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Gysin Map and Atiyah-Hirzebruch Spectral Sequence

FABI1I0 FERRARI RUFFINO

Abstract. — We discuss the relations between the Atiyah-Hirzebruch spectral sequence
and the Gysin map for a multiplicative cohomology theory, on spaces having the
homotopy type of a finite CW-complex. In particular, let us fix such a multi-
plicative cohomology theory h* and let us consider a smooth manifold X of di-
mension n and a compact submanifold Y of dimension p, satisfying suitable
hypotheses about orientability. We prove that, starting the Atiyah-Hirzebruch
spectral sequence with the Poincaré dual of Y in X, which, in our setting, is a
simplicial cohomology class with coefficients in h°{*}, if such o class survives
until the last step, it is represented in E*70 by the image via the Gysin map of
the unit cohomology class of Y. We then prove the analogous statement for a
generic cohomology class on Y.

1. — Introduction

Given a multiplicative cohomology theory, under suitable hypotheses we can
define the Gysin map, which is a natural pushfoward in cohomology. Moreover,
for a finite CW-complex or any space homotopically equivalent to it, we can
construct the Atiyah-Hirzebruch spectral sequence, which relates the cellular
cohomology with the fixed cohomology theory. In particular, the groups of the
starting step of the spectral sequence E7"?(X) are canonically isomorphic to the
groups of cellular cochains CP(X, hi{x}), for {x} a fixed space with one point.
Since the first coboundary d)"? coincides with the cellular coboundary, the
groups E5?(X) are canonically isomorphic to the cellular cohomology groups
HP(X,h1{«}). The sequence stabilizes to E2.9(X) and, denoting by X? the p-
skeleton of X, there is a canonical isomorphism:

Ker(WP (X)) —s hPH9(XP~1))
Ker(h#+4(X) —s hpta(XP))

(1) EP9(X) ~

i.e. EP:9 can be described as the group of (p + ¢)-classes on X which are 0 when
pulled back to XP~1, up to classes which are 0 when pulled back to X?. Let us now
consider an n-dimensional smooth manifold X and a compact p-dimensional
submanifold Y. For ¢ : Y — X the embedding, we can define the Gysin map:

i (YY) — BT P(X)
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which in particular gives a map 7, : B%(Y) — ﬁ""p(X). We assume that we have
an oriented triangulation of X restricting to a triangulation of Y (this is
always possible for X orientable [8]): we require that Y is a cycle in
Cp(X,h%{x}), identifying each simplex ¢ of the triangulation with ¢ ®, 1, for
1 € h%{x}. Then, for n € h°{x} and P:Y — {x}, we prove that ,(P*n) re-
presents an element of Ker(h?*4(X) — hP*9(XP~1)) (the latter being the nu-
merator of (1)) and, if the Poincaré dual PDx[Y ® #] € H" P(X, ho{*}) sur-
vives until the last step, its class in 70 is represented exactly by 4(P*#).
More generally, without assuming ¢ = 0, if Y ® a is a cycle in C,(X, h?{«}) for
a € hi{x}, and if PDx[Y ® a] € H" (X, h?{«}) survives until £” 79, then its
class in (1) is represented by 7,(P*a). All the classes on Y considered in these
examples are pull-back of classes in ~*{x}: we will see that all the other
classes give no more information.

The study of the relations between Gysin map and Atiyah-Hirzebruch
spectral sequence was treated in [6] for K-theory, arising from the physical
problem of relating two different classifications of D-brane charges in string
theory. In this article we generalize the statement to any multiplicative co-
homology theory.

2. — Spectral sequences and orientability

2.1 — Atiyah-Hirzebruch spectral sequence

We deal with spectral sequences in the axiomatic version described in [4],
chap. XV, par. 7, with the additional hypothesis of working with finite se-
quences of groups. We also take into account the presence of the grading in
cohomology. For a finite simplicial complex X we consider the natural fil-
tration:

=X'cX'c...cx"=X

where X' is the i-th skeleton of X. The groups and maps of the Atiyah-
Hirzebruch spectral sequence of X, associated to a cohomology theory i, are
defined as follows (for the groups H*(p, p’) and the map J° we use the notation of
[4], the map that we called y* has no name in [4]):

o H'(p,p) = "XV 1, XP~1) for p < p';

o y": H"(p+a,p +b) — H"(p,p’) is induced in cohomology by the map of
couples 7 : (XP'~1, XP-1) — (XP'+b-1 xpta-ly,

o &' :H"(p,p)) — H" '\ (p/,p") is the composition of the map
n* o R(XP 1 XP1) — p(XP'1) induced by the map of couples 7 : (X1, 0) —
(XP'-1, XP=1), and the Bockstein map " : K*(X?' ~1)—p"1(XP" -1 XP' 1),
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We briefly show how to link the first and the last step of the sequence. We
consider the diagram:

L_n+q(X/Xp—1 ) " ﬂj;-.’—q(}{'p)

;i_p—‘.—q (‘X’p//\’p— 1 )

for nPP~1:XP — XP/XP~1 the natural projection, i#P~!:XP/XP~1 — X /XP~1
the natural immersion and f? =P lonP?~1. The classes in EP7(X)~
hrra(xe /XP~1) surviving until the last step are the ones which belong to the
image of (i??~1)*, i.e. which are restrictions of a class defined on all X /prl. For
such a class a, if we denote by {a}g. its image in the last step
EP1(X) ~ hP+4(XP), we have: &

3) {a}grs = @P (@) .

2.2 — Orientability and Gysin map

Let 1* be a multiplicative cohomology theory [5]. Given a path-wise connected
space X, we consider any map p : {*} — X: by the path-wise connectedness of X
two such maps are homotopic, thus the pull-back p* : h*(X) — h*({x}) is well
defined.

DEFINITION 2.1. — For X a path-connected space we call rank of a cohomology
class a € h"(X) the class rk(a) := (p*)“(a) € K"({x}) for any map p : {x} — X.

Let us consider the unique map P : X — {x}.

DEFINITION 2.2. — We call a cohomology class a € K"(X) trivial if there exists
B € '{x} such that a = (P*)"(B). We denote by 1 the class PH°).

It is easy to show that, for X a path-wise connected space, a trivial chomology
class a € h"(X) is the pull-back of its rank.

Let 7 : E — B be a fiber bundle with fiber F' and £’ a sub-bundle of £ with
fiber F' C F. We have a natural diagonal map 4, : (K, E') — (B x E,B x E') gi-
ven by 4,(e) = (n(e), e) so that we can define the module structure:

4) W(B) x W(E,E') =5 "B x E,B x E') ~= hi*(E.E') .
The module structure (4) is unitary [5], i.e. 1 - a = a for 1 defined by 2.2. More
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generally, for a trivial class ¢t = P*(y), with € h*({}), one has t-a =7 - a.

We recall that a vector bundle 7 : £ — B be of rank k is called &-orientable if
there exists a Thom class u € k*(E, E \ Ey), for E, the zero-section of E [9]. Let
(U,,9,) be a contractible local chart for E, with ¢, : 7 2(U,) — U, x R*. Let us
consider the compactification ¢, : 7 2(U,)* — (U, x R¥)", restricting, for 2 € U,
to (p,); : EX — S*. Then we can consider the map:

(5) Do = (0 )F " REED—RF(S") .

The proof of the following lemma and theorem can be found in [9], chap. V.

LEMMA 2.1. — Let u be an h-orientation of a rank-n vector bundle n : E — B,
let (Uy, 9,) be a contractible local chart for E and let ¢, . be defined by (5). Then
(a0l ) is constant in x with value y* or —y*.

THEOREM 2.2. — If a vector bundle = : E — B of rank k is h-orientable, then
gwen trivializing contractible charts {U,},o; 1t is always possible to choose
trivializations ¢, : n~X(Us) — Uq x R" such that (p7);" (") = ulg.. In parti-
cular, for x € U,y the homeomorphism (ppp,h), : (REY* ~ SF—(RFy* ~ SF sa-
tisfies (ppp, )3)" (GF) = o~

Therefore, we can give the following definition:

DEFINITION 2.3. — An atlas satisfying the conditions of Theorem 2.2 is called
h-oriented atlas.

LEMMA 2.3. — Let n : E — B be an h*-orientable vector bundle of rank k, for h*
a multiplicative cohomology theory. Then E is orientable also with respect to the
singular cohomology with coefficients in h°{*}. Therefore, if char(h’{x}) > 2, it is
orientable in the usual sense. In particular, an atlas is h-oriented with respect to u
or —u if and only if it is oriented.

ProoF. — We call {¢,;} the transition functions, and {¢,,} their extension to
the compactified fibers. Since (p;ﬂ is a homeomorphism, it has degree 1 or —1, and
the degree of a map is independent of the cohomology theory [3]. If
char(h’{x}) > 2, an atlas is h-oriented, with respect to u or —u, if and only if the
degree of each (/)(fﬂ is 1 and not —1, since (pjﬂ(yk) = y* (Theorem 2.2). The degree of
(p;r/), is 1 if and only if the determinant of ¢, is positive, thus the thesis follows. If
char(h’{x}) = 2 the thesis is trivial. O

Let X be a compact smooth n-manifold and Y C X a compact embedded p-
dimensional submanifold, such that the normal bundle N(Y) = (TX |y)/ TY is k-
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orientable. Then, since Y is compact, there exists a tubular neighborhood U of Y
in X [3], i.e. there exists a homeomorphism ¢;; : U — N(Y). If i : Y — X is the
embedding, from this data we can define the Gysin map:

i (YY) — P (X)),

In fact, we firs~t apply the Thom isomorphism ([5] page 7) T:h*(Y)—
h:;rtnf” (N(Y)) = k**"P(N(Y)"); then we naturally extend ¢, to ¢f;: UT —
N(Y)* and apply (go[*])* : h(’;pt(N ) — tht(U); finally, considering the natural
map y:X — U, which sends X\ U to the point at infinity, we apply

W (UY) — b (X). Summarizing:
(6) i(a@) =y o (p;) o T(a).

REMARK. — One could try to use the immersion ¢: Ut — X' and the
retraction r: X — U™" to have a splitting 2(X) = (U)X, U) =)D
X, U). But this is false, since the immersion ¢ : Ut — X is not continuous:
since X is compact, {oo} C X+ is open, but i~1({oo}) = {oc0}, and {oo} is not
open in U™ since U is non-compact.

3. — Gysin map and Atiyah-Hirzebruch spectral sequence

In this section we follow the same line of [6], generalizing the discussion to
any cohomology theory. We call X an orientable compact smooth n-dimensional
manifold, and Y a compact embedded p-dimensional submanifold. We choose a
finite oriented triangulation of X which restricts to a triangulation of Y [8]. We
use the following notation:

e we denote the triangulation of X by 4 = {4;"}, where m is the dimension of
the simplex and ¢ enumerates the m-simplices;
e we denote by X% the p-skeleton of X with respect to 4.

The same notation is used for other triangulations or simplicial decomposi-
tions of X and Y. We now need the definition of “dual cell decomposition” with
respect to a triangulation: we refer to [7] pp. 53-54. The following theorem co-
incides with Theorem 5.1 of [6], therefore we remand there for the proof.

THEOREM 3.1. — Let X be an n-dimensional compact manifold and Y C X a
p-dimensional embedded compact submanaifold. Let:

o A={A"} be a triangulation of X which restricts to a triangulation
A ={47} of Y;

o D= {D!™} be the dual decomposition of X with respect to 4;

e D C D be subset of D made by the duals of the simplices in A.
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Then, calling \D| the support of D:

e the interior of |@| 1s a tubular neighborhood of Y in X;
o the interior of |D| does not intersect Xy, 'Y, i.e.:

ID|NnX; P c oDl .

We now consider quintuples (X, Y, 4, D, D) satisfying the following condition:

(#) X is an m-dimensional compact manifold and ¥ € X a p-dimensional
embedded compact submanifold such that N(Y) is h-orientable. Moreover, 4, D
and D are defined as in Theorem 3.1.

The following lemma coincides with Lemma 5.2 of [6], where the reader can
find the proof.

LEMMA 3.2. — Let (X,Y, 4,D,D) be a quintuple satisfying (#), U = Int|D|
and a € h*(Y). Then:

o there exists a neighborhood V of X \ U such that i(a)|y = 0;
e in particular, i(a)| xr1 = 0.
D

3.1 — Trivial classes

We start by considering the case of the unit class 1 € 2%(Y) (see def. 2.2). Before
we have assumed X orientable for simplicity. We denote by H the singular coho-
mology with coefficeints in #°{*}: then the correct hypothesis is that X must by H-
orientable, since we need the Poincaré duality with respect to H. Therefore, the
orientability of X is necessary only if char 1°{*} > 2. If the normal bundle Ny X of Y
in X is h-orientable, as in our hypotheses, then it is also H-orientable, thanks to
Lemma 2.3. Actually, it also follows from the following argument. Y is an H-or-
ientable manifold: for char 2°{+} = 2 any bundle is orientable (thus also the tangent
bundle 77), otherwise, being Y a simplicial complex, in order to be a cycle in
C,(X, h°{x}) it must be oriented as a simplicial complex, thus also as a manifold.
Since also X is H-orientable, it follows that both 7X|, and TY are H-orientable,
hence also NyX is. Moreover, the atlas arising in the proof of Theorem 3.1 is natu-
rally H-oriented, as follows from the construction of the dual cell decomposition.

THEOREM 3.3. — Let (X,Y, A,D7D) be a quintuple satisfying (#), with X H-
orientable, and @5 " : C"P(X,hO({x})) — h" PHXy P X1 7P 1Y be the standard
canonical isomorphism. Let us define the natural projection and immersion:

P X X P X "Xy P —X
and let PD4(Y) be the representative of the Poincaré dual (with respect to H)
PDx[Y] given by the sum of the cells dual to the p-cells of A covering Y. Then:

@) (1) = (@227 (@ PPDAY))
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Proor. — Let U be the tubular neighborhood of Y in X stated in Theorem 3.1.
We define the space (U™)}, ” obtained considering the interior of the (n — p)-cells
intersecting Y transversally and compactifying this space to one point. The in-
teriors of such cells forms exactly the intersection between the (n — p)-skeleton of
D and U, i.e. ngp |7, since the only (n — p)-cells intersecting U are the ones
intersecting Y, and their interior is complitely contained in U, as stated in
Theorem 3.1. If we close this space in X we obtain the closed cells intersecting ¥
transversally, whose boundary lies entirely in X, ” 1. Thus the one-point com-
patification of the interior is:

=X
=P
(U+)’Il*p _ X?D |U
D X'n,—p—l
D |[)U

so that there is a natural inclusion (U *)g” C U™ sending the denominator to oo
(the numerator is exactly ngp of Theorem 3.1). We also define:

Yy =y |X};"’ . X}”)—P_)(U+)g—p )

The latter is well-defined since the (n — p)-simplices outside U and all the
(n — p — 1)-simplices are sent to co by w. Calling I the set of indices of the
(n — p)-simplices in D, calling S* the k-dimensional sphere and denoting by U the
one-point union of topological spaces, there are the following canonical home-
omorphisms:

SR Ias cup =N N
el
P BT =, U S]’.HO
jed
where {S7"},.;, with J C 1, is the set of (n — p)-spheres corresponding to
the (n — p)-simplices with interior contanined in U, i.e. corresponding to
7" ?(X5, " |, ). The homeomorphism &/-* is due to the fact that the boundary of

the (n — p)-cells intersecting U is contained in OU, hence it is sent to oo by "7,
while all the (n — p)-cells outside U are sent to co: hence, the image of y" P is

homeomorphic to U S;.H’ sending oo to the attachment point. We define:
jed . .
p: U S?fp—>U S}pr
i€l jed
as the natural projection, i.e. pis the identity of S;l*p for everyj € J and sends all
the spheres in {S}"" },.;, ; to the attachment point. We have that:

n—p n—p __ n—p n—p,n—p—1
Sy oy P=polyMon" PP
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hence:
(7) WY o (D) = (PP o (EY TP o pt

Weput N = N)and uy = (go{,)*(uN), where uy is the Thom class of the normal
bundle. Since (4) is unitary, from equation (6) we get ,(1) = y* o (¢l+])*(uN). Then:

@) @) = @)y ) = " (| )
and

&) 0" o (&)™ (e [y ) = @y PPD4Y)

since:

e PD/(Y) is the sum of the (n — p)-cells intersecting U, oriented as the
normal bundle;

e hence ((&y ¥ o &y, P(PD4(Y)) gives a y" P factor to each sphere S]’-%p for
j € J and 0 otherwise, orienting the sphere orthogonally to Y;

e but this is exactly p* o ((57;]:7“ I Gy |<U+)7;),,,) since, by definition of orient-
ability, the restriction of 2y must be & " for each fiber of N*. We must show that
the sign ambiguity is fixed: this follows from the fact that the atlas arising from
the tubular neighborhood in Theorem 3.1 is H-oriented, as we pointed out at the
beginning of this section. For the spheres outside U, that p sends to oo, we have
that:

P (@N ‘(Uﬂ’;ﬂ)

i

Uigm s =y (@N ‘/](UH\J S:f’p)>
= (| 1)) =P (0 =0.
Hence, from equation (7):

/L‘(Y X <Cj) ’ngﬁ = (l//nip)* (7:”\7 ‘(U+)7)*P)
= @ oG o o (Y (i |y )

= (g PPy B P(PD,Y) .
O

Let us now consider any trivial class P*5 € hi(Y). Since (4) is unitary, we have
that P*n - uy = - uy, hence Theorem 3.3 becomes:

@ PY @GP ) = (PP (@ PPD LY @ )

In fact, the same proof applies considering that 7 - uy provides a factor - y"~?
instead of y" P for each spere of N*, with n € h9({x}) ~ h9(S9).
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The following theorem encodes the link between Gysin map and AHSS.

THEOREM 3.4. — Let (X, Y, 4,D, D) be a quintuple satisfying (#), with X H-
orientable, and @y, " : C"P(X, hI({x})) — h" PTUX; P X;P 1Y be the standard
canonical isomorphism. Let us suppose that PD Y is contained in the kernel of
all the boundaries d, "7 for v > 1. Then it defines a class:

Ker(h"P+4(X)—hm—PHa(X"—P-1))
Ker(l—#+4(X)—hr—r+a(X"—7))

(@ PPDAY @ n)}grva € BLP
The following equality holds:

(@ PDAY @ 1)} v = [P )]

Proor. — Considering the diagram:

(frn—p)*

E:cfp,q i Inl(fi}nprrq(Ar/)(B. P .])

t) e

(m

: j}w —ptq (A’E} I’})

— (inr)®
j}n—p+q(X)

given a representative a € Im (m,,_,_1)" = Ker(h" PT4(X)— " PH(X, " 1), we
have that {a} g = @) (a) = a| X1 Moreover, we consider the diagram:
Ef Pl = Irtl(ff“""”(.\_;’f,\'?)_p“] ) - 2 - fa“'f”'”{«\';l)_p))

9) — g

(in—p: n—p T

——
- ___..--T'.—.ﬁ" pon—p—1lys

1. 4 r r 1
h” P q(‘\ ;fJ Pllf."\;!) P )

where i"-Pn=p=1; X7P /x7 P71, X /X701 s the natural immersion. We have
that:
e by formula (3) the class {@}, "(PDY ® »))} v is given in diagram 9 by
(=P (@ PPDAY @ ) ‘
e by Lemma 3.2 we have i,(1) € Ker(h" PT9(X) — b"PH(X, " ~1), hence the
class [2/(P*n)] is well-defined in £7. -9, and, by exactness, 1/(P*y) € Im (z"P-1y*;
e by Theorem 3.3 we have (" P)*(i,(P*y)) = (n”_p""_p_l)*(¢zfp(PDA(Y Qn));
e hence {&5 P(PDAY @ )} o no = [P )], 0

COROLLARY 3.5. — Assuming the same data of the previous theorem, the fact
that Y has orientable normal bundle with respect to h* is a sufficient condition
for PD4(Y) to survive until the last step of the spectral sequence. Thus, the
Poincaré dual of any homology class [Y'] e H,(X,hi{x}) having a smooth
representative with h-orientable normal bundle survives until the last step.
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Proor. — We put together the diagrams (8) and (9):
hrr (/X ) —— T fer(x)
(10) (j"—l’-’l—p—l}‘ H‘“‘-h,_[_{:::i

—
n—p,n—p—1 }'“.““ﬂ-su o

e (X5T)

(in—p)*

(mw

RP(Xp /X5 )

and the diagram commutes being 7" P:"P~1 o Pn—pP-l = n=p o gt-P-1,
Under the hypotheses stated, we have that (1) € Im(z" P 1)", so that
1(1) = (@ P~1)"(a). Then (" P)*(a) € A" -0, so that it survives until the last step
giving a class (" P)* (7" P)"(a) in the last step. O

One could inquire if the condition of having /i-orientable normal bundle is
homology invariant. This is not true: let us consider the example of K-theory, for
which a bundle is orientable if and only if it is a spin® bundle. In [2] the authors
show that in general, for a manifold X, there exist homologous submanifolds ¥
and Y, such that the normal bundle of Y is spin‘, while the normal bundle of Y’ is
not. Since the second step of the Atiyah-Hirzebruch spectral sequence coincides
with the cohomology of X, this means that both PD,Y and PD , Y’ (for suitable 4
and A') survive until the last step, even if the normal bundle of Y’ is not or-
ientable. Then, it is natural to inquire if it is true that a cohomology class survives
until the last step if and only if it admits smooth representatives with orientable
normal bundle, but we do not know the answer.

3.2 — Generic cohomology class

If we consider a generic class a over Y of rank rk(a), we can prove that #,(¥)
and 4,(P*rk(a)) have the same restriction to X}, ”: in fact, the Thom isomorphism
gives T'(a) = a - uy and, if we restrict a - uy to a finite family of fibers, which are
transversal to Y, the contribution of a becomes trivial, so it has the same effect of
the trivial class P*rk(a). We now prove this.

LEMMA 3.6. — Let (X,Y,4,D,D) be a quintuple satisfying (#) and a € h*(Y)
a class of rank rk(a). Then:

@ PY (ha) = (") ((Prk a)) .

PrOOF. — Since X;, ¥ intersects the tubular neighborhood in a finite
number of cells corresponding under ¢, to a finite number of fibers of the
normal bundle N attached to one point, it is sufficient to prove that, for any
yeY, (a-uy) ‘N; = P*rk(a) - uyn |N;. Let us consider the following diagram
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for y € B:

R(Y) x k™(Ny, N) — R (Y x N,Y x N')
(r"]*'x(r")"l l(i,ﬂ-).pﬂ.
hi{y} x h"(Ny,N;}L}h"‘*"({y} X Ny, {*} x N;) )

The diagram commutes by naturality of the product, thus (a-uy) \N; =
a|{y} -uN\N;. Thus, we just have to prove that a|{y} = (P*rk(a)) |{y}, i.e. that
i*a = *P*p*a = (po Poi)’a. This immediately follows from the fact that

poPoi=1. O
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