BOLLETTINO UNIONE MATEMATICA ITALIANA

FABIO FERRARI RUFFINO

Gysin Map and Atiyah-Hirzebruch Spectral Sequence

Bollettino dell'Unione Matematica Italiana, Serie 9, Vol. 4 (2011), n.2, p. 263–273.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2011_9_4_2_263_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Gysin Map and Atiyah-Hirzebruch Spectral Sequence

FABIO FERRARI RUFFINO

Abstract. – We discuss the relations between the Atiyah-Hirzebruch spectral sequence and the Gysin map for a multiplicative cohomology theory, on spaces having the homotopy type of a finite CW-complex. In particular, let us fix such a multiplicative cohomology theory h^* and let us consider a smooth manifold X of dimension n and a compact submanifold Y of dimension p, satisfying suitable hypotheses about orientability. We prove that, starting the Atiyah-Hirzebruch spectral sequence with the Poincaré dual of Y in X, which, in our setting, is a simplicial cohomology class with coefficients in $h^0\{*\}$, if such a class survives until the last step, it is represented in $\mathbb{E}_n^{n-p,0}$ by the image via the Gysin map of the unit cohomology class of Y. We then prove the analogous statement for a generic cohomology class on Y.

1. – Introduction

Given a multiplicative cohomology theory, under suitable hypotheses we can define the Gysin map, which is a natural pushfoward in cohomology. Moreover, for a finite CW-complex or any space homotopically equivalent to it, we can construct the Atiyah-Hirzebruch spectral sequence, which relates the cellular cohomology with the fixed cohomology theory. In particular, the groups of the starting step of the spectral sequence $E_1^{p,q}(X)$ are canonically isomorphic to the groups of cellular cochains $C^p(X,h^q\{*\})$, for $\{*\}$ a fixed space with one point. Since the first coboundary $d_1^{p,q}$ coincides with the cellular coboundary, the groups $E_2^{p,q}(X)$ are canonically isomorphic to the cellular cohomology groups $H^p(X,h^q\{*\})$. The sequence stabilizes to $E_{\infty}^{p,q}(X)$ and, denoting by X^p the p-skeleton of X, there is a canonical isomorphism:

$$(1) \hspace{1cm} E^{p,\,q}_{\infty}(X) \simeq \frac{\operatorname{Ker}(h^{p+q}(X) \longrightarrow h^{p+q}(X^{p-1}))}{\operatorname{Ker}(h^{p+q}(X) \longrightarrow h^{p+q}(X^p))}$$

i.e. $E_{\infty}^{p,q}$ can be described as the group of (p+q)-classes on X which are 0 when pulled back to X^{p-1} , up to classes which are 0 when pulled back to X^p . Let us now consider an n-dimensional smooth manifold X and a compact p-dimensional submanifold Y. For $i: Y \to X$ the embedding, we can define the Gysin map:

$$i_!:h^*(Y)\longrightarrow \tilde{h}^{*+n-p}(X)$$

which in particular gives a map $i_!:h^0(Y)\longrightarrow \tilde{h}^{n-p}(X)$. We assume that we have an oriented triangulation of X restricting to a triangulation of Y (this is always possible for X orientable [8]): we require that Y is a cycle in $C_p(X,h^0\{*\})$, identifying each simplex σ of the triangulation with $\sigma\otimes_{\mathbb{Z}}1$, for $1\in h^0\{*\}$. Then, for $\eta\in h^0\{*\}$ and $P:Y\to\{*\}$, we prove that $i_!(P^*\eta)$ represents an element of $\operatorname{Ker}(h^{p+q}(X)\to h^{p+q}(X^{p-1}))$ (the latter being the numerator of (1)) and, if the Poincaré dual $\operatorname{PD}_X[Y\otimes\eta]\in H^{n-p}(X,h^0\{*\})$ survives until the last step, its class in $E_\infty^{n-p,0}$ is represented exactly by $i_!(P^*\eta)$. More generally, without assuming q=0, if $Y\otimes a$ is a cycle in $C_p(X,h^q\{*\})$ for $a\in h^q\{*\}$, and if $\operatorname{PD}_X[Y\otimes a]\in H^{n-p}(X,h^q\{*\})$ survives until $E_\infty^{n-p,q}$, then its class in (1) is represented by $i_!(P^*a)$. All the classes on Y considered in these examples are pull-back of classes in $h^*\{*\}$: we will see that all the other classes give no more information.

The study of the relations between Gysin map and Atiyah-Hirzebruch spectral sequence was treated in [6] for K-theory, arising from the physical problem of relating two different classifications of D-brane charges in string theory. In this article we generalize the statement to any multiplicative co-homology theory.

2. - Spectral sequences and orientability

2.1 – Atiyah-Hirzebruch spectral sequence

We deal with spectral sequences in the axiomatic version described in [4], chap. XV, par. 7, with the additional hypothesis of working with *finite* sequences of groups. We also take into account the presence of the grading in cohomology. For a finite simplicial complex X we consider the natural filtration:

$$\emptyset = X^{-1} \subset X^0 \subset \cdots \subset X^m = X$$

where X^i is the *i*-th skeleton of X. The groups and maps of the Atiyah-Hirzebruch spectral sequence of X, associated to a cohomology theory h^* , are defined as follows (for the groups $H^{\bullet}(p,p')$ and the map δ^{\bullet} we use the notation of [4], the map that we called ψ^{\bullet} has no name in [4]):

- $H^n(p, p') = h^n(X^{p'-1}, X^{p-1})$ for $p \le p'$;
- $\psi^n: H^n(p+a,p'+b) \to H^n(p,p')$ is induced in cohomology by the map of couples $i: (X^{p'-1},X^{p-1}) \to (X^{p'+b-1},X^{p+a-1})$;
- $\delta^n: H^n(p,p') \to H^{n+1}(p',p'')$ is the composition of the map $\pi^*: h^n(X^{p'-1},X^{p-1}) \to h^n(X^{p'-1})$ induced by the map of couples $\pi: (X^{p'-1},\emptyset) \to (X^{p'-1},X^{p-1})$, and the Bockstein map $\beta^n: h^n(X^{p'-1}) \longrightarrow h^{n+1}(X^{p''-1},X^{p'-1})$.

We briefly show how to link the first and the last step of the sequence. We consider the diagram:

(2)
$$\tilde{h}^{p+q}(X/X^{p-1}) \xrightarrow{(f^p)^*} \tilde{h}^{p+q}(X^p)$$

$$\tilde{h}^{p+q}(X^p/X^{p-1})^*$$

for $\pi^{p,p-1}: X^p \to X^p/X^{p-1}$ the natural projection, $i^{p,p-1}: X^p/X^{p-1} \to X/X^{p-1}$ the natural immersion and $f^p = i^{p,p-1} \circ \pi^{p,p-1}$. The classes in $E_1^{p,q}(X) \simeq \tilde{h}^{p+q}(X^p/X^{p-1})$ surviving until the last step are the ones which belong to the image of $(i^{p,p-1})^*$, i.e. which are restrictions of a class defined on all X/X^{p-1} . For such a class a, if we denote by $\{a\}_{E_\infty^{p,q}}$ its image in the last step $E_\infty^{p,q}(X) \simeq \tilde{h}^{p+q}(X^p)$, we have:

(3)
$$\{a\}_{E^{p,q}_{s,q}} = (\pi^{p,p-1})^*(a) .$$

2.2 - Orientability and Gysin map

Let h^* be a multiplicative cohomology theory [5]. Given a path-wise connected space X, we consider any map $p:\{*\}\to X$: by the path-wise connectedness of X two such maps are homotopic, thus the pull-back $p^*:h^*(X)\to h^*(\{*\})$ is well defined.

DEFINITION 2.1. – For X a path-connected space we call rank of a cohomology class $a \in h^n(X)$ the class $\operatorname{rk}(a) := (p^*)^n(a) \in h^n(\{*\})$ for any map $p : \{*\} \to X$.

Let us consider the unique map $P: X \to \{*\}$.

DEFINITION 2.2. – We call a cohomology class $a \in h^n(X)$ trivial if there exists $\beta \in h^n\{*\}$ such that $a = (P^*)^n(\beta)$. We denote by 1 the class $(P^*)^0(1)$.

It is easy to show that, for X a path-wise connected space, a trivial chomology class $a \in h^n(X)$ is the pull-back of its rank.

Let $\pi: E \to B$ be a fiber bundle with fiber F and E' a sub-bundle of E with fiber $F' \subset F$. We have a natural diagonal map $\Delta_{\pi}: (E, E') \to (B \times E, B \times E')$ given by $\Delta_{\pi}(e) = (\pi(e), e)$ so that we can define the module structure:

$$(4) h^{i}(B) \times h^{j}(E, E') \xrightarrow{\times} h^{i+j}(B \times E, B \times E') \xrightarrow{d_{\pi}^{*}} h^{i+j}(E, E') .$$

The module structure (4) is unitary [5], i.e. $1 \cdot a = a$ for 1 defined by 2.2. More

generally, for a trivial class $t = P^*(\eta)$, with $\eta \in h^*(\{*\})$, one has $t \cdot a = \eta \cdot a$.

We recall that a vector bundle $\pi: E \to B$ be of rank k is called h-orientable if there exists a Thom class $u \in h^k(E, E \setminus E_0)$, for E_0 the zero-section of E [9]. Let (U_a, φ_a) be a contractible local chart for E, with $\varphi_a: \pi^{-1}(U_a) \to U_a \times \mathbb{R}^k$. Let us consider the compactification $\varphi_a^+: \pi^{-1}(U_a)^+ \to (U_a \times \mathbb{R}^k)^+$, restricting, for $x \in U_a$, to $(\varphi_a)_x^+: E_x^+ \to S^k$. Then we can consider the map:

$$\hat{\varphi}_{a,x} := ((\varphi_a)_x^{+-1})^{*k} : \tilde{h}^k(E_x^+) \longrightarrow \tilde{h}^k(S^k) .$$

The proof of the following lemma and theorem can be found in [9], chap. V.

LEMMA 2.1. – Let u be an h-orientation of a rank-n vector bundle $\pi : E \to B$, let (U_a, φ_a) be a contractible local chart for E and let $\hat{\varphi}_{a,x}$ be defined by (5). Then $\hat{\varphi}_{a,x}(u|_{E_+^*})$ is constant in x with value γ^k or $-\gamma^k$.

Theorem 2.2. – If a vector bundle $\pi: E \to B$ of rank k is k-orientable, then given trivializing contractible charts $\{U_a\}_{a\in I}$ it is always possible to choose trivializations $\varphi_a: \pi^{-1}(U_a) \to U_a \times \mathbb{R}^k$ such that $(\varphi_a^+)_x^{*k}(\gamma^k) = u|_{E_x^+}$. In particular, for $x \in U_{a\beta}$ the homeomorphism $(\varphi_\beta \varphi_a^{-1})_x^+: (\mathbb{R}^k)^+ \simeq S^k \longrightarrow (\mathbb{R}^k)^+ \simeq S^k$ satisfies $((\varphi_\beta \varphi_a^{-1})_x^+)^*(\gamma^k) = \gamma^k$.

Therefore, we can give the following definition:

Definition 2.3. – An atlas satisfying the conditions of Theorem 2.2 is called h-oriented atlas.

LEMMA 2.3. – Let $\pi: E \to B$ be an h^* -orientable vector bundle of rank k, for h^* a multiplicative cohomology theory. Then E is orientable also with respect to the singular cohomology with coefficients in $h^0\{*\}$. Therefore, if $\operatorname{char}(h^0\{*\}) > 2$, it is orientable in the usual sense. In particular, an atlas is h-oriented with respect to u or -u if and only if it is oriented.

PROOF. – We call $\{\varphi_{a\beta}\}$ the transition functions, and $\{\varphi_{a\beta}^+\}$ their extension to the compactified fibers. Since $\varphi_{a\beta}^+$ is a homeomorphism, it has degree 1 or -1, and the degree of a map is independent of the cohomology theory [3]. If $\operatorname{char}(h^0\{*\}) > 2$, an atlas is h-oriented, with respect to u or -u, if and only if the degree of each $\varphi_{a\beta}^+$ is 1 and not -1, since $\varphi_{a\beta}^+(\gamma^k) = \gamma^k$ (Theorem 2.2). The degree of $\varphi_{a\beta}^+$ is 1 if and only if the determinant of $\varphi_{a\beta}$ is positive, thus the thesis follows. If $\operatorname{char}(h^0\{*\}) = 2$ the thesis is trivial.

Let X be a compact smooth n-manifold and $Y \subset X$ a compact embedded p-dimensional submanifold, such that the normal bundle $N(Y) = (TX|_Y)/TY$ is h-

orientable. Then, since Y is compact, there exists a tubular neighborhood U of Y in X [3], i.e. there exists a homeomorphism $\varphi_U: U \to N(Y)$. If $i: Y \to X$ is the embedding, from this data we can define the Gysin map:

$$i_!: h^*(Y) \longrightarrow \tilde{h}^{*+n-p}(X).$$

In fact, we first apply the Thom isomorphism ([5] page 7) $T: h^*(Y) \longrightarrow h_{\mathrm{cpt}}^{*+n-p}(N(Y)) = \tilde{h}^{*+n-p}(N(Y)^+)$; then we naturally extend φ_U to $\varphi_U^+: U^+ \to N(Y)^+$ and apply $(\varphi_U^+)^*: h_{\mathrm{cpt}}^*(N(Y)) \to h_{\mathrm{cpt}}^*(U)$; finally, considering the natural map $\psi: X \to U^+$, which sends $X \setminus U$ to the point at infinity, we apply $\psi^*: \tilde{h}^*(U^+) \longrightarrow \tilde{h}^*(X)$. Summarizing:

(6)
$$i_!(a) = \psi^* \circ (\varphi_U^+)^* \circ T(a).$$

REMARK. – One could try to use the immersion $i:U^+\to X^+$ and the retraction $r:X^+\to U^+$ to have a splitting $h(X)=h(U)\oplus h(X,U)=h(Y)\oplus h(X,U)$. But this is false, since the immersion $i:U^+\to X^+$ is not continuous: since X is compact, $\{\infty\}\subset X^+$ is open, but $i^{-1}(\{\infty\})=\{\infty\}$, and $\{\infty\}$ is not open in U^+ since U is non-compact.

3. - Gysin map and Atiyah-Hirzebruch spectral sequence

In this section we follow the same line of [6], generalizing the discussion to any cohomology theory. We call X an orientable compact smooth n-dimensional manifold, and Y a compact embedded p-dimensional submanifold. We choose a finite oriented triangulation of X which restricts to a triangulation of Y [8]. We use the following notation:

- we denote the triangulation of X by $\Delta = \{\Delta_i^m\}$, where m is the dimension of the simplex and i enumerates the m-simplices;
 - we denote by X_{\perp}^p the p-skeleton of X with respect to Δ .

The same notation is used for other triangulations or simplicial decompositions of X and Y. We now need the definition of "dual cell decomposition" with respect to a triangulation: we refer to [7] pp. 53-54. The following theorem coincides with Theorem 5.1 of [6], therefore we remand there for the proof.

Theorem 3.1. — Let X be an n-dimensional compact manifold and $Y \subset X$ a p-dimensional embedded compact submanifold. Let:

- $\Delta = \{\Delta_i^m\}$ be a triangulation of X which restricts to a triangulation $\Delta' = \{\Delta_i^m\}$ of Y;
 - $D = \{D_i^{n-m}\}$ be the dual decomposition of X with respect to Δ ;
 - $\tilde{D} \subset D$ be subset of D made by the duals of the simplices in Δ' .

Then, calling $|\tilde{D}|$ the support of \tilde{D} :

- the interior of $|\tilde{D}|$ is a tubular neighborhood of Y in X;
- the interior of $|\tilde{D}|$ does not intersect X_D^{n-p-1} , i.e.:

$$|\tilde{D}|\cap X_D^{n-p-1}\subset \partial |\tilde{D}|\ .$$

We now consider quintuples $(X,Y,\varDelta,D,\tilde{D})$ satisfying the following condition: (#) X is an n-dimensional compact manifold and $Y \subset X$ a p-dimensional embedded compact submanifold such that N(Y) is h-orientable. Moreover, \varDelta , D and \tilde{D} are defined as in Theorem 3.1.

The following lemma coincides with Lemma 5.2 of [6], where the reader can find the proof.

LEMMA 3.2. – Let $(X,Y,\varDelta,D,\tilde{D})$ be a quintuple satisfying (#), $U=\operatorname{Int}|\tilde{D}|$ and $a\in h^*(Y)$. Then:

- there exists a neighborhood V of $X \setminus U$ such that $i_!(a)|_V = 0$;
- in particular, $i_!(a)|_{X^{n-p-1}_D} = 0.$

3.1 - Trivial classes

We start by considering the case of the unit class $1 \in h^0(Y)$ (see def. 2.2). Before we have assumed X orientable for simplicity. We denote by H the singular cohomology with coefficients in $h^0\{*\}$: then the correct hypothesis is that X must by H-orientable, since we need the Poincaré duality with respect to H. Therefore, the orientability of X is necessary only if $\operatorname{char} h^0\{*\} > 2$. If the normal bundle N_YX of Y in X is h-orientable, as in our hypotheses, then it is also H-orientable, thanks to Lemma 2.3. Actually, it also follows from the following argument. Y is an H-orientable manifold: for $\operatorname{char} h^0\{*\} = 2$ any bundle is orientable (thus also the tangent bundle TY), otherwise, being Y a simplicial complex, in order to be a cycle in $C_p(X,h^0\{*\})$ it must be oriented as a simplicial complex, thus also as a manifold. Since also X is H-orientable, it follows that both $TX|_Y$ and TY are H-orientable, hence also N_YX is. Moreover, the atlas arising in the proof of Theorem 3.1 is naturally H-oriented, as follows from the construction of the dual cell decomposition.

THEOREM 3.3. – Let $(X, Y, \Delta, D, \tilde{D})$ be a quintuple satisfying (#), with X H-orientable, and $\Phi_D^{n-p}: C^{n-p}(X, h^0(\{*\})) \to h^{n-p+q}(X_D^{n-p}, X_D^{n-p-1})$ be the standard canonical isomorphism. Let us define the natural projection and immersion:

$$\pi^{n-p,n-p-1}: X_D^{n-p} \longrightarrow X_D^{n-p}/X_D^{n-p-1} \qquad i^{n-p}: X_D^{n-p} \longrightarrow X$$

and let $PD_{\Delta}(Y)$ be the representative of the Poincaré dual (with respect to H) $PD_X[Y]$ given by the sum of the cells dual to the p-cells of Δ covering Y. Then:

$$(i^{n-p})^*(i_!(1)) = (\pi^{n-p,n-p-1})^*(\Phi_D^{n-p}(PD_{\Delta}(Y)))$$
.

PROOF. — Let U be the tubular neighborhood of Y in X stated in Theorem 3.1. We define the space $(U^+)_D^{n-p}$ obtained considering the interior of the (n-p)-cells intersecting Y transversally and compactifying this space to one point. The interiors of such cells forms exactly the intersection between the (n-p)-skeleton of D and U, i.e. $X_D^{n-p}|_U$, since the only (n-p)-cells intersecting U are the ones intersecting Y, and their interior is complitely contained in U, as stated in Theorem 3.1. If we close this space in X we obtain the closed cells intersecting Y transversally, whose boundary lies entirely in X_D^{n-p-1} . Thus the one-point compatification of the interior is:

$$(U^+)_D^{n-p} = \frac{\overline{X_D^{n-p}}|_U^X}{X_D^{n-p-1}|_{\partial U}}$$

so that there is a natural inclusion $(U^+)_D^{n-p} \subset U^+$ sending the denominator to ∞ (the numerator is exactly $X_{\tilde{D}}^{n-p}$ of Theorem 3.1). We also define:

$$\psi^{n-p} = \psi \mid_{X_D^{n-p}} : X_D^{n-p} \longrightarrow (U^+)_D^{n-p}$$
.

The latter is well-defined since the (n-p)-simplices outside U and all the (n-p-1)-simplices are sent to ∞ by ψ . Calling I the set of indices of the (n-p)-simplices in D, calling S^k the k-dimensional sphere and denoting by $\dot{\cup}$ the one-point union of topological spaces, there are the following canonical homeomorphisms:

$$\zeta_X^{n-p}:\pi^{n-p}(X_D^{n-p})\stackrel{\simeq}{\longrightarrow} \bigcup_{i\in I}S_i^{n-p}$$

$$\zeta_{U^+}^{n-p}: \psi^{n-p}(X_D^{n-p}) \stackrel{\simeq}{\longrightarrow} \bigcup_{i\in I} S_j^{n-p}$$

where $\{S_j^{n-p}\}_{j\in J}$, with $J\subset I$, is the set of (n-p)-spheres corresponding to the (n-p)-simplices with interior contanined in U, i.e. corresponding to $\pi^{n-p}(\overline{X_D^{n-p}}|_U)$. The homeomorphism $\xi_{U^+}^{n-p}$ is due to the fact that the boundary of the (n-p)-cells intersecting U is contained in ∂U , hence it is sent to ∞ by ψ^{n-p} , while all the (n-p)-cells outside U are sent to ∞ : hence, the image of ψ^{n-p} is homeomorphic to $\bigcup_{j\in J} S_j^{n-p}$ sending ∞ to the attachment point. We define:

$$\rho: \bigcup_{i \in I} S_i^{n-p} \longrightarrow \bigcup_{i \in J} S_j^{n-p}$$

as the natural projection, i.e. ρ is the identity of S_j^{n-p} for every $j \in J$ and sends all the spheres in $\{S_i^{n-p}\}_{i \in I \setminus J}$ to the attachment point. We have that:

$$\xi_{U^+}^{n-p}\circ \psi^{n-p}=\rho\circ \xi_X^{n-p}\circ \pi^{n-p,\,n-p-1}$$

hence:

(7)
$$(\psi^{n-p})^* \circ (\xi_{U^+}^{n-p})^* = (\pi^{n-p,n-p-1})^* \circ (\xi_X^{n-p})^* \circ \rho^* .$$

We put N = N(Y) and $\tilde{u}_N = (\varphi_U^+)^*(u_N)$, where u_N is the Thom class of the normal bundle. Since (4) is unitary, from equation (6) we get $i_!(1) = \psi^* \circ (\varphi_U^+)^*(u_N)$. Then:

$$(i^{n-p})^*(i_!(1)) = (i^{n-p})^*\psi^*(\tilde{u}_N) = (\psi^{n-p})^*\big(\tilde{u}_N\bigm|_{(U^+)_n^{n-p}}\big)$$

and

$$(\xi_X^{n-p})^* \circ \rho^* \circ ((\xi_{U^+}^{n-p})^{-1})^* \left(\left. \tilde{u}_{\mathcal{N}} \right|_{(U^+)_D^{n-p}} \right) = \varPhi_D^{n-p}(\mathrm{PD}_{\varDelta}Y)$$

since:

- $PD_{A}(Y)$ is the sum of the (n-p)-cells intersecting U, oriented as the normal bundle;
- hence $((\xi_X^{n-p})^{-1})^* \circ \Phi_D^{n-p}(\operatorname{PD}_A(Y))$ gives a γ^{n-p} factor to each sphere S_j^{n-p} for $j \in J$ and 0 otherwise, orienting the sphere orthogonally to Y;
- but this is exactly $\rho^* \circ ((\xi_{U^+}^{n-p})^{-1})^* (\tilde{u}_N \mid_{(U^+)_D^{n-p}})$ since, by definition of orientability, the restriction of $\tilde{\lambda}_N$ must be $\pm \gamma^n$ for each fiber of N^+ . We must show that the sign ambiguity is fixed: this follows from the fact that the atlas arising from the tubular neighborhood in Theorem 3.1 is H-oriented, as we pointed out at the beginning of this section. For the spheres outside U, that ρ sends to ∞ , we have that:

$$\begin{split} \rho^* \big(\tilde{u}_N \bigm|_{(U^+)_D^{n-p}} \big) \Big|_{\dot{\bigcup}_{i \in I \setminus J} S_i^{n-p}} &= \rho^* \big(\tilde{u}_N \bigm|_{\rho (\dot{\bigcup}_{i \in I \setminus J} S_i^{n-p})} \big) \\ &= \rho^* \big(\tilde{u}_N \bigm|_{\{\infty\}} \big) = \rho^* (0) = 0 \; . \end{split}$$

Hence, from equation (7):

$$\begin{split} i_!(Y \times \mathbb{C}) \left|_{X^{n-p}_D} &= (\psi^{n-p})^* \big(\tilde{u}_N \left|_{(U^+)^{n-p}_D} \right) \right. \\ &= (\pi^{n-p,\,n-p-1})^* \circ (\xi_X^{n-p})^* \circ \rho^* \circ ((\xi_{U^+}^{n-p})^{-1})^* \big(\tilde{u}_N \left|_{(U^+)^{n-p}_D} \right) \\ &= (\pi^{n-p,\,n-p-1})^* \varPhi_D^{n-p}(\mathrm{PD}_{\varDelta} Y) \; . \end{split}$$

Let us now consider any trivial class $P^*\eta \in h^q(Y)$. Since (4) is unitary, we have that $P^*\eta \cdot u_N = \eta \cdot u_N$, hence Theorem 3.3 becomes:

$$(i^{n-p})^*(i_!(P^*\eta)) = (\pi^{n-p,\,n-p-1})^*(\Phi_D^{n-p}(\mathrm{PD}_\Delta(Y\otimes\eta))) \ .$$

In fact, the same proof applies considering that $\eta \cdot u_N$ provides a factor $\eta \cdot \gamma^{n-p}$ instead of γ^{n-p} for each spere of N^+ , with $\eta \in h^q(\{*\}) \simeq \tilde{h}^q(S^q)$.

The following theorem encodes the link between Gysin map and AHSS.

THEOREM 3.4. – Let (X, Y, A, D, D) be a quintuple satisfying (#), with X H-orientable, and $\Phi_D^{n-p}: C^{n-p}(X, h^q(\{*\})) \to h^{n-p+q}(X_D^{n-p}, X_D^{n-p-1})$ be the standard canonical isomorphism. Let us suppose that PD_AY is contained in the kernel of all the boundaries $d_r^{n-p,q}$ for $r \geq 1$. Then it defines a class:

$$\{\varPhi_D^{n-p}(\operatorname{PD}_{\Delta}(Y\otimes \eta))\}_{E_{\infty}^{n-p,q}}\in E_{\infty}^{n-p,q}\simeq \frac{\operatorname{Ker}(h^{n-p+q}(X)\longrightarrow h^{n-p+q}(X^{n-p-1}))}{\operatorname{Ker}(h^{n-p+q}(X)\longrightarrow h^{n-p+q}(X^{n-p}))}\ .$$

The following equality holds:

$$\{\Phi_D^{n-p}(\operatorname{PD}_{\Delta}(Y\otimes\eta))\}_{E_{\infty}^{n-p,q}}=[i_!(P^*\eta)].$$

PROOF. – Considering the diagram:

(8)
$$E_{\infty}^{n-p,q} = \operatorname{Im}\left(\tilde{h}^{n-p+q}(X/X_D^{n-p-1}) \xrightarrow{(f^{n-p})^*} \tilde{h}^{n-p+q}(X_D^{n-p})\right)$$

$$\tilde{h}^{n-p+q}(X)$$

given a representative $a \in \operatorname{Im}(\pi_{n-r-1})^* = \operatorname{Ker}(h^{n-p+q}(X) \longrightarrow h^{n-p+q}(X_D^{n-p-1}))$, we have that $\{a\}_{E_{\infty}^{n-p,q}} = (i^{n-p})^*(a) = a\mid_{X_D^{n-p}}$. Moreover, we consider the diagram:

(9)
$$E_{\infty}^{n-p,q} = \operatorname{Im}\left(\tilde{h}^{n-p+q}(X/X_{D}^{n-p-1}) \xrightarrow{(f^{n-p})^{*}} \tilde{h}^{n-p+q}(X_{D}^{n-p})\right)$$

$$\tilde{h}^{n-p+q}(X_{D}^{n-p}/X_{D}^{n-p-1})^{*}$$

where $i^{n-p,\,n-p-1}:X_D^{n-p}/X_D^{n-p-1}\to X/X^{n-p-1}$ is the natural immersion. We have that:

- by formula (3) the class $\{\Phi_D^{n-p}(\operatorname{PD}_{\mathcal{A}}(Y\otimes\eta))\}_{E_{\infty}^{n-p,q}}$ is given in diagram 9 by $(\pi^{n-p,n-p-1})^*(\Phi_D^{n-p}(\operatorname{PD}_{\mathcal{A}}(Y\otimes\eta)));$
- by Lemma 3.2 we have $i_!(1) \in \operatorname{Ker}(h^{n-p+q}(X) \to h^{n-p+q}(X_D^{n-p-1}))$, hence the class $[i_!(P^*\eta)]$ is well-defined in $E^{n-p,q}_\infty$, and, by exactness, $i_!(P^*\eta) \in \operatorname{Im}(\pi^{n-p-1})^*$;
 - by Theorem 3.3 we have $(i^{n-p})^*(i_!(P^*\eta)) = (\pi^{n-p,\,n-p-1})^*(\varPhi_D^{n-p}(\mathrm{PD}_{\Delta}(Y\otimes\eta)));$
 - hence $\{\Phi_D^{n-p}(\operatorname{PD}_{\mathcal{A}}(Y\otimes\eta))\}_{E_{\infty}^{n-p,q}}=[i_!(P^*\eta)].$

COROLLARY 3.5. – Assuming the same data of the previous theorem, the fact that Y has orientable normal bundle with respect to h^* is a sufficient condition for $PD_A(Y)$ to survive until the last step of the spectral sequence. Thus, the Poincaré dual of any homology class $[Y] \in H_p(X, h^q\{*\})$ having a smooth representative with h-orientable normal bundle survives until the last step.

PROOF. – We put together the diagrams (8) and (9):

(10)
$$\tilde{h}^{n-p}(X/X_D^{n-p-1}) \xrightarrow{(\pi^{n-p-1})^*} \tilde{h}^{n-p}(X) \\
\stackrel{(i^{n-p,n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p}/X_D^{n-p-1})}{\overset{(\pi^{n-p,n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p-1})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p})^*}{\underset{\tilde{h}^{n-p}(X_D^{n-p})}{\overset{(\pi^{n-p})^*}}}}}}}}} \tilde{h}^{n-p}(X_D^{n-p})}$$

and the diagram commutes being $\pi^{n-p,n-p-1} \circ i^{n-p,n-p-1} = i^{n-p} \circ \pi^{n-p-1}$. Under the hypotheses stated, we have that $i_!(1) \in \operatorname{Im}(\pi^{n-p-1})^*$, so that $i_!(1) = (\pi^{n-p-1})^*(a)$. Then $(i^{n-p})^*(a) \in A^{n-p,0}$, so that it survives until the last step giving a class $(i^{n-p})^*(\pi^{n-p})^*(a)$ in the last step.

One could inquire if the condition of having h-orientable normal bundle is homology invariant. This is not true: let us consider the example of K-theory, for which a bundle is orientable if and only if it is a spin^c bundle. In [2] the authors show that in general, for a manifold X, there exist homologous submanifolds Y and Y', such that the normal bundle of Y is spin^c, while the normal bundle of Y' is not. Since the second step of the Atiyah-Hirzebruch spectral sequence coincides with the cohomology of X, this means that both $PD_{A}Y$ and $PD_{A'}Y'$ (for suitable A and A') survive until the last step, even if the normal bundle of Y' is not orientable. Then, it is natural to inquire if it is true that a cohomology class survives until the last step if and only if it admits smooth representatives with orientable normal bundle, but we do not know the answer.

3.2 - Generic cohomology class

If we consider a generic class a over Y of rank $\operatorname{rk}(a)$, we can prove that $i_!(E)$ and $i_!(P^*\operatorname{rk}(a))$ have the same restriction to X_D^{n-p} : in fact, the Thom isomorphism gives $T(a) = a \cdot u_N$ and, if we restrict $a \cdot u_N$ to a *finite* family of fibers, which are transversal to Y, the contribution of a becomes trivial, so it has the same effect of the trivial class $P^*\operatorname{rk}(a)$. We now prove this.

LEMMA 3.6. – Let $(X,Y,\varDelta,D,\tilde{D})$ be a quintuple satisfying (#) and $a\in h^*(Y)$ a class of rank rk(a). Then:

$$(i^{n-p})^*(i!a) = (i^{n-p})^*(i!(P^*\operatorname{rk} a)).$$

PROOF. – Since X_D^{n-p} intersects the tubular neighborhood in a finite number of cells corresponding under φ_U^+ to a finite number of fibers of the normal bundle N attached to one point, it is sufficient to prove that, for any $y \in Y$, $(a \cdot u_N)|_{N_y^+} = P^* \operatorname{rk}(a) \cdot u_N|_{N_y^+}$. Let us consider the following diagram

for $y \in B$:

$$\begin{split} h^i(Y) \times h^n(N_y, N_y') & \stackrel{\times}{\longrightarrow} h^{i+n}(Y \times N, Y \times N') \\ & \downarrow^{(i^*)^i \times (i^*)^n} \downarrow & \downarrow^{(i \times i)^* i + n} \\ h^i\{y\} \times h^n(N_y, N_y') & \stackrel{\times}{\longrightarrow} h^{i+n}(\{y\} \times N_y, \{*\} \times N_y') \;. \end{split}$$

The diagram commutes by naturality of the product, thus $(a \cdot u_N)|_{N_y^+} = a|_{\{y\}} \cdot u_N|_{N_y^+}$. Thus, we just have to prove that $a|_{\{y\}} = (P^*\operatorname{rk}(a))|_{\{y\}}$, i.e. that $i^*a = i^*P^*p^*a = (p \circ P \circ i)^*a$. This immediately follows from the fact that $p \circ P \circ i = i$.

REFERENCES

- M. ATIYAH F. HIRZEBRUCH, Vector Bundles and Homogeneous Spaces, Michael Atiyah: Collected works, v. 2.
- [2] C. Bohr B. Hanke D. Kotschick, Cycles, submanifolds and structures on normal bundles, Manuscripta Math., 108 (2002), 483-494.
- [3] G. E. Bredon, Topology and geometry, Springer-Verlag, 1993.
- [4] H. CARTAN S. EILENBERG, Homological algebra, Princeton University Press, 1956.
- [5] A. Dold, Relations between ordinary and extraordinary homology, Colloquium on Algebraic Topology, Institute of Mathematics Aarhus University (1962), 2-9.
- [6] F. FERRARI RUFFINO R. SAVELLI, Comparing two approaches to the K-theory classification of D-branes, Journal of Geometry and Physics, 61 (2011), 191-212.
- [7] P. Griffiths J. Harris, Principles of algebraic geometry, John Wiley Sons, 1978.
- [8] J. R. Munkres, Elementary Differential Topology, Princeton University Press, 1968.
- [9] Y. B. RUDYAK, On Thom spectra, orientability and cobordism, Springer monographs in mathematics.

International School for Advanced Studies (SISSA/ISAS)
Via Bonomea 265, 34136 Trieste
E-mail: ferrariruffino@gmail.com

Received November 3, 2010 and in revised form February 7, 2011