BOLLETTINO UNIONE MATEMATICA ITALIANA

FRANCESCA DE MARCHIS

Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces

Bollettino dell'Unione Matematica Italiana, Serie 9, Vol. 4 (2011), n.2, p. 245–257.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2011_9_4_2_245_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces

FRANCESCA DE MARCHIS

Abstract. – We consider a scalar field equation on compact surfaces which has variational structure. When the surface is a torus and a physical parameter ρ belongs to $(8\pi, 4\pi^2)$ we show under some extra assumptions that, as conjectured in [9], the functional admits at least three saddle points other than a local minimum.

1. - Introduction

Let (Σ, g) be a compact Riemann surface (without boundary and with unitary volume), $h \in C^2(\Sigma)$ be a positive function and ρ a positive real parameter. We consider the equation

$$(*) -\triangle_g u + \rho = \rho \frac{h(x)e^u}{\int\limits_{\Sigma} h(x)e^u dV_g} x \in \Sigma, \ u \in H^1_g(\Sigma),$$

where \triangle_q is the Laplace-Beltrami operator on Σ .

When (Σ,g) is a flat torus equation (*) is related to the study of some Chern–Simons–Higgs models; indeed via its solutions it is possible to describe the asymptotic behavior of a class of condensates (or multivortex) solutions which are relevant in theoretical physics and which were absent in the classical (Maxwell-Higgs) vortex theory (see [24], [27], [28] and references therein). This PDE arises also in conformal geometry; when (Σ,g) is the standard sphere and $\rho=8\pi$, the geometric meaning of this problem is that from a solution u we can obtain a new conformal metric e^ug which has curvature $\frac{\rho}{2}h$; the latter is known as the Kazdan-Warner problem, or as the Nirenberg problem, and has been studied for example in [3], [4] and [17]. Moreover this problem arises in statistical mechanics. Indeed, when formulated on bounded domains of \mathbb{R}^2 with Dirichlet boundary conditions, equation (*) was considered in [1] and [16] as the mean field limit as point vortices for the two–dimensional Euler equation.

Problem (*) has a variational structure and solutions can be found as critical points of the functional

$$(1.1) \quad I_{\rho}(u) = \frac{1}{2} \int_{\Sigma} |\nabla_g u|^2 dV_g + \rho \int_{\Sigma} u \, dV_g - \rho \log \int_{\Sigma} h(x) e^u dV_g \qquad u \in H_g^1(\Sigma).$$

Since equation (*) is invariant when adding constants to u, we can restrict ourselves to the subspace of the functions with zero average

$$ar{H}_g^1(\Sigma) := \left\{ u \in H_g^1(\Sigma) : \int\limits_{\Sigma} u \, dV_g = 0
ight\}.$$

By virtue of the Moser-Trudinger inequality (see Lemma 2.2) one can easily prove the compactness and the coercivity of I_{ρ} when $\rho < 8\pi$ and thus one can find solutions of (*) by minimization.

If $\rho=8\pi$ the situation is more delicate since I_{ρ} still has a lower bound but it is not coercive anymore; in general when ρ is an integer multiple of 8π , the existence problem of (*) is much harder (a far from complete list of references on the subject includes works by Chang and Yang [4], Chang, Gursky and Yang [3], Chen and Li [5], Nolasco and Tarantello [24], Ding, Jost, Li and Wang [12] and Lucia [21]).

For $\rho > 8\pi$, as the functional I_{ρ} is unbounded from below and from above, solutions have to be found as saddle points.

In [11] Ding, Jost, Li and Wang proved that, assuming $\rho \in (8\pi, 16\pi)$ and assuming that the genus of the surface is greater or equal than 1, there exists a solution to (*). In [19] Yan Yan Li initiated a program to find solutions for $\rho > 8\pi$ by using the topological degree theory. He proved an uniform bound for solutions to equation (*) whenever ρ is contained in a compact set of $(8k\pi, 8(k+1)\pi)$, where $k \geq 0$ is an integer. Therefore, the Leray–Schauder degree for (*) remains the same when ρ is in the interval $(8k\pi, 8(k+1)\pi)$. Few years ago this program was completed by Chen and Lin in [7] using a finite-dimensional reduction to compute the jump values. The authors obtained a complete degree-counting formula, extending the results in [20], where the case $\Sigma = S^2$ and k = 1 was studied. Finally, when $\rho \notin 8\mathbb{N}\pi$, Djadli [13] generalized these previous results establishing the existence of a solution for any (Σ, g) ; to do that he deeply investigated the topology of low sublevels of I_{ρ} in order to perform a min-max scheme (already introduced in Djadli and Malchiodi [14]).

Not much is known about multiplicity. Recently the author in [10], via Morse inequalities, improved significantly the multiplicity estimate which can be deduced from the degree-counting formula in [7].

Besides, the case of the flat torus, which is a relevant situation from the physical point of view, has been treated by Struwe and Tarantello under the assumptions that $h \equiv 1$ and $\rho \in (8\pi, 4\pi^2)$. In these hypotheses, u = 0 is clearly a

critical point for I_{ρ} . Moreover, u=0 is a strict local minimum, since the second variation in the direction $v \in \bar{H}_{q}^{1}(T)$ can be estimated as follows

$$(1.2) D^2 I_{\rho}(0)[v,v] = \|v\|^2 - \rho \int_{\Sigma} v^2 dx \ge \left(1 - \frac{\rho}{4\pi^2}\right) \|v\|^2.$$

Under these conditions, the functional possesses a mountain pass geometry and by thanks to this structure the existence of a saddle point of I_{ρ} has been detected by Struwe and Tarantello.

THEOREM 1.1 ([26]). – Let Σ be the flat torus and $h \equiv 1$. Then, for any $\rho \in (8\pi, 4\pi^2)$, there exists a non-trivial solution u_{ρ} of (*) satisfying $I_{\rho}(u_{\rho}) \geq (1 - \rho/4\pi^2)c_0$ for some constant $c_0 > 0$ independent of ρ .

As g is the flat metric and h is constant, if u is a solution of (*), the functions $u_{x_0}(x) := u(x - x_0)$ still solve (*), for any $x_0 \in T$; so from Theorem 1.1 we can deduce the existence of an infinite number of solutions of (*).

Perturbing g and h there is still a local minimum, \bar{u} , close to u=0 and the same procedure of [26] ensures the presence of a saddle point, but on the other hand, if u is a non-trivial solution, the criticality of the translated functions u_{x_0} is not anymore guaranteed. In [9] the author improved this result stating that apart from \bar{u} there are at least two critical points, see Theorem 3.1 in Section 3.

The strategy of the proof consists in defining a deformed functional \tilde{I}_{ρ} , having the same saddle points of I_{ρ} but a greater topological complexity of its low sublevels, and in estimating from below the number of saddle points of \tilde{I}_{ρ} using the notion of Lusternik-Schnirelmann relative category (roughly speaking a natural number measuring how a set is far from being contractible, when a subset is fixed).

Always in [9] the author conjectured that apart from the minimum and the two saddle points another critical point should exist. In fact this turns out to be true.

THEOREM 1.2. – If $\rho \in (8\pi, 4\pi^2)$ and $\Sigma = T$ is the torus, if the metric g is sufficiently close in $C^2(T; S^{2\times 2})$ to dx^2 and h is uniformly close to the constant 1, I_ρ admits a point of strict local minimum and at least three different saddle points.

In the above statement $S^{2\times 2}$ stands for the symmetric matrices on T. To prove Theorem 3.1 we exploit the following inequality derived in [9]:

$$\#\{\text{solutions of }(*)\} \geq \text{Cat}_{X,\partial X}X,$$

where X is the topological cone over T. Next, applying a classical result we

are able to estimate from below the previous relative category by one plus the cup-length of the pair $(T \times [0,1], T \times (\{0\} \cup \{1\}))$. The cup-length of a topological pair (Y,Z), denoted by $\operatorname{CL}(Y,Z)$, is the maximum number of elements of the cohomology ring $H^*(Y)$ having positive dimensions and whose cup product do not "annihilate" the ring $H^*(Y,Z)$; we refer to the next section for a rigorous definition. Finally, to obtain the thesis, we show that $\operatorname{CL}(T \times [0,1], T \times (\{0\} \cup \{1\})) \geq \operatorname{CL}(T) = 2$.

REMARK 1.3. – Since all the arguments only use the presence of a strict local minimum and the fact that X is the topological cone over T, whenever on some (Σ, g) the functional I_{ρ} possesses a strict local minimum, the theorem holds true, more precisely I_{ρ} has at least $CL(\Sigma) + 1$ critical points other than the minimum.

In section 2 we collect some useful material concerning the topological structure of I_{ρ} and we recall some definitions and some classical results in algebraic topology; besides, we focus on the notion of Lusternik-Schnirelmann relative category and its relation with the cuplength. In section 3 we present briefly the result in [9] and prove our multiplicity result.

2. - Notation and preliminaries

In this section we collect some facts needed in order to obtain the multiplicity result.

First of all we consider some improvements of the Moser-Trudinger inequality which are useful to study the topological structure of the sublevels of I_{ρ} . Next, we collect some basic notions in algebraic topology and we recall the definition of Lusternik-Schnirelmann relative category stating also some results relating the category to both the cup-length and the existence of critical points.

Let now fix our notation. The symbol $B_r(p)$ denotes the metric ball of radius r and center p.

As already specified we set $\bar{H}_g^1(\Sigma) := \left\{ u \in H_g^1(\Sigma) : \bar{u} = 0 \right\}$, where $\bar{u} := \frac{1}{|\Sigma|} \int\limits_{\Sigma} u dV g$.

Large positive constants are always denoted by C, and the value of C is allowed to vary from formula to formula. Moreover, given a smooth functional $I: \bar{H}^1_g(\Sigma) \to \mathbb{R}$ and a real number c, we set $I^c:=\{u\in \bar{H}^1_g(\Sigma)\,|\, I(u)\leq c\}$.

Finally, given a pair of topological spaces (X,A) we will denote by $\mathrm{H}^q(X,A)$ the relative q-th cohomology group with coefficients in $\mathbb R$ and by $\mathrm{H}^*(X,A)$ the direct sum of the cohomology groups, $\bigoplus_{n=0}^{\infty} \mathrm{H}^q(X,A)$.

2.1 - Variational Structure

Even though the Palais-Smale is not known to hold for our functional, employing together a deformation lemma proved by Lucia in [22] and a compactness result due to Li and Shafrir [18] it is possible to establish for I_{ρ} a strong result through and through analogous to the classical deformation lemma.

PROPOSITION 2.1. – If $\rho \neq 8k\pi$ and if I_{ρ} has no critical levels inside some interval [a, b], then $\{I_{\rho} \leq a\}$ is a deformation retract of $\{I_{\rho} \leq b\}$.

To understand the topology of sublevels of I_{ρ} it is useful to recall the well-known Moser-Trudinger inequality on compact surfaces.

LEMMA 2.2 (Moser-Trudinger inequality). – There exists a constant C, depending only on (Σ, g) such that for all $u \in H^1_g(\Sigma)$

(2.1)
$$\int\limits_{\Gamma} e^{\int\limits_{\overline{L}} \frac{4\pi(u-\bar{u})^2}{|\nabla g u|^2 dV_g}} \leq C.$$

where $\bar{u}:=\int\limits_{\Sigma}udV_g.$ As a consequence one has for all $u\in H^1_g(\Sigma)$

(2.2)
$$\log \int_{\Gamma} e^{(u-\bar{u})} dV_g \le \frac{1}{16\pi} \int_{\Gamma} |\nabla_g u|^2 dV_g + C.$$

Chen and Li [6] from this result showed that if e^u has integral controlled from below (in terms of $\int_{\Sigma} e^u dV_g$) into (l+1) distinct regions of Σ , the constant $1/16\pi$ can be basically divided by (l+1). Since we are interested in the behavior of the functional when $\rho \in (8\pi, 16\pi)$, it is sufficient to consider the case l=1.

LEMMA 2.3 [6]. – Let Ω_1 , Ω_2 be subsets of Σ satisfying $\operatorname{dist}(\Omega_1,\Omega_2) \geq \delta_0$, where δ_0 is a positive real number, and let $\gamma_0 \in (0,1/2)$. Then, for any $\tilde{\epsilon} > 0$ there exists a constant $C = C(\tilde{\epsilon},\delta_0,\gamma_0)$ such that $\log \int_{\Sigma} e^{(u-\bar{u})} dV_g \leq C + \frac{1}{32\pi - \tilde{\epsilon}} \int_{\Sigma} |\nabla_g u|^2 dV_g$ for all the functions satisfying $\int_{\Omega_i} e^u dV_g / \int_{\Sigma} e^u dV_g \geq \gamma_0$, for i=1,2.

Therefore if $\rho \in (8\pi, 16\pi)$ Lemma 2.3 implies that if " e^{u} " is spread in at least two regions then the functional I_{ρ} stays uniformly bounded from below. Qualitatively if I_{ρ} attains large negative values, $\frac{e^{u}}{\int e^{u}}$ has to concentrate at a point of Σ . Indeed, using the previous Lemma and a covering argument, Ding, Jost, Li and Wang obtained (see [11] or [13]) the following result.

Lemma 2.4. – Assuming $\rho \in (8\pi, 16\pi)$, the following property holds. For any $\varepsilon > 0$ and any r > 0 there exists a large positive constant $L = L(\varepsilon, r)$ such that for every $u \in H_g^1(\Sigma)$ with $I_\rho(u) \leq -L$, there exist a point $p_u \in \Sigma$ such that $\int\limits_{\Sigma \setminus B_r(p_u)} e^u dV_g / \int\limits_{\Sigma} e^u dV_g < \varepsilon$.

By means of Lemma 2.4 it is possible to map continuously low sublevels of the Euler functional into Σ , roughly speaking associating to u the point p_u (see [13] for details); in the following we will denote this map $\Psi: I_\rho^{-L} \to \Sigma$. Viceversa, one can map Σ into arbitrarily low sublevels, associating to $x \in \Sigma$ the function

$$\varphi_{\lambda,x}:= ilde{arphi}_{\lambda,x}-\overline{ ilde{arphi}_{\lambda,x}}, ext{ where } ilde{arphi}_{\lambda,x}(y):=\log\Bigl(rac{\lambda}{1+\lambda^2\mathrm{dist}^2(x,y)}\Bigr)^2 ext{ and } \lambda ext{ is a sufficiently}$$

large positive real parameter. The composition of the former map with the latter can be taken to be homotopic to the identity on Σ , and hence the following result holds true.

PROPOSITION 2.5 [23]. $-If \rho \in (8\pi, 16\pi)$, there exists L > 0 such that $\{I_{\rho} \leq -L\}$ has the same homology as Σ .

On the other hand in [23] Proposition 2.1 is used to prove that, since I_{ρ} stays uniformly bounded on the solutions of (*) (again by the compactness result due to Li), it is possible to retract the whole Hilbert space $\bar{H}_{g}^{1}(\Sigma)$ onto a high sublevel $\{I_{\rho} \leq b\}, \ b \gg 0$. More precisely:

PROPOSITION 2.6 [23]. $-If \rho \in (8\pi, 16\pi)$ for some $k \in \mathbb{N}$ and if b is sufficiently large positive, the sublevel $\{I_{\rho} \leq b\}$ is a deformation retract of X, and hence it has the same homology of a point.

Remark 2.7. — Let notice that, since Σ is not contractible, Proposition 2.5 together with Proposition 2.6 and Proposition 2.1 permits to derive an alternative proof of the general existence result due to Djadli.

2.2 – Notions in algebraic topology

Let now recall some well known definitions and results in algebraic topology. First, we recall the Kunneth Theorem for cohomology in a particular case.

THEOREM 2.8 ([2], page 8). – If $(X \times Y', Y \times X')$ is an excisive couple in $X \times X'$ and $H^*(X, Y)$ is of finite type, i.e. $H^q(X, Y)$ is finitely generated for each q,

then the map

$$(2.3) \mu: H^*(X,Y) \otimes H^*(X',Y') \longrightarrow H^*((X,Y) \times (X',Y')),$$

defined as $\mu(u \otimes v) := u \times v \in H^{p+q}((X,Y) \times (X',Y'))$, for any $u \in H^p(X,Y)$ and $v \in H^q(X',Y')$, is an isomorphism.

Cup product. – We recall that it is possible to endow the direct sum of the cohomology groups, $H^*(X) = \bigoplus_q H^q(X)$, with an associative and graded multi-

plication, namely the cup product $\bigcup : H^p(X) \times H^q(X) \to H^{p+q}(X)$. This multiplication turns $H^*(X)$ into a ring; in fact it is naturally a \mathbb{Z} -graded ring with the integer q serving as degree and the cup product respects this grading. This definition can be extended to topological pairs; in particular, if (Y_1, Y_2) is an excisive couple in X, it is possible to define the cup product

$$\cup: H^p(X, Y_1) \times H^q(X, Y_2) \longrightarrow H^{p+q}(X, Y_1 \cup Y_2)$$

In de Rham cohomology the cup product of differential forms is also known as the wedge product.

PROPOSITION 2.9 ([25], page 253). – Let $(X \times Y', Y \times X')$ be an excisive couple in $X \times X'$, and let $p_1 : (X,Y) \times X' \to (X,Y)$ and $p_2 : X \times (X',Y') \to (X',Y')$ be the projections. Given $u \in H^p(X,Y)$ and $v \in H^q(X',Y')$, then in $H^{p+q}((X,Y) \times (X',Y'))$ we have

$$u \times v = p_1^*(u) \cup p_2^*(v).$$

CUP-LENGTH. — A numerical invariant derived from the cohomology ring is the cup-length, which for a topological space X is defined as follows:

$$\operatorname{CL}(X) = \max\{l \in \mathbb{N} | \exists c_1, \dots, c_l \in H^*(X), \text{ with } \dim(c_i) > 0, \quad i = 1, 2, \dots, l,$$

such that $c_1 \cup \dots \cup c_l \neq 0\}.$

For example the cup—length of the 2-torus is equal to 2; too see it one can think to the volume form in de Rham cohomology.

More generally, we define the cup length for a topological pair (X, Y).

$$\mathrm{CL}(X,Y) = \max\{l \in \mathbb{N} \mid \exists c_0 \in H^*(X,Y), \ \exists c_1, \dots, c_l \in H^*(X), \ \mathrm{with} \ \mathrm{dim}\,(c_i) > 0 \}$$

$$\text{for } i = 1, 2, \dots, l, \ \mathrm{such} \ \mathrm{that} \ c_0 \cup c_1 \cup \dots \cup c_l \neq 0 \}.$$

In the case where $Y = \emptyset$, we just take $c_0 \in H^0(X)$; thus the two definitions are the same.

2.3 - Lusternik-Schnirelmann relative category

We recall the definition of Lusternik-Schnirelmann category (category, for short); then, following [15], we introduce a more powerful notion. In fact, to be precise, it is not a notion but rather a family of (Lusternik-Schnirelmann) relative categories. In this family we choose only two for their special properties, which are given in Proposition 2.12. We will see that the category is a useful tool in critical point theory to obtain multiplicity results.

DEFINITION 2.10. – Let X be a topological space and A a subset of X. The category of A with respect to X, denoted by $\operatorname{Cat}_X A$, is the least integer k such that $A \subset A_1 \cup \ldots \cup A_k$, with A_i $(i = 1, \ldots, k)$ closed and contractible in X. We set $\operatorname{Cat}_X \emptyset = 0$ and $\operatorname{Cat}_X A = +\infty$ if there are no integers satisfying the demand.

DEFINITION 2.11. – Let X be a topological space and Y a closed subset of X. A closed subset A of X is of the k-th (strong) category relative to Y (we write $\operatorname{Cat}_{X,Y} A = k$) if k is the least positive integer such that there exist $A_i \subset A$ closed and $h_i : A_i \times [0,1] \to X$, $i = 0, \ldots, k$, satisfying the following properties:

- (i) $A = \bigcup_{i=0}^{k} A_i$,
- (ii) $h_i(x,0) = x \quad \forall x \in A_i \ 0 \le i \le k$,
- (iii) $h_0(x, 1) \in Y \ \forall x \in A_0 \ and \ h_0(y, t) = y \ \forall y \in Y \ \forall t \in [0, 1],$
- (iv) $\forall i \geq 1 \ \exists x_i \in X \ such \ that \ h_i(x,1) = x_i$,
- (v) $\forall i \geq 1 \ h_i(A_i \times [0,1]) \cap Y = \emptyset$.

We say that *A* is of the *k*-th weak category relative to *Y*, written $cat_{X,Y}A = k$, if *k* is minimal verifying conditions (i) – (iv).

If one such k does not exist, we set $\operatorname{Cat}_{X,Y} A = +\infty$ (respectively $\operatorname{cat}_{X,Y} A = +\infty$).

Starting from the above definition, it is easy to check that the following properties hold true.

Proposition 2.12 [15]. – Let A, B and Y be closed subsets of X:

- 1. if $Y = \emptyset$, then $cat_{X,\emptyset}A = Cat_{X,\emptyset}A = Cat_XA$;
- 2. $Cat_{X Y}A > cat_{X Y}A$;
- 3. if $A \subset B$, then $Cat_{X,Y}A \leq Cat_{X,Y}B$;
- 4. if there exists an homeomorphism $\phi: X \to X'$ such that $Y' = \phi(Y)$ and $A' = \phi(A)$, then $Cat_{X',Y'}A' = Cat_{X,Y}A$;
- 5. if $X' \supset X \supset A$ and $r: X' \to X$ is a retraction such that $r^{-1}(Y) = Y$ and $r^{-1}(A) \supset A$, then $Cat_{X',Y}A \geq Cat_{X,Y}A$.

Usually, the notion of category is employed to find critical points of a functional I on a manifold X, in connection with the topological structure of X.

Moreover a classical theorem by Lusternik-Schnirelmann shows that either there are at least Cat_XX critical points of I on X, or at some critical level of I there is a continuum of critical points.

This result cannot directly help us because, since we look for critical points on $\bar{H}_g^1(T)$, we would take $X = \bar{H}_g^1(T)$ which, clearly, has category equal to 1 (being contractible).

So we will need a generalization of such a theorem which involves relative category of sublevels. In particular a Theorem in [15] can be adapted to our functional.

Theorem 2.13.
$$-If -\infty < a < b < +\infty$$
 and a , b are regular values for I_{ρ} , then $\#\{critical\ points\ of\ I_{\rho}\ in\ a \leq\ I_{\rho}\ \leq\ b\} \geq \operatorname{Cat}_{\{I_{\rho} \leq b\}, \{I_{\rho} \leq a\}} \{I_{\rho} \leq b\}.$

In its original formulation the previous statement dealt with C^1 functionals verifying the Palais-Smale condition, but, as pointed out in [9], the (PS)-condition is used in the proof only twice to apply the classical deformation lemma (see for example [8]). Thus, it is not hard to understand that Proposition 2.1 allows to extend the result to I_{ρ} .

Besides, in a particular case the relative category can be estimated by means of the cup-length of a pair in the following way:

Theorem 2.14 [2]. – For any topological space X, if Y is a closed subset of X, then:

$$cat_{X,Y}X \ge CL(X,Y) + 1.$$

3. - Proof of Theorem 1.2

Before proving Theorem 1.2 we recall the previous result in [9] and we summarize its proof.

THEOREM 3.1 [9]. – If $\rho \in (8\pi, 4\pi^2)$ and $\Sigma = T$ is the torus, if the metric g is sufficiently close in $C^2(T; S^{2\times 2})$ to dx^2 and h is uniformly close to the constant 1, I_{ρ} admits a point of strict local minimum and at least two different saddle points.

Let consider a new functional \tilde{I}_{ρ} which coincides with I_{ρ} out of a small neighborhood of \bar{u} and assumes large negative values near \bar{u} (here we are exploiting the existence of a strict local minimum), then fix b and L conveniently, in particular such that $I_{\rho}^b = \tilde{I}_{\rho}^b$ and $\tilde{I}_{\rho}^{-L} = I_{\rho}^{-L} \coprod \{\text{neighb. of } \bar{u}\}$, I_{ρ} and \tilde{I}_{ρ} have the same critical points of saddle type in $\tilde{I}_{\rho}^b \setminus \tilde{I}_{\rho}^{-L}$.

Let X denote the contractible cone over T and let ∂X be its boundary; they can be represented as $X = \frac{T \times [0,1]}{T \times \{0\}}$, $\partial X = \frac{T \times (\{0\} \cup \{1\})}{T \times \{0\}}$. To get the thesis it is sufficient to establish the following chain of inequalities:

$$(3.1) \quad \#\{\text{critical points of } \tilde{I}_{\rho} \text{ in } -L \leq \tilde{I}_{\rho} \leq b > \} \stackrel{1}{\geq} \operatorname{Cat}_{\tilde{I}_{\rho}^{b}, \tilde{I}_{\rho}^{-L}} \tilde{I}_{\rho}^{b} \stackrel{2}{\geq} \operatorname{Cat}_{\tilde{I}_{\rho}^{b}, \phi(\partial X)} \tilde{I}_{\rho}^{b}$$

$$\stackrel{3}{\geq} \operatorname{Cat}_{\tilde{I}_{\rho}^{b}, \phi(\partial X)} \phi(X) \stackrel{4}{\geq} \operatorname{Cat}_{\phi(X), \phi(\partial X)} \phi(X)$$

$$\stackrel{5}{\geq} \operatorname{Cat}_{X, \partial X} X \stackrel{6}{\geq} 2,$$

where ϕ is the homeomorphism on the image defined as follows:

$$\phi: \ X o ar{H}^1_g(T)$$
 $(x,t) \mapsto t \, arphi_{1,m}.$

with $\varphi_{\lambda,x}$ defined in Section 2.1 and L, λ , b suitable constants, clearly depending on ρ .

The first inequality follows immediately from Theorem 2.13, which as showed in [9] holds true also for \tilde{I}_{ρ} , while the third and the fifth can be easily derived from the properties of the relative category.

In order to prove 2 one has to construct a deformation retraction (in \tilde{I}^b_ρ) of \tilde{I}^{-L}_ρ onto $\phi(\partial X)$. In particular, since I^{-L}_ρ has two connected components, one can deal separately with these two different regions. For what concerns the neighborhood of the minimum point \bar{u} , it is enough to combine the steepest descent flow with a deformation sending \bar{u} into 0; while, in I^{-L}_ρ , the map $\Psi:I^{-L}_\rho\to \Sigma$ has to be composed with the map which realizes the deformation of $\bar{H}^1_a(T)$ on \tilde{I}^b_ρ .

Moreover, just perturbing Ψ , it is possible to obtain a new continuous map $\tilde{\Psi}: \tilde{I}_{\rho}^{-L} \to \phi(\partial X)$ verifying $\tilde{\Psi}_{|\phi(\partial X)} = \mathrm{Id}_{|\phi(\partial X)}$. The key point is that applying again (2.1), one is able to extend $\tilde{\Psi}$ to $\tilde{I}_{\rho}^{b} \setminus B_{R}$, $R = R(\rho, b)$. Then by means of $\tilde{\Psi}$, one can construct a new map $r: \tilde{I}_{\rho}^{-L} \to \phi(X)$ such that $r_{|\phi(X)} = \mathrm{Id}_{|\phi(X)}$ and $r^{-1}(\phi(\partial X)) = \phi(\partial X)$. Finally, category's properties allow to derive the fourth inequality from the existence of the latter map.

At last the sixth inequality has been tackled using a direct topological argument.

POOF OF THEOREM 1.2. – Our aim will be to improve the last inequality of (3.1), proving that $Cat_{X,\partial X}X \geq 3$.

To do that we are going to establish a new chain of inequalities, involving the notion of cup length.

$$\begin{array}{ll} (3.2) & \operatorname{Cat}_{X,\partial X} X \overset{a}{\geq} \operatorname{Cat}_{T \times [0,1], T \times (\{0\} \cup \{1\})} (T \times [0,1]) \\ & \overset{b}{\geq} \operatorname{cat}_{T \times [0,1], T \times (\{0\} \cup \{1\})} (T \times [0,1]) \\ & \overset{c}{\geq} \operatorname{CL} \left(T \times [0,1], T \times (\{0\} \cup \{1\}) \right) + 1 \\ & \overset{d}{\geq} \operatorname{CL} \left(T \right) + 1 \overset{e}{=} 3. \end{array}$$

Let us first prove point a. Let consider the A_i and h_i verifying the conditions for $Cat_{X,\partial X}X$.

First of all, in order to show that A_0 is disconnected, let us denote by $X_0 := T \times \{0\}/T \times \{0\}$ and $X_1 := T \times \{1\}/T \times \{0\}$ the two disconnected components of ∂X . By definition we know that $X_0 \cup X_1 = \partial X \subset A_0$ and that there exists $h_0 : A_0 \times [0,1] \to X$ continuous with the properties: $h_0(A_0,1) \subset \partial X$ and $h_{0|\partial X \times [0,1]} \equiv \operatorname{Id}_{\partial X}$. Now, if A_0 was connected we would get a contradiction because $h_0(A_0,1)$ would be connected (by continuity of h_0) and disconnected being the union of X_0 and X_1 .

Thus we can consider the connected component A_{00} of A_0 containing X_0 and its complementary in A_0 , $A_{01} := A_0 \setminus A_{00}$. Then, we define

$$\tilde{A}_{0j} := \left\{ (x,t) \, | \, x \in T, \, t \in [0,1], \, [(x,t)] \in A_{0j} \right\} \qquad j = 0,1,$$

where [(x,t)] stands for the equivalence class of (x,t) in X.

Let us set $\tilde{A}_0 := \tilde{A}_{00} \cup \tilde{A}_{01}$.

Next, we construct a continuous map $\tilde{h}_0: \tilde{A}_0 \times [0,1] \to T \times [0,1]$ in the following way:

$$\tilde{h}_0((x,t),s) := \begin{cases} (x,(1-s)t) & (x,t) \in \tilde{A}_{00} \\ (x,(1-s)t+s) & (x,t) \in \tilde{A}_{01}. \end{cases}$$

Just to be rigorous we also define the sets

$$\tilde{A}_i := \{(x,t) \, | \, x \in T, \, t \in [0,1], \, [(x,t)] \in A_i)\} \qquad i \geq 1,$$

which are nothing but the A_i 's seen as subsets of $T \times [0,1]$, without the equivalence relation.

Analogously we define the maps

$$\tilde{h}_i((x,t),s) := h_i([(x,t)],s)$$

which turn out to be well defined, being $A_i \cap \partial X = \emptyset$, for any $i \geq 1$ (see point (v) of Definition 2.11).

Now, it is easy to see that the sets \tilde{A}_i 's, together with the continuous maps \tilde{h}_i 's, satisfy the conditions of Definition 2.11 for $\operatorname{Cat}_{T\times[0,1],T\times(\{0\}\cup\{1\})}(T\times[0,1])$ and this concludes the proof of this first inequality.

Point b follows directly from property 2 of Proposition 2.12, while applying Theorem 2.14 we obtain inequality c.

To get step d, let us denote by k the cup—length of T. By definition there exist $a_1, \ldots, a_k \in H^*(T)$, with dim $(a_i) > 0$ for any $i \in \{1, \ldots, k\}$, such that

$$a_1 \cup \ldots \cup a_k \neq 0$$
.

Since $H^1([0,1],\{0\} \cup \{1\}) = \mathbb{R}$, we can also choose $0 \neq \beta \in H^1([0,1],\{0\} \cup \{1\})$. We are now in position to apply Theorem 2.8 with X = [0,1], $Y = \{0\} \cup \{1\}$, X' = T and $Y' = \emptyset$. By definition of μ , see (2.3), and its injectivity, we obtain

$$(3.3) \beta \times (a_1 \cup a_k) = \mu(\beta \otimes (a_1 \cup a_k)) \neq 0.$$

Consider now the projections $p_1: T \times ([0,1], \{0\} \cup \{1\}) \rightarrow ([0,1], \{0\} \cup \{1\})$ and $p_2: T \times [0,1] \rightarrow T$. Applying Proposition 2.9, we find:

$$(3.4) \beta \times (a_1 \cup a_k) = p_1^*(\beta) \cup p_2^*(a_1 \cup a_k) = p_1^*(\beta) \cup p_2^*(a_1) \cup \ldots \cup p_2^*(a_k).$$

Notice that $p_1^*(\beta) \in H^*(T \times [0,1], T \times (\{0\} \cup \{1\}))$ and, for any $i \in \{1, ..., k\}$, $p_2^*(a_i) \in H^*(T \times [0,1])$, with dim $(p_2^*(a_i)) > 0$.

In conclusion, by virtue of (3.3) and (3.4), we proved exactly that $CL(T) \leq CL(T \times [0,1], T \times (\{0\} \cup \{1\}))$.

Finally, the equality named e is just due to the well known fact that CL(T) = 2. The proof is thereby complete.

Acknowledgements. The author is grateful to Professor Andrea Malchiodi for helpful discussions and for having proposed her this topic. She is supported by Project FIRB-IDEAS "Analysis and Beyond".

REFERENCES

- [1] E. P. CAGLIOTI P. L. LIONS C. MARCHIORO M. PULVIRENTI, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., 143 (1995), 229-260.
- [2] K. C. CHANG, Infinite dimensional Morse theory and multiple solution problems, PNLDE 6, Birkhäuser, Boston, 1993.
- [3] S. Y. A. CHANG M. J. GURSKY P. C. YANG, The scalar curvature equation on 2- and 3-spheres, Calc. Var. and Partial Diff. Eq., 1 (1993), 205-229.
- [4] S. Y. A. CHANG P. C. YANG, Prescribing Gaussian curvature on S², Acta Math., 159 (1987), 215-259.
- [5] W. CHEN C. LI, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
- [6] W. Chen C. Li, Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal., 1-4 (1991), 359-372.

- [7] C. C. CHEN C. S. LIN, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727.
- [8] D. C. CLARK, A variant of the Lusternick-Schnirelman theory, Indiana J. Math., 22 (1972), 65-74.
- [9] F. DE MARCHIS, Multiplicity result for a scalar field equation on compact surfaces, Comm. Partial Differential Equations, 33 (2008), 2208-2224.
- [10] F. DE MARCHIS, Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192.
- [11] W. DING J. JOST J. LI G. WANG, Existence result for mean field equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16 (1999), 653-666.
- [12] W. DING J. JOST J. LI G. WANG, The differential equation $\triangle u = 8\pi 8\pi he^u$ on a compact Riemann surface, Asian J. Math., 1 (1997), 230-248.
- [13] Z. DJADLI, Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math., 10 (2008), 205-220.
- [14] Z. DJADLI A. MALCHIODI, Existence of conformal metrics with constant Qcurvature, Ann. of Math., 168 (2008), 813-858.
- [15] G. FOURNIER M. WILLEM, Multiple solutions of the forced double pendulum equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 6 (1989), 259-281.
- [16] M. K. H. Kiessling, Statistical mechanics approach to some problems in conformal geometry. Statistical mechanics: from rigorous results to applications, Phys. A, 279 (2000), 353-368.
- [17] J. L. KAZDAN F. W. WARNER, Curvature functions for compact 2-manifolds, Ann. of Math., 99 (1974), 14-47.
- [18] Y. Y. Li I. Shafrir, Blow-up analysis for solutions of $-\triangle u = Ve^u$ in dimension two, Ind. Univ. Math. J., 43 (1994), 1225-1270.
- [19] Y. Y. Li, Harnack type inequality: the methods of moving planes, Comm. Math. Phys., 200 (1999), 421-444.
- [20] C. S. Lin, Topological degree for mean field equations on S², Duke Math. J., 104 (2000), 501-536.
- [21] M. Lucia, A blowing-up branch of solutions for a mean field equation, Calc. Var., 26 (2006), 313-330.
- [22] M. Lucia, A deformation lemma with an application with a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138.
- [23] A. MALCHIODI, Morse theory and a scalar field equation on compact surfaces, Adv. Diff. Eq., 13 (2008), 1109-1129.
- [24] M. Nolasco G. Tarantello, On a sharp type-Sobolev inequality on twodimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 165-195.
- [25] E. H. Spanier, Algebraic topology, Springer-Verlag, New-York, 1966.
- [26] M. STRUWE G. TARANTELLO, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital., 8 (1998), 109-121.
- [27] G. TARANTELLO, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (1996), 3769-3796.
- [28] Y. Yang, Solitons in field theory and nonlinear analysis, Springer, 2001.

SISSA, Via Bonomea 265, 34136 Trieste, Italy E-mail: demarchis@sissa.it