BOLLETTINO UNIONE MATEMATICA ITALIANA

Lucio Boccardo

Lewy-Stampacchia Inequality in Quasilinear Unilateral Problems and Application to the G-convergence

Bollettino dell'Unione Matematica Italiana, Serie 9, Vol. 4 (2011), n.2, p. 275–282.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2011_9_4_2_275_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Lewy-Stampacchia Inequality in Quasilinear Unilateral Problems and Application to the G-convergence

Lucio Boccardo

a Italo (ardito, a che giammai ...) per i suoi 60 anni $(+\varepsilon)$

Abstract. – In the paper [5] in collaboration with Italo Capuzzo Dolcetta, the use of the Lewy-Stampacchia inequality was the main tool for the study of the G-convergence in unilateral problems with linear differential operators. In this paper we prove a Lewy-Stampacchia inequality for unilateral problems with more general differential operators (quasilinear operators with lower order term having quadratic growth with respect to the gradient) in order to study the G-convergence in unilateral problems with such type of differential operators.

1. - Introduction

We assume that Ω is bounded open set in \mathbb{R}^N , $N \geq 2$, and M is a measurable matrix such that

(1.1)
$$a|\xi|^2 \le M(x)\xi\xi, \quad |M(x)| \le \beta,$$

where $\alpha, \beta > 0$. Moreover we assume that

$$(1.2) f \in L^m(\Omega), \ m > \frac{N}{2},$$

$$(1.4) \gamma \in \mathbb{R}.$$

In the paper [5] in collaboration with Italo Capuzzo Dolcetta, the use of the Lewy-Stampacchia inequality (see [11], [14]) was the main tool for the study of the G-convergence in unilateral problems with linear differential operators. In this paper we prove a Lewy-Stampacchia inequality for unilateral problems with more general differential operators (quasilinear operators with lower order term having quadratic growth with respect to the gradient) in order to study the G-convergence in unilateral problems with such type of differential operators.

To be more precise, in this paper, we will give a new (see [7], [1]) proof of the existence of a solution u for the following unilateral problem

$$(1.5) \qquad \begin{cases} u \geq 0, \ u \in W_0^{1,2}(\Omega) \cap L^\infty(\Omega): \\ \displaystyle \int_{\Omega} M(x) D u D[v-u] + \mu \int_{\Omega} u[v-u] + \gamma \int_{\Omega} |D u|^2 [v-u] \geq \int_{\Omega} f[v-u], \\ \\ \text{for every } v \geq 0, \ \ v \in W_0^{1,2}(\Omega) \cap L^\infty(\Omega). \end{cases}$$

The proof is quite simple, thanks to the use of the homographic approximation, introduced in [10] and used in [6], [15], [16].

An additional advantage of this approach is that we easily deduce the following Lewy-Stampacchia inequality

(1.6)
$$f \le -\operatorname{div}(M(x)Du) + \mu u + \gamma |Du|^2 \le f^+.$$

We point out that a similar result (with a different proof) can be found in [12].

Notice that our proof does not change if the principal part of the differential operator is nonlinear (even if the operator is defined in $W_0^{1,p}(\Omega)$, p>1) or if the lower order term is more general, but with quadratic (or p) growth with respect to the gradient. On the contrary, if the obstacle is not zero, but a function $\psi \in W_0^{1,2}(\Omega) \cap L^\infty(\Omega)$, the scheme of the proof still holds, but more technical points are needed.

2. - Homographic approximation

We use the notation $\varepsilon = \frac{1}{n}$. Let u_{ε} be the solution of the following Dirichlet problem.

$$(2.1) \qquad \begin{cases} u_{\varepsilon} \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega) : \\ -\operatorname{div}(M(x)Du_{\varepsilon}) + \mu u_{\varepsilon} + \frac{\gamma |Du_{\varepsilon}|^2}{1 + \varepsilon |Du_{\varepsilon}|^2} + f^{-} \frac{u_{\varepsilon}}{\varepsilon + |u_{\varepsilon}|} = f^{+}. \end{cases}$$

Lemma 2.1. — Assume that hypotheses (1.1), (1.2), (1.3) and (1.4) are satisfied. Then, $\forall \epsilon > 0$, $u_{\epsilon} \geq 0$ almost everywhere in Ω .

Proof. - Let (see [7], [8], [9])

(2.2)
$$\phi(t) = (e^{2\lambda|t|} - 1)\operatorname{sgn}(t), \quad \lambda > \frac{|\gamma|}{2a}.$$

Note that, for every ε , u_{ε} is a bounded function (see [18]), thus it is possible to take

 $\phi[(u_{\varepsilon})^{-}]$ as test function in the weak formulation of (2.1). We get

$$\begin{split} &-\int_{\Omega} M(x)D(u_{\varepsilon})^{-}\,D(u_{\varepsilon})^{-}\,\phi'[(u_{\varepsilon})^{-}] - \mu\int_{\Omega} (u_{\varepsilon})^{-}\phi[(u_{\varepsilon})^{-}] \\ &-\int_{\Omega} f^{-}\frac{(u_{\varepsilon})^{-}}{\varepsilon + |u_{\varepsilon}|}\phi[(u_{\varepsilon})^{-}] + \int_{\Omega} \frac{\gamma |Du_{\varepsilon}|^{2}}{1 + \varepsilon |Du_{\varepsilon}|^{2}}\phi[(u_{\varepsilon})^{-}] = \int_{\Omega} f^{+}\phi[(u_{\varepsilon})^{-}], \end{split}$$

which implies

$$\begin{split} &\int_{\Omega} M(x)D(u_{\varepsilon})^{-}D(u_{\varepsilon})^{-}\phi'[(u_{\varepsilon})^{-}] + \mu \int_{\Omega} (u_{\varepsilon})^{-}\phi[(u_{\varepsilon})^{-}] \\ + &\int_{\Omega} f^{-}\frac{(u_{\varepsilon})^{-}}{\varepsilon + |u_{\varepsilon}|}\phi[(u_{\varepsilon})^{-}] = \int_{\Omega} \frac{\gamma |Du_{\varepsilon}|^{2}}{1 + \varepsilon |Du_{\varepsilon}|^{2}}\phi[(u_{\varepsilon})^{-}] - \int_{\Omega} f^{+}\phi[(u_{\varepsilon})^{-}] \\ &\leq |\gamma| \int_{\Omega} |Du_{\varepsilon}|^{2}\phi[(u_{\varepsilon})^{-}] - \int_{\Omega} f^{+}\phi[(u_{\varepsilon})^{-}], \end{split}$$

which gives

$$\int_{\Omega} |D(u_{\varepsilon})^{-}|^{2} \{a\phi'[(u_{\varepsilon})^{-}] - |\gamma||\phi[(u_{\varepsilon})^{-}]|\} \leq 0.$$

Since $a\phi'(s) - |\gamma||\phi(s)| \ge \frac{a}{2}$, by the choce of λ , the above inequality implies that $u_{\varepsilon} \ge 0$. Thus u_{ε} is solution of

$$(2.3) \qquad \begin{cases} u_{\varepsilon} \geq 0, & u_{\varepsilon} \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega) : \\ -\operatorname{div}(M(x)Du_{\varepsilon}) + \mu u_{\varepsilon} + \frac{\gamma |Du_{\varepsilon}|^2}{1 + \varepsilon |Du_{\varepsilon}|^2} + f^{-}\frac{u_{\varepsilon}}{\varepsilon + u_{\varepsilon}} = f^{+}. \end{cases}$$

Moreover we have, in the sense of distributions,

$$(2.4) f \leq -\operatorname{div}(M(x)Du_{\varepsilon}) + \mu u_{\varepsilon} + \frac{\gamma |Du_{\varepsilon}|^{2}}{1 + \varepsilon |Du_{\varepsilon}|^{2}} \leq f^{+},$$

since

$$0 \le f^{-} \frac{u_{\varepsilon}}{\varepsilon + u_{\varepsilon}} \le f^{-}.$$

LEMMA 2.2. – The sequence $\{u_{\varepsilon}\}$ is bounded in $L^{\infty}(\Omega)$.

PROOF. – Following [9], we use $\phi(G_k(u_{\varepsilon}^+))$ as test function in (2.1), where $\phi(s)$ is

defined in (2.2). Since $u_{\varepsilon} \geq 0$ and $f^{-} \geq 0$, we have

(2.5)
$$\int_{\Omega} f^{-} \frac{u_{\varepsilon}}{\varepsilon + u_{\varepsilon}} \phi(G_{k}(u_{\varepsilon}^{+})) \geq 0.$$

Thus it is possible to repeat the proof of [9] in order to prove that the sequence $\{u_{\varepsilon}^{+}\}$ is bounded in $L^{\infty}(\Omega)$.

Lemma 2.3. – The sequence $\{u_{\varepsilon}\}$ is bounded in $W_0^{1,2}(\Omega)$.

PROOF. – Now we use $\phi(u_{\varepsilon})$ as test function in (2.1). We repeat the remark (2.5), with k=0. Thus it is possible to repeat the proof of [7], [8] in order to prove that the sequence $\{u_{\varepsilon}\}$ is bounded in $W_0^{1,2}(\Omega)$.

COROLLARY 2.4. – There exist $u \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ and a subsequence, still denoted by $\{u_{\varepsilon}\}$ such that u_{ε} converges weakly to u in $W_0^{1,2}(\Omega)$.

Proposition 2.5. – u_{ε} converges strongly to u in $W_0^{1,2}(\Omega)$.

PROOF. – Use $\phi(u_{\varepsilon}-u)$ as test function and note that the term

$$\int_{\Omega} f^{-} \frac{u_{\varepsilon}}{\varepsilon + u_{\varepsilon}} \phi(u_{\varepsilon} - u)$$

converges to zero. Recall the results of Lemma 2.2 and Lemma 2.3 Then the statement is a consequence of a result proved in [7], [8], [9].

COROLLARY 2.6. - Proposition 2.5 and Vitali Theorem imply that

$$\frac{\gamma |Du_{\varepsilon}|^2}{1+\varepsilon |Du_{\varepsilon}|^2} \to \gamma |Du|^2, \quad \text{ in } L^1(\Omega).$$

THEOREM 2.7. – There exists a solution u of the unilateral problem (1.5).

PROOF. – Let v be a positive function in $W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$, and use $v - u_{\varepsilon}$ as test function in (2.1). Then

$$\int_{\Omega} M(x)Du_{\varepsilon}D[v-u_{\varepsilon}] + \mu \int_{\Omega} u_{\varepsilon}[v-u_{\varepsilon}] + \int_{\Omega} \frac{\gamma |Du_{\varepsilon}|^{2}}{1+\varepsilon |Du_{\varepsilon}|^{2}}[v-u_{\varepsilon}]$$

$$= \int_{\Omega} f^{+}[v-u_{\varepsilon}] - \int_{\Omega} f^{-} \frac{u_{\varepsilon}}{\varepsilon + u_{\varepsilon}}[v-u_{\varepsilon}].$$

Note that

$$(2.6) \qquad \lim_{\varepsilon \to 0} \int\limits_{\Omega} f^{-} \frac{u_{\varepsilon}}{\varepsilon + u_{\varepsilon}} u_{\varepsilon} \geq \lim_{\varepsilon \to 0} \int\limits_{\{x: u(x) > 0\}} f^{-} \frac{u_{\varepsilon}}{\varepsilon + u_{\varepsilon}} u_{\varepsilon} = \int\limits_{\{x: u(x) > 0\}} f^{-} u = \int\limits_{\Omega} f^{-} u$$

and that, for every $v \geq 0$,

(2.7)
$$\lim_{\varepsilon \to 0} \int_{\Omega} f^{-} \frac{u_{\varepsilon}}{\varepsilon + u_{\varepsilon}} v \leq \lim_{\varepsilon \to 0} \int_{\Omega} f^{-} \frac{u_{\varepsilon}}{u_{\varepsilon}} v = \int_{\Omega} f^{-} v.$$

Then

$$\lim_{arepsilon o 0}\int_{arOmega}f^+[v-u_arepsilon]-\lim_{arepsilon o 0}\int_{arOmega}f^-rac{u_arepsilon}{arepsilon+u_arepsilon}[v-u_arepsilon]\geq\int_{arOmega}f[v-u],$$

so that we pass to the limit in (2.3), thanks to the above limits, Lemma 2.2, Proposition 2.5, Corollary 2.6. Thus we show that u is solution of the unilateral problem (1.5). Moreover, passing to the limit in (2.4), we show that u verifies (1.6).

3. – G-convergence

Let us recall the notion of G-convergence, which was introduced for symmetric matrices by S. Spagnolo (see [17]) and generalized by Murat and Tartar (see [13]).

We will denote by $\mathcal{M}(a,\beta;\Omega)$ the class of $(N\times N)$ -matrices with components in $L^\infty(\Omega)$ such that

$$a|\xi|^2 \le M(x)\,\xi\,\xi, \qquad |M(x)| \le \beta,$$

for almost every $x \in \Omega$ and for every $\xi \in \mathbb{R}^N$.

DEFINITION 3.1. – Let M_n be a sequence of matrices in $\mathcal{M}(a, \beta; \Omega)$. We will say that M_n G-converges to a matrix $M_0 \in \mathcal{M}(a, \beta'; \Omega)$ if, for every sequence f_n such that

$$f_n \to f_0 \ in \ W^{-1,2}(\Omega)$$
-strong,

the solutions z_n and z_0 of the equations

$$z_n \in W_0^{1,2}(\Omega) : -\operatorname{div}(M_n(x)\nabla z_n) = f_n,$$

 $z_0 \in W_0^{1,2}(\Omega) : -\operatorname{div}(M_0(x)\nabla z_0) = f_0$

satisfy

$$z_n \rightharpoonup z_0 \ in \ W_0^{1,2}(\Omega)$$
-weak, $M_n(x)\nabla z_n \rightharpoonup M_0(x)\nabla z_0 \ in \ (L^2(\Omega))^N$ -weak.

Now we state the following theorem which is a generalization of the main result of the paper [5] in collaboration with Italo Capuzzo Dolcetta.

THEOREM 3.2. – Let M_n be a sequence of matrices in $\mathcal{M}(a, \beta; \Omega)$ which Gconverges to a matrix $M_0 \in \mathcal{M}(a, \beta'; \Omega)$. Assume (1.2), (1.3), (1.4) and that u_n is a
solution of the unilateral problem

$$(3.1) \begin{cases} u_n \geq 0, \ u_n \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega) : \\ \int_{\Omega} M_n(x) D u_n D[v - u_n] + \mu \int_{\Omega} u_n [v - u_n] + \gamma \int_{\Omega} |D u_n|^2 [v - u_n] \\ \geq \int_{\Omega} f[v - u_n], \\ for \ every \ v \geq 0, \ \ v \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega). \end{cases}$$

Then it is possible to construct a function $H(x, \xi)$, measurable with respect to x, with the property

$$(3.2) |H(x,\xi) - H(x,\tilde{\xi})| \le (|\xi| + |\tilde{\xi}|)|\xi - \tilde{\xi}|, \quad \forall \, \xi, \, \tilde{\xi} \in \mathbb{R}^N,$$

such that (up to subequences) u_n converges weakly to u_0 , where u_0 is a solution of the unilateral problem

$$(3.3) \qquad \begin{cases} u_0 \geq 0, \ u_0 \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega) : \\ \int_{\Omega} M_0(x) D u_0 D[v - u_0] + \mu \int_{\Omega} u_0[v - u_0] + \int_{\Omega} H(x, D u_0)[v - u_0] \\ \geq \int_{\Omega} f[v - u_0], \\ for \ every \ v \geq 0, \ \ v \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega). \end{cases}$$

PROOF. – Thanks to the Lewy-Stampacchia inequality (1.6), we have that

$$-\operatorname{div}(M_n(x)Du_n) + \mu u_n + \gamma |Du_n|^2$$

is bounded in $L^m(\Omega)$, $m > \frac{N}{2}$. Thus we can say that

$$u_n \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega): -\operatorname{div}(M_n(x)Du_n) + \mu u_n + \gamma |Du_n|^2 = g_n,$$

with $f \leq g_n \leq f^+$ and $\{g_n\}$ bounded in $L^m(\Omega)$, $m > \frac{N}{2}$. With the use of the Rellich Theorem we improve the above statement: up to subsequences, we have

$$[-\operatorname{div}(M_n(x)Du_n) + \mu u_n + \gamma |Du_n|^2] \to g_0, \text{ in } W^{-1,m^*}(\Omega),$$

with $f \leq g_0 \leq f^+$. Since $m^* \geq 2$, the results of G-convergence for quasilinear elliptic equations (see [2], [3], [4]) say that it is possible to construct a function $H(x,\xi)$, measurable with respect to x, satisfying (3.2), such that (up to subequences) u_n converges weakly to $u^* > 0$, where u^* is a solution of

$$u^* \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega) : -\text{div}(M_0(x)Du^*) + \mu u^* + H(x,Du^*) = g_0$$

and

$$\begin{cases} -\operatorname{div}(M_n(x)Du_n) + \mu u_n \to -\operatorname{div}(M_0(x)Du^*) + \mu u^*, & \text{in } W^{-1,2}(\Omega); \\ \\ \gamma |Du_n|^2 \to H(x,Du^*), & \text{in } L^1(\Omega). \end{cases}$$

Thus it is possible to pass to the limit in (3.1) and to say that u^* is a solution of (3.3).

Acknowledgements. This paper contains the unpublished part (= mathematical present) of the results shown by the author at the "International Workshop on Partial Differential Equations for the 60th birthday of Italo Capuzzo Dolcetta", Roma 2.9.2008.

REFERENCES

- [1] A. Bensoussan L. Boccardo F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincaré Anal. non lin. 5 (1988), 347-364.
- [2] A. Bensoussan L. Boccardo F. Murat, Homogenization of elliptic equations with principal part not in divergence form and Hamiltonian with quadratic growth, Comm. Pure Appl. Math., 39 (1986), 769-805.
- [3] A. Bensoussan L. Boccardo F. Murat, H-convergence for quasilinear elliptic equations with quadratic growth, Appl. Math. Opt., 26 (1992), 253-272.
- [4] A. Bensoussan L. Boccardo A. Dall'Aglio F. Murat, H-convergence for quasilinear elliptic equations, in Composite media and homogenization theory, G. Dal Maso and G. Dell'Antonio ed., World Scientific, 1995.
- [5] L. Boccardo I. Capuzzo Dolcetta, G-convergenza e problema di Dirichlet unilaterale, Boll. UMI 12 (1975), 115-123.
- [6] L. Boccardo R. Cirmi, Existence and uniqueness of solutions of unilateral problems with L^1 data, J. Convex Anal., 6 (1999), 195-206.
- [7] L. Boccardo F. Murat J.-P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152 (1988), 183-196.
- [8] L. Boccardo F. Murat J.-P. Puel, Resultats d'existence pour certains problèmes elliptiques quasi linéaires, Ann. Sc. Norm. Sup. Pisa, 11 (1984), 213-235.
- [9] L. Boccardo F. Murat J.-P. Puel, L^{∞} -estimates for some nonlinear partial differential equations and application to an existence result, SIAM J. Math. Anal., 23 (1992), 326-333.
- [10] C. Brauner B. Nikolaenko, Homographic approximations of free boundary problems characterized by elliptic variational inequalities. In Nonlinear partial differential equations and their applications, Collège de France Seminar Vol. III, ed.

- by H. Brezis and J. L. Lions, Research Notes in Math., 70, Pitman, London (1982), 86-128.
- [11] H. Lewy G. Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22 (1969), 153-188.
- [12] A. MOKRANE F. MURAT, The Lewy-Stampacchia inequality for the obstacle problem with quadratic growth in the gradient, Ann. Mat. Pura Appl., 184 (2005), 347-360.
- [13] F. MURAT L. TARTAR, H-Convergence; in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev, R. Kohn, editors, Birkhäuser, Boston (1997), 21-43.
- [14] U. Mosco G. Troianiello, On the smoothness of solutions of unilateral Dirichlet problems, Boll. Un. Mat. Ital., 8 (1973), 57-67.
- [15] M. C. Palmeri, Homographic approximation applied to nonlinear elliptic unilateral problems, Rend. Mat. Appl., 17 (1997), 387-402.
- [16] M. C. Palmeri, Homographic approximation for some nonlinear parabolic unilateral problems, J. Convex Anal., 7 (2000), 353-373.
- [17] S. SPAGNOLO, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 577-597.
- [18] G. STAMPACCHIA, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258.

Dipartimento di Matematica, Piazza A. Moro 2, Roma, Italy E-mail: boccardo@mat.uniroma1.it

Received February 11, 2011 and in revised form March 10, 2011