup {Z' Lttt} € P b])}
=1 — bl

denotes the total p-variation of f in Riesz’s sense on [a, b], and the supremum in
(4) is taken over the family P([a, b]) of all partitions {to,t1,...,t,} of the interval
[a, b]. In particular, the space RBV; coincides with the classical Banach space BV
of functions of bounded variation.

Finally, by Lip = Lip([a,b]) we denote the Banach space of all Lipschitz
continuous functions f : [a, b] — R, equipped with the natural norm

®) 1f Iy = |f @] + lip(f, [a, bD),



324 J. APPELL - Z. JESUS - 0. MEJIA

where

1f(s) —f @)

©) lip(f) = lip(f,La, b]) := sup { s —¢]

o <s<t< b}

is the smallest Lipschitz constant of f on [a, b]. We point out that functions in
RBYV, admit an interesting characterization by means of their derivatives: the
classical Riesz lemma [19] states that ' € RBV,([a,b]) in case 1 <p < oo if and
only if f is absolutely continuous and f” (which exists a.e.) belongs to L, ([a, b]). An
analogous result for p =1 is not true, because a function f € RBV;(a,b]) =
BV([a, b]) is in general not continuous, let alone absolutely continuous. However,
if we assume that f is absolutely continuous on [a, b] we have

b
(M) Var(f,[a,b) = [ |f'®)]dt.

This implies, in particular, that || f|| 4o = || ]|y for all f € AC([a, b)).

Finally, let us recall that f € Lip([a, b]) if and only if f is absolutely continuous
and f’ (which exists a.e.) belongs to L. ([a, b]).

Now, to each space X € {C,RBV,,AC, Lip} we associate the corresponding
space X! := {f : f' € X}, equipped with the norm

® Ifllx = IF @] + I llx-

In this way we get the four spaces C', RBV}, AC", and Lip' in which we are going
to study the composition operator (1). Note that the definition of the spaces AC!
and RBV; carries over without any change to the case of unbounded intervals (in
particular, on the whole real line). The spaces Lip'(R) and Liplloc(R), however,
are very different, since the Lipschitz constant (6) essentially depends on the
“size” of the underlying domain, and we may have k() — oo in (3) as r» — oo.
To begin with, let us state a simple result on imbeddings between these
spaces. As usual, we write X — Y if X C Y and there exists some k € R such that
Iflly < k| fllx for all # € X. In this case the norms (8) of the corresponding
spaces X' and Y7 satisfy ||f|y: < max {k,1}||f]|x:, and so X' — Y7 as well.

PROPOSITION 1. — The continuous imbeddings
9) Lip'([a,b]) — RBVpl([a, b)) — AC"([a, b]) = C'([a, b))

hold for p > 1.

ProoF. — By what we have just observed, it suffices to prove the continuous
imbeddings

Lip([a, b)) — RBV)([a,b]) — AC([a, b]) — C([a, b])



SOME REMARKS ON NONLINEAR COMPOSITION OPERATORS IN SPACES ETC. 325

for the derivatives. Let f € Lip([a, b]) and L > lip(f), and let {ty,t1,...,tn} be
any partition of [a, b]. Then we have

t t P m
Z lfl(t )7 tf(lrp 11)| SLPY lt—tial = L0~ o)
7 ]

j=1 j=1

which shows that f € RBV)(la,b]) with [|f|zpy, <max{(b— a)l/p,1}||f||Lip.
Moreover, from Holder’s inequality and the Riesz lemma it follows that, for all
f € RBV)([a, b)),

b p b
( | f’(t)|dt) <(b—ay? f |f/ @ dt = (b — a)~Var,(f, [a, b)),

and 50 [|f]| 4 < max {(b — a)'""?, 1}||f | gpy,. Finally, given f € AC(la,b]) and
considering the special partition {a,x,b} € P(la,b]) we get |f(x)—f(a)| <
Var(f, [a, b]). Consequently,

[f@) < [f@)] + Var(f,[a, 0D = || f]|ac

and so |||l < ||Ifllac as claimed. d

In the following Example 2 we show that all inclusions in (9) are strict.
ExAMPLE 2. — For o > 1, consider the function f, : [0,1] — R defined by
f(@) := x*. A straightforward calculation shows that

f, € Lip*(0,1]) < f,_1 € Lip([0,1]) & o> 2,
fx € RBV)([0,1]) & f,-1 € RBV,([0,1]) & «>2 —%,

and
f, € ACY([0,1])) & f,.1 € AC(0,1]) & a>1.

So for 2 —}0 < a<2 we have f, € RBV;([O, 11) \ Lip!([0,1]), while for 1 < a<
2 — }O we have f, € ACY([0,1]) \ RBV]}([O, 1).

To show that the last inclusion in (9) is strict, let ¢:[0,1] — R be the
classical Cantor function. It is well known that ¢ is an increasing and con-

tinuous map of [0,1] onto itself (see, e.g., [8]). Consequently, the function
f:10,1] — R defined by

(10) fl) = f stydt  O<w<1)
0
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is a C! function. On the other hand, its derivative f’ = ¢ does not map nullsets
into nullsets, and so fails to be absolutely continuous, by the Vitali-Banach-
Zaretskij theorem [12]. Consequently, f € C'([0,1]) \ AC*([0, 1]). O

Since we are going to deal with functions which have first derivatives ev-
erywhere and second derivatives almost everywhere, we will use the fact that,
under reasonable conditions on f and g, we have

(11) (gof) =(g oNf
and
12) (gof)' =(g" o Nf*+ (g o Nf".

Since we are also interested in conditions on g under which the corresponding
operator 7' is bounded in some normed space X, we introduce the growth function

(9, X) :=sup{llgofllx : Ifllx <rt >0

of g € COP(X). Thus, Ty : X — X is bounded if and only if x,(g,X) <oo for all
r> 0.

Now we start our analysis of the operator (1). For the sake of completeness,
we recall first a rather obvious statement about the COP in the space C*.

THEOREM 3. — The operator (1) maps the space C([a, b]) into itself if and only
ifg € CY(R). Moreover, in this case the operator (1) is automatically bounded and
continuous in the norm

13) Ifller = LF@] + 1f e = | f @] + ma |G

PROOF. — The proof is almost trivial. The inclusion COP(C') C C*(R) fol-
lows from the fact that the identity f(x) =« is C', while the inclusion
COP(C") D C'(R) follows from the chain rule. To prove boundedness of T, we
introduce the notation

14 70(r) == sup |g(w)|, () = sup |g'w)| (> 0)

Ju|<r Ju|<r

for a function g € C1(R). From the chain rule it follows then that |f]|n <7
implies
[(go @] <y, [(gofY®| < g fFON|f D] <1y ()
which shows that
1:(9,CH) < 3 + 1) (r > 0),

and so T is bounded.



SOME REMARKS ON NONLINEAR COMPOSITION OPERATORS IN SPACES ETC. 327

To prove that T is continuous in the norm (13), let (f,,),, be a sequence of C1
functions which converges in the norm (13) to some function f € C'. Then (f,),, is
bounded, say ||fu|lc: < . Putting

(15) hy = gfn - Tgf =(gofu)—(gof)

we get

loy = (g o fu)f, = (g o NS,

and we have to show that ||%], || — 0 as n — oc. Let ¢ > 0. Since g € C*(R) and
|fu —fllc — 0, by the mean value theorem, we may find 7o € N such that
l9'(fn@®) — g (f )| < & for n > ny. But this implies that

O] < O 0 — FO] + g F0) — g FO) [ F D)
<nOIf, = Flle +ellf e,

which shows that ||],||. — 0 as # — oo. The relation |k,(a)| — 0 is obvious. [

In contrast to Theorem 3, the solution of the COP in the space AC! is not
completely trivial.

THEOREM 4. — The operator (1) maps the space AC*([a,b]) into itself if and
only if g € ACY(R). Moreover, in this case the operator (1) is automatically
bounded in the norm

b
(16) 1fllacr = [F@] + If [lac = If @] + |f"(@)] +f /" @) d.

Proor. — Without loss of generality we may assume that [a,b] =[0,1].
Suppose first that g € ACY(R), and let f € AC'([0,1]). Then ¢’ € AC(R) and
f'e AC([0,1]), and so ¢ of € AC([0,1]) and (gof) € AC([0,1]), by (11).
Similarly, from ¢” € L1;(R) and f € AC([0,1]) C L,([0,1]) it follows that
(9" of)f? € L1([0,1]), while from ¢’ € AC(R) and f” € Ly([0,1]) it follows that
(¢’ of)f" € L1([0,1]). We conclude that (g o )" € L1([0, 1]), by (12), and therefore
gof € ACY([0,1]) as claimed.

Now we suppose that T,(ACY([0,1])) C ACY([0,1]) and show that
g € AC'([c,d)) for every interval [c,d] C R. The function leg@ :=c(l -0 +dt
defines a strictly monotone (in fact, affine) C* diffeomorphism from [0, 1] onto
[c,d], and so clearly belongs to ACY([0,1]). By assumption, the function
hea = Tyl.q belongs then to ACY([0,1]) as well; consequently, the function
g = heg o £, } belongs to ACY([¢,d)) as claimed.

Now we show that the operator T is bounded in the norm (16) whenever it
maps AC! into itself. Given f € AC'([0, 1]) with I/ lacr < 7, hence |f(®)| < rand
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| @] <rfor0<t<1,we get the estimates
(g o /O] < po(r), (g O] < |g'(FON]|fO) < ry;(r)
and

ICg" o N1 2N, < 72 lg" o fllp, < rPetr),

where we use the notation (14) and the constant c¢(r) is finite, since
g" of € Ly o.(R). Moreover,

(g’ Of)f”HL1 < Vl(T)Hf”HLl < (7).
So from (11) and (12) we conclude that

1:(9,AC) < yo(r) + 21 (r) + %),
which shows that T is bounded. d

We do not know whether or not the operator (1) is also continuous in the norm
(16) whenever it maps the space AC'([a, b)) into itself.

Before solving the COP for the other spaces in (9) we make a remark on
functions with so-called bounded second variation. Given a function f : [a,b] — R
and a partition P = {o,t1,...,tn} of [a,b], the second variation of f on [a,b]
w.r.t. P is defined by

m—1
Varz(ﬂP, [CL, b]) = Z

Jj=1

ft) —f@)  f) —fE0)

b1 =Y b =t

Following [17] we say that f has bounded second variation on [a,b] and write
f € BV?(a, b)) if

Var2(f;[a, b]) := sup {Varz( f,P:[a,b)) : PePa, b])} <0

There is an interesting relation between the spaces BV?([a, b]) and AC'([a, b])
due to Russell [20] which reads as follows: f € AC'([a, b]) implies f € BV?([a, b))
with

b
Var’(f;[a, b)) = f @) dt.

This may be viewed as a “higher order analogue” to the classical formula (7).
It is also shown in [20] that a function f belongs to BV?([a, b)) if and only if f
may be represented as difference of two convex functions. This may be in
turn viewed as a “higher order analogue” to the classical Jordan decom-
position [10] of a function of bounded variation as difference of two increasing
functions.
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One could ask whether or not the requirement that f € AC'([a, b]) is essential
in Russell’s result. The following example shows that there exist in fact functions
with bounded second variation whose derivatives are not absolutely continuous.

EXAMPLE 5. — Let ¢:[0,1] — R be the Cantor function, and let
f:10,1] — R be defined as in (10). We have already seen in Example 2 that
f ¢ ACY[0,1]). On the other hand, since ¢ is monotonically increasing, f is
convex, and so belongs to BV([0, 1]). O

Example 5 shows that we cannot use Theorem 4 to solve the COP for the space
BV?([a, b]). As far as we know, the problem of describing COP(BV?) is still open.

We pass now to the space RBV;([a, b]) for 1 < p < oc. The restriction 1 <p < oo
is important inasmuch as the space BV ([a, b]) plays an exceptional role: as was
shown in [11], we have T¢(BV ([a, b])) C BV ([a, b)) if and only if g satisfies (3). The
following theorem is in contrast to this.

THEOREM 6. — Let 1<p<oo. Then the operator (1) maps the space
RBV;([a, b)) into itself if and only if g € RBVI}(R). Moreover, in this case the
operator (1) is automatically bounded in the norm

a7 Wllgavy = 1f @]+ 1 |y, = |f @] + |f @] + Var,(f', [a,0D'".

Proor. — Without loss of generality we assume again that [a,b] = [0, 1].
Suppose first that g € RBV;(R), and let f € RBV[}([O, 1]), and so g" € Ly 1o(R)
and f” € Ly([0,1]), by the Riesz lemma. Since ¢’ € RBV,(R) C AC(R) and
f€C(0,1]), we have ¢’ of € C([0,1]) and so (¢’ of)f” € L,([0,1]). Similarly,
from g¢" € L, (R), f€ ACY[0,1]) and f' € AC([0,1]) it follows that
(g" o )" € Ly([0,1]). So we have proved that (g o f)" € L,([0,1]), by (12). The
fact that (g o f)' € AC([0,1]) is proved in the same way as in Theorem 4.

Now we suppose that Tg(RBV;([O, 1) C RBV;([O, 1) and show that
g€ RBV;([C, d]) for every interval [c, d] C R. Let ¢, 4 be defined as in the proof of
Theorem 4; then /.4 € RBV,,([0,1]) with ch,d”RBV,} = |c| + |d — ¢|. By assump-
tion, the function k.4 = Ty/; 4 belongs then also to RBV?}([O, 1]); consequently,
the function g = k4 o é;é belongs to RBVI}([C, d)) as claimed.

Now we show that the operator 7' is bounded in the norm (17) whenever it
maps RBV; into itself. Given f € RBVZ}([Q 1]) with Hf”RBV,} <7, hence |f(t)| < r
and |f'()] < rfor 0 <t <1, we get the estimates

(g o NO)] < pp(r),  [(gofYO)] < |g'(FON| (O] < 7p1(r)

and

1 1
f " FON|f O dt <P f " (F@)P dt < r*Pey(r),
0 0
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where we use the notation (14) and the constant c,(r) is finite, since
9" of € Ly 1o(R). Moreover,

1 1
JlgGorisrar d<pey [ 1£OFd=ne? 111, <ney.
0 0

So from (11) and (12) we conclude that
1,(g, RBVY) < 35() + 21y, (r) + 12, ()7,

and so T, is bounded. d

Again, we do not know whether or not the operator (1) is also continuous in
the norm (17) whenever it maps the space RBVZ}([OL, b)) into itself. We remark
that the continuity problem for the operator (1) in the Wiener space WBV;([a, b))
was completely solved in [7]. Indeed, it was shown there that 7' (WBVl([a b)) C
WBVI([a b)) if and only if g € WBV_, (R); however, T, is contmuous in the
correspondmg norm

p loc

1f lwavy = @] +]f"(@)]+sup {Z 1f &) = fG-DI : {to, b1, .t} € P(la, b])}
=1

(if and) only if g belongs to the closure of WBV.
subspace of WBV) ;.
Riesz space RBV;([OL, b)), but we were unable to prove it.

2 10:(R) N C>(R) which is a proper
(R). We believe that a similar restriction is needed in the

THEOREM 7. — The operator (1) maps the space Lip'([a,b]) into itself if and
only if g € Liplloc(R). Moreover, in this case the operator (1) is automatically
bounded in the norm

A8 [f i = 1F @]+ 1y = £ @) + |f @) + lip(s, Ia, bD.

PrOOF. — Again, without loss of generality we may assume that [a, b] = [0, 1].
Suppose first that g € Lip},.(R), and let f € Lip'([0,1]) and & := T, f, hence
I = (g of)f'. From ¢' € Lip;,.(R) it follows that Ty (Lip([0,1])) C Lip([0,1]).
Combining this with f’ € Lip([0,1]) we conclude that %' € Lip([0,1]), since
Lip([0,1]) is an algebra. So we have shown that h e Lip'([0,1]), i.e
Ty (Lip*([0,1])) C Lip'([0,1]).

The proof of the converse implication is similar as in Theorem 4. If we define

feq:10,1]1 — [c,d] as there and suppose that T,(Lip'([0,1])) C Lip*([0,1]), we
have h, g := Tyleq € Lip'([0,1]) with &, ; = (d — ¢)(¢’ o £, 4). But this implies that
g € Lip(lc,d]), and so g € szloc(R) since [¢,d] C R is arbitrary.

Now we show that the operator T, is bounded in the norm (18) under the

assumption g € Lip} (R). Given f € Lip*([0, 1]) with ||f|| Lip < 7 and using again
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(14) we have
11l < 17O+ Lp(f) = 11 NIy < 7, 19" o flle < n@).

Moreover, since the operator T, is bounded in the space Lip([0,1]), we have

llp(gl Of) < ||T11’f||L2p < :ur(gl’l‘ip)»
and so
lip((g' o NI < lip(g o OIIf e + Lp(INg o flle < mg', Lip)r + 7, (r)r.
This shows that
19, Lip") < vl (¢/, Lip) + 3]
and so T is bounded as claimed. O
Observe that again we did not claim automatic continuity of 7 in Theorem 7.
However, here we are able to present a counterexample which shows that the

operator (1) may map the space Lip'([a, b]) into itself without being continuous in
the norm (18).

ExAMPLE 8. — Define g : R — R by

0 for u <0,
1
glu) == 5 for O<u<l,

1
u—é for u>1,

Since ¢'(w) = 0 for # < 0 and ¢'(u) = min {u, 1} for u > 0, we certainly have
g € Lip}, (R) (even g € Lip'(R)), and so T, maps Lip'([0,1]) into itself, by
Theorem 7. However, T, is not continuous in the norm (18). To see this, consider
the functions f,f,, : [0,1] — R defined by

n+1 1
f@ =t, Ju(®) =
1
Clearly, [|fu —fllLm = P 0 as m — oo. On the other hand, the function %,
defined by (15) satisfies
2n +1
2n?

1
%t——(l +12) for t1,<t<l,

{2 for 0<t<1,,

hn(t) =
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and
2n+1
2

nTH—t for ,<t<1,

t for 0<t<r1,,
h;l(t) =

n
h =— tl
where 1, P Consequently,

1) = By @) mt1

= 1
1-1, n+1

)

1Tgfn — Tgf”Lipl > lip(hy,) >
which shows that || Ty f, — Ty fl|1; 7> 0 asn — oco. O

Observe that the function g in Example 8 belongs to Lip}, (R), and so also to
CY(R), but has no second derivative at 0 and 1. This is not accidental, as the
following theorem shows which provides a necessary and sufficient continuity
condition.

THEOREM 9. — The operator (1) maps the space Lip'([a, b]) into itself and is
continuous in the norm (18) if and only if g € C*(R).

PROOF. — Suppose first that g € C3(R). Let (f;), be a sequence of Lip!
function and f € Lip'([a, b]) such that
1fe = fllzip = [ful@) = f@)] + |f(@) = f (@] + lip(f, —f) =0 (n— o0).
Defining £, as in (15), we have to show that
lip(hy,) = lip((g' o fu)fy, = (g o)) =0 (n— o0).

Now, from ¢’ € CX(R) it follows that the operator Ty maps Lip([a, b]) into itself
and is continuous in the norm (5). Consequently,

ITgfu = Tof iy = 19" 0 f) = (9" 0 iy = 0 (0 — o0).

Also, from ||fy, — fllz;» — 0 it follows that [|f; —f||;;, — 0 as n — oco. Using
again the fact that Lip([a, b]) is an algebra we obtain

Lip(hy) < lip((g' o fu) Sy — (g o fu) ) + lip((g o fu) f" — (g 2 /) f")
<lip(g o flllfy = F'llc + lip(fy, = FOllg" o fulle
+Uip((g o fu) = (g" o DI lle + Lip(UIIIG o fu) = (9" 0 Pl

and all four terms in the last sum tend to zero as n — oo. The relations
|fn(@)] — 0 and |k, (a)| — 0 are obvious.
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Now suppose that 7, maps Lip'([a, b)) into itself and is continuous in the
norm (18). In particular, we have then ¢’ € Lip;.(R), by Theorem 7, and we have
to show that even ¢’ € C'(R).

Suppose that ¢”(uy) does not exist at some point uy € R. Then we find real
sequences (hy,),, and (k,),, such that h,, — 0, k,, — 0, and

lim g (o + hy) — g'(up) L <Ly~ lim g o + k) — 9'(uo) .

m—00 hm m—oo km

Since ¢’ is differentiable a.e., we may choose a real sequence (u,), such that
Uy, — ug and g (u,,) exists for all n. The functions f), : [a, b] — R defined for fixed
7 € (a, b) by

@) =t —1+u, (a<t<b)

belong to Lip'([a,b]) and converge in the norm (18) to the function
Jo@) :=t — t+up. By assumption, the functions gof, then also belong to
Lip'([a,b]). We claim that T, is discontinuous at fy. Indeed, otherwise for
¢€(0,(Lg — L1)/2) we would find ny € N such that ||T,f, — Tgﬁ)HLipl < ¢ for
n > ng. This would imply, in particular, that

19 g/ (fu(s) — ¢ (fu®) — ' (fo(9) + ' (fo))] < e|s — ]

for n > ny. Choosing s = 7+ hy, and ¢ = 7 in (19) and taking into account the
definition of f,, and f; yields

|gl(un + hy) — g/(un) - g'(uo + hp) + 9/(%0)| < 3|hm|7
while putting s = 7 + k,, and t = t we obtain
|9, + k) — §' () — ' (uo + k) + 9/ ()| < lkpy.

But after letting m — oo this gives both |¢”(u,) — L1| < ¢ and |¢"(u,,) — Le| < ¢,
hence

Ly — Ly = Ly — ¢"(uy) + 9" () — Ly < 2e<L — Ly,
a contradiction. This completes the proof. O

Our previous discussion shows that in all spaces under consideration we get
boundedness of the operator 7', for free, while continuity is a delicate problem: in
the largest space C'([a,b]) in (9) continuity holds, in the smallest space
Lip'([a, b]) in (9) continuity fails, and in the intermediate spaces RBVZ}([(L, b]) and
ACY([a, b)) in (9) we do not know the answer. For the reader’s ease we summarize
our results in the following synoptic table.
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TABLE 1. — Behaviour of the operator Ty f = g of in X € {C',AC', RBV}), Lip'}.

Banach T,X)CX automatic automatic T,y continuous

space X if and only if | boundedness continuity if and only if

C'([a, b)) g € CY(R) yes yes g € CY(R)
AC'([a, b]) g € ACY(R) yes M m
RBV;([a, b)) g€ RBV;(JR) yes m m
Lip*([a,b]) g € Lip},.(R) yes no g € C3R)

We conclude with a statement on stronger continuity properties.
Interestingly, if we require uniform continuity of T, we encounter a strong
degeneracy phenomenon: only affine functions g generate uniformly continuous
composition operators.

THEOREM 10. — Suppose that the operator (1) generated by some function
g9 : R — R maps one of the spaces X € {C*,AC',RBV)), Lip'} into itself and is
uniformly continuous in the respective norm. Then there exist constants o, f € R
such that

gu) = o+ fu (u € R),

i.e., g 1s an affine function.
PROOF. — We use the fact that the largest space C'([a, b]) in (9) is continuously

imbedded in the space Lip([a, b]) with norm (5)~. From our assumptions it follows
that we can find a 0 > 0 such that ||7f — T, f|x <1 for all f, f € X satisfying

1 = Flliy < 0. ~ ~
Fixw > 0andv € [ - J,6], and define f,f € X by f(?) := ot +vand f(?) := «t.
Sinee ||f — fll.i, = |v] < J, we conclude that

lip(Tyf = Tof) < Tyf = Toflluip < 1Tof = Tyfllx <1,

hence
lg(ws +v) — glws) — glwt + v) + glwt)| < [s —t].

Putting, in particular, s = u/w and ¢ = 0, we further conclude that

9+ ) — g) — g0) + 9O < | 4| =0 (@— o)

Let us suppose for a moment that g(0) = 0. Then the last relation shows that

gu +v) =gu) +g@)  (u,v € R, [v] <)
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which by standard arguments implies that g(u) = fpu with f=g(1) € R.
Replacing in the general case g by the function u — g(u) — g(0), the statement
follows with o = ¢g(0) and f = g(1) — g(0). d

The hypotheses of Theorem 10 are satisfied, in particular, if the operator (1)
satisfies a global Lipschitz condition

ITyf = TofI <KIF=FI  (ffeX

in one of the spaces X covered by Theorem 10. This is a well-known degeneracy
phenomenon which was proved first for the space C' by Matkowski in [15], and
subsequently for many other function spaces as well, see Section 2.2 in [17] for a
detailed discussion.
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