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On the Number of Solutions of Some Semilinear
Elliptic Problems

ANTONIO AMBROSETTI

Dedicated to the memory of Giovanni Prodi

Abstract. — We show that a class of semilinear boundary value problems possess exactly
one positive solution and one negative solution.

1. — Introduction and main results

This paper is related to a topic marked by the pioneering researches by
Giovanni Prodi on the geometric properties of nonlinear partial differential
equations and sigularity theory. Precisely, we deal with semilinear elliptic
Dirichlet boundary value problems like

{ —M = du—fu)+hx) xeQ,

D
Dw) w@) =0 ¢ € 0Q.

Here Q is a bounded domain in R” with C%" boundary 0Q, h € C**(Q) and
f: R — R satisfies

(f1) f € C3R), £(0) = f(0) = 0 and f"(s)s > 0 Vs #0
(f2) im Y

s—+oo S
If i = 0 the problem (D;) will be denoted by (D). By a solution of (D;) we
mean a C(Z)’V(.Q) classical solution.
In order to state our main results some notation is in order. If m € L>(Q) is
such that meas{x € Q : m(x) > 0} > 0, the linear eigenvalue problem

{ —du =im@)u xeR

(1) ux) =0 x € 0Q

has a sequence 0 < A;[m]</dg[m] < ... < Jx[m] < ... of eigenvalues. If m(x) = 1,
we set 1x[m] = 1. See e.g. [6, Chapter 1]. In particular, in the sequel we will use
the monotonicity property of eigenvalues: let 7 share the same properties of m;
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if m(x) > m(x) and m(x) > m(x) in a subset of Q with positive measure, then
Jplm]<ig[m], see [6, Prop. 1.12 Al.

Using singularity theory jointly with topological degree and bifurcation
theory, we will show:

THEOREM 1. — Suppose that f satisfies (f1 — 2) and let . > A. Then (D) has
exactly one positive u; and one negative solution ug. Moreover, if 1 # i, there
exists ¢, > 0 such that if ||k - < ¢), then (Dy) has exactly one solution near each
of u = 0,uy, us.

REMARKS 2. — (2) In [2] it has been proved that if (f1 — 2) hold and 4; <A< 4y
then (D) has exactly one positive and one negative solution and (D) has no other
solution. As a byproduct of our arguments we will give a simple proof of this fact,
see Remark 10. Moreover, in [2] it is shown that if A is simple and o <A < g + 0,
with > 0 sufficiently small, (D) has exactly 4 non-trivial solutions. In addition,
there exists ¢ = &(4) > 0 such that (D;,) with ||2]|;. < ¢ has precisely 3 solutions,
resp. 5 solutions, provided 4; <A< lg, resp. Ag<A < lg + 0.

(17) Problem (Dj,), with f(u) = ® and homogeneous Neumann boundary
conditions, has been also studied in [8]. Using the theory of singularities, it is
evaluated the exact number of solutions of (D;) (with no restriction on the norm
of k) provided 4 <A<y + 4 for some A > 0. In general, the result cannot be
extended to cover all 1; <A< /g, see [9].

(721) The first paper in which singularity theory is used to find geometric
properties of a class of partial differential equations is [4]. As a consequence of a
global inversion theorem in the presence of singularities, the precise number of
multiple solutions of semilinear elliptic problems with jumping nonlinearities is
established. See also [5] and references therein. |

2. — Preliminaries
We set H = L?(Q) with scalar product (.|.) and norm |.|, and define
K € L(H, H) by setting
Kv=u<+= —Mu=v, vyo=0.
Let us consider F', € C?(H, H),
F,(u) = u— 1Ku — Kf (u).

With this notation, u € H is a weak (and, by regularity, classical) solution of (D),
resp. (D), whenever F',(u) = Kh, resp. F;,(u) = 0.

We denote by X the set of w € H such that Ker[F',(u)] # {0}. The set X is
called the singular set of F';. See e.g. [3, Section 3].
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REMARK 3. - If u € 2X),, then there exists an integer ¢ >1 such that
AilA —f'(w)] = 1. O

We denote by S; the set of nontrivial solutions of (D). It is well known that, if
A > A1 then (D) has at least 2 nontrivial solutions #; > 0 and us <0. This result
can be proved in several manner: by variational methods, by sub- and super-
solutions or by degree, cfr. e.g. [1]. See also Remark 11 later on.

Let us point out that /', = Id — Compact and the solutions of (D) are boun-
ded: there exists C > 0 such that

@) lull <C,  Yues,.
As a consequence, for all » > C there holds
(3) deg(FiaBT?O) = 17

where B, denotes the ball of radius » in H and deg denotes the Leray-Schauder
(LS for short) degree.

3. — Some lemmas

In this section we discuss some lemmas that will be used to prove Theorem 1.
It is always understood that (f1 — 2) hold.

Let S,1 be the set of 4 € S, which do not change sign in €.

As remarked in Section [2], if 2 > 1; then S;; # 0.

LEMMA 4. — Let 4> /1 and let w € S;1. Then there exists a unique !
Sfunction t, = t,(x) such that 0<t,(x)<1 in @ t,uc H and F)t,w)l[u]=0.
Hence t,u € X; and X # 0.

PrOOF. — Since u(x) # 0 for all x € Q, the assumptions on f imply that there
exists a unique t,, = t,(x) such that 0 < £, (x) <1 in Q, satisfying
(4) fu@)) = 't @)ule))u).

Moreover, applying the elementary Implicit Function Theorem to y(, x) :=
f!tu())ulx) — fu(x)) = 0, it follows that x— t,(x) is C1. In particular, t,u € H.
We claim that ¢, u € 2;. Since u is a solution of (D) one has

(5) u = AKu — Kf (u).
Using (4) and (5), we get
F't,w)lul = w — AKu + Kf'(t,w)u = Kf'(t,w)u — Kf (u) = 0.

Then F'(t,u)[u] = 0 has the nontrivial solution u # 0 and hence t,u € 2, as
claimed. u
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REMARK 5. — As a consequence of the results of [7] on the Unique
Continuation Property, if u € S, then the set Q, = {x € Q : u(x) = 0} has zero
measure. Actually, u satisfies —4u = V(x)u where V € L>(Q) is defined by

wx)

flu) . .
Vi) = {/1— if u(x) # 0;
A, if u(x) = 0.

Then we can repeat the proof of Lemma 4 in the case that » is any nontrivial
solution of (D), showing that for allx € Q\ Q,, there exists a unique ¢, (x) € (0,1)
which is continuous a.e. in Q, t,u € H and F',(t,w)[u] = 0. Od

EXAMPLE. — If f(s) = |s[’'s then (4) yields t,(x) = p /@, O

REMARK 6. — We do not exclude that tu € X; for some ¢ # ¢,,. For example,
if we S1 and 1 > Jp, the continuous increasing function y(t) := 2[4 — f'(tw)]
is such that x(0) = 124 1 <1 and 7)) = AolA —f(w)] > M4 —f'(w)] > 1 (see
Lemma 9 below). Hence 3¢* € (0,1) such that 13[4 — f'(t*u)] = 1. But, ¢, is the
only one such that u € Ker[F',(t,u)]. |

If 2 > A1 the fact that 2, # () can also be proved in the following way. If
X, = one could apply the Global. Actually, if A > J; and 2, =0 (f A= 14
then 2, = {0}), one could apply the Global Inversion Theorem (see [3,
Theorem 3.1.8]) and (D) should have the trivial solution, only.

We set

2;”1 = {u eX; : M4 7f/(u)] = 1}.

We explicitly point out that the weight function m(x) := 1 — f'(u(x)) (2 > 0) sa-
tisfies the conditions stated in Section 1. In particular, for £ near 22 one has that
|u(x)| < 1 and hence m(x) = A — f'(u(x)) > 0 for these x.

LEMMA 7. - If/]» > /1 then X4 75 0.

PRrROOF. — As remarked in Section 2, if 2 > /; then S;; # 0. Let u € S;1. By
Lemma4,t,u € X and a corresponding eigenfunction is % which does not change
sign in Q. Since the only eigenvalue with an eigenfunction that does not change
sign in Q is the first one, then 4[4 — f'(t,u)] = 1. Hence t,u € X1, which is
therefore not empty. O

REMARKS 8. — (7) If A > A1 one has that 2'; = (). Moreover, if 1 < one has that
A —f'(w)<2g and hence 4;[4 — f'(w)] > 1foralli > 2. Thus 2) = 2 ;.

(i1) If A<l then S; =S, ;. Otherwise, let z be a solution of (D) which
changes sign. Then ¢.z € 2. Precisely, by (i) one has that z € X1, namely
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M4 —f'(t,2)] = 1. Moreover z € Ker[)l—f'(t,2)], a contradiction because z
changes sign.

(127) In the sequel we will show that if 1 > 1 then (D) has a changing sign
solution, see Proposition 12; moreover, 2 \ 2,1 # 0, see Remark 14.

(1v) 2,1 is a smooth manifold of codimension 1 in H. To see this, let v € 2 1,
namely /1[4 — f'(v)] = 1. Obviously 4[4 — f'(v)] is simple, Ker[F",(v)] is one di-
mensional and spanned by some ¢, € H. By f”(v)v > 0 it follows

Fi@lv. ]| 6) =~ [ £'wng; <o.
Q

This suffices to apply [3, Lemma 3.2.1] and the result follows. d

We now focus our attention to S;; and X . If w € H is a non degenerate (i.e.
non singular) solution of F;(u) = 0, we denote by ind(F;,u) its LS index.

LEMMA 9. — Every u € S, 1 ts non degenerate and ind(F;,u) = 1.

ProOF. — By the preceding arguments, if u € S, ; then 1;[1 — f'(t, )] =1, with
0<ty(x)<1, Va € Q. Then f'(t,(x) ulx)) <f'(ux)), V2 € Q and the monotonicity
property of eigenvalues implies 2;[4 — f"(u#)] > 1, proving the Lemma. O

REMARK 10. — Lemma 9 allows us to give a simple proof of the result of [2] for
A € 1A, Agl, cited in Remark 2-(2). Actually, for such A, # = 0 is non-degenerate
with ind(F';,0) = —1 while the total degree on a ball of radius » > 11is 1, see (3).
The u € S, ; are also non-degenerate with index 1 and hence, F'; being proper,
their number is finite, say k. Moreover, if 1 € ]/, o[, Remark 8-(i7) yields
S; = S,.1. Then using the additivity property of the degree we get

1= ind(F;,0)+ Y ind(F,u) = -1+k,

uES) 1

and thus k£ = 2. O

4. — Proof of Theorem 1

Theorem 1 cannot be proved by using the degree arguments outlined in
Remark 10, because for 1 > J2 problem (D) has changing sign solutions, see
Proposition 12, and we do not know if they are degenerate or not.

To overcome this difficulty we consider the bifurcation problem F,(u) = 0. It
is well known that from A; emanates a continuum C of solutions of F;(u) = 0.
Moreover, near (0, 1), C is a uniquely determined curve and if (4, %) € C, u does
not change sign in Q. For the bifurcation from a simple eigenvalue we refer, e.g.
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to [3, Sec. 5.4]. Let C* = {(Z,u) : 2 € R, u > 0, F;(u) = 0}. By the previous re-
mark, near (J1,0) one has that C* ¢ C. If (1, u;) € C* then by Lemma 9 ; is non-
degenerate and hence C* is a C' curve. In particular, there are no secondary
bifurcations on C*. From (2) it follows that C* is bounded in [0, A] x H for each
A>0. Since F;(u) =0 has only the trivial solution provided A < 1;, then
{u€ H:(u)€C} =0 for these 1. Moreover C" (the closure of C*) cannot
contain (4, 0), with k£ > 2, because 4; is the unique eigenvalue from which bi-
furcate positive solutions. Next, suppose that there exists a solution z; > 0 of
F;(u) = 0 such that (1,2;) ¢ C". Lemma 9 implies that z; is non-degenerate. By
the continuation property of the topological degree, there is a branch (actually a
C! curve) C* containing (4,z;). Repeating the preceding arguments, we deduce
that C* shares the same properties of C*. In particular, C* N C* = ) because
otherwise C* (or C*) would have a secondary bifurcation. In addition (41, 0) € c.
Since the branch C bifurcating from (41, 0) is (locally) unique, we find a contra-
diction, proving that the only positive solution of F';(u) = 0 belong to C*. In a
quite similar way one shows that C~ = {(4,u): 1 € R, u<0, F;(u) =0} is a
curve bifurcating from (1;, 0) which contains all the negative solutions of /', = 0.
This proves that (D) has precisely one solutions #; > 0 and one solution ug <0.
Both u1,u2 are non-degenerate. Moreover, if A # A, also u = 0 is non-degen-
erate. Thus the Local Inversion Theorem applies yielding a unique solution of
(Dy,) near 0,u;, ug provided ||2]|; < 1. This completes the proof of Theorem 1. O

REMARK 11. — Itis known that u;, ug are local minima of the energy functional

J(u) = %f“vmz _ MLZ} dax —i—f [ ’ufw)f(s)ds] d,
Q 2L

where
As —f(s) if —s">s<5s",
f(S)Z s +f(—s), ifs<—s",
As* — f(s%), if s > s*,
and s* > 0 is such that As* — f(s*)<0 and —As* — f(—s*) > 0. O

Remark 11 allows us to prove:
PROPOSITION 12. — If 1 > J then (D) has a solution z that changes sign in Q.
PRrROOF. — As a consequence of Remark 11, if 1 > Ay then (D) has at least a

Mountain Pass solution z # 0. Such a z changes sign in £, otherwise by Theorem 1
either z = u; or z = us. O
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REMARKS 13. — (z) To prove Proposition 12 one could also argue as follows. If
z € §)1 then Lemma 9 implies that z is non-degenerate and ind(F';,z) = 1, while
any non-degenerate Mountain Pass solution has Morse index 1 and hence LS
index —1, see e.g. [1, Theorem 12.31].

(#1) Unfortunately we are not able to estimate the precise number of changing
sign solutions, the main difficulty being that we do not know if these solutions are
non-degenerate. O

REMARK 14. - If A> /s then X,\ 2,1 #0. To prove this claim, let
2z € S, \ S,1. By Remark 5, there exists ¢,(x) € (0,1) such that t,z € 2, and a
corresponding eigenfunction is z which changes sign in Q. Then /;[A — f/(t,2)] = 1
for some integer ¢ > 1, namely ¢,z € X, \ 2 as claimed. O
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