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Higher Secants of Spinor Varieties

ELENA ANGELINI

Abstract. — Let S;, be the even pure spinors variety of a complex vector space V of even
dimension 2h endowed with a non degenerate quadratic form Q and let o4 (Sy,) be the
k-secant variety of Sp. We decribe an algorithm which computes the complex di-
mension of o (Sy). Then, by using an inductive argument, we get our main result:
a3(Sy) has the expected dimension except when h € {7,8}. Also we provide theoretical
arguments which prove that S; has a defective 3-secant variety and Ss has defective 3-
secant and 4-secant varieties.

1. — Introduction

In this paper we study the higher secant varieties of spinor varieties.

We consider a complex 2k-dimensional vector space V' and a non degenerate
quadratic form @ defined on it. The space of spinors associated to (V, Q) can be
identified with the space of the spin representation of CI(V,Q), the Clifford al-
gebra generated by V. In particular, pure spinors represent, from a geometrical
point of view, the set of all maximal totally isotropic vector subspaces of V, which
is a projective variety, called spinor variety. For simplicity, we consider one of its
two irreducible isomorphic components, i.e. the even pure spinors variety, which
we denote by Sj,.

Let X be a non-degenerate projective variety in PV (C); then o3,(X) indicates
the k-secant variety of X, that is the Zariski closure of the union of all linear
spaces spanned by & points of X, see [16] and [13] for several applications. It’s
easy to check the following inequality:

dimcog(X) < min{kdimc-X +k —1,N}.

If the equality holds, then we say that o(X) has the expected dimension,
otherwise X is said to be k- defective and

8¢ = min{kdimcX + k — 1, N} — dimcc;(X)

is its k-defect. The problem of determining the complex dimension of g;(X) is
called the defectivity problem for X. If vq(P"(C)) is the Veronese variety then
ar(vg(P"(C))) has the expected dimension except in some particular cases, ([3]),
([7]). Concerning Grassmannians and Segre varieties, this problem has been
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studied by several authors but it’s still open, as we can see, respectively, in [6]
and [2]; for related results see also [1], [5] and [10]. At the best of my knowledge,
the case of spinor varieties is almost absent in the mathematical literature; it’s
known that 02(S),) has always the expected dimension ([11]), but for k& > 3 the
problem was completely open.

By using Macaulay?2 software system, we construct an algorithm which al-
lows us to compute the dimension of ¢y (S}) by studying the span of the tangent
spaces at k chosen random points, for 2 < 12. Afterwards, by using induction, we
get our main result:

THEOREM 1.1. — (i) a5(S},) has the expected dimension, except when h € {7,8}.
(i) S7 has a defective 3-secant variety and Sg has defective 3-secant and 4-secant
varieties. In particular dimcas(S7) =58, dimco3(Sg) =85 and dimco4(Sg) =111.

We remark that the main tool of our investigation is the parametrization of Sj,
with all principal sub-Pfaffians of a skew symmetric matrix of size h.

The paper is organized in six sections. In the second one we introduce Clifford
algebras and spinor varieties, following [8], [15] and [4]; in the third we recall the
main definitions and properties of higher secant varieties, ([13]), ([16]). Finally,
sections four, five and six are devoted to our main results.

This article is based upon the author’s laurea thesis and the main result
confirms its final conjectures, ([4]). Thanks are due especially to Giorgio
Ottaviani for his guidance and insight.

2. — Clifford algebras and spinors

Let V be a vector space over C of even dimension n = 2h > 0. Let @ be a
quadratic form on V such that the corresponding symmetric bilinear form B is
non degenerate.

We denote by CI(V,Q) =T(V)/Io(V) the Clifford algebra assoctated to
(V,Q), where T(V) is the tensor algebra of V and I (V) C T (V) is the two-sided
ideal generated by the elements

vev—-Q(V)-1

withv e V.
Let

CUV, Q= =T(V)/1o(V)NT(V).

where T'(V), and T(V)_ denote the set of even and odd tensors, respectively.
We call even the elements of CI(V, Q) and odd those of CI(V,Q)_.
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Let £ and F' be maximal totally isotropic vector subspaces of V such that
V = FE @ F,letf be the product in CI(V, ) of the elements of a basis of F. The spin
representation of Cl(V, Q) is the irreducible representation of CI(V, @) and its re-
presentationspace, S(V, Q),is the space of spinors of (V, Q). We denote by S(V, Q) .
(respectively: S(V, Q) _) the space of even (respectively: odd) spinors of (V,Q) .

Inside the space of spinors, the subset of pure spinors has a very important
geometrical meaning, as we describe in the following.

Let W be a maximal totally isotropic subspace of V and let fiy be the product
of the vectors in a basis of W (fiy is well defined up to a non zero scalar).

It’s not hard to show that CI(V, Q)f N fwClL(V, Q) is a complex vector space of
dimension 1. So we can pose

CUV, Q)f nfwCl(V,Q) = S(V,Q)w.f

where S(V, Q)w denotes a vector subspace of S(V, ) of dimension 1.

DEFINITION 2.1. — Any element of S(V,Q)w\{0} is called representative
spinor of W. Moreover, we call pure spinor any element of SV, Q)w\{0}, for
some maximal totally isotropic vector subspace W of V.

It’s easy to check that the subset of pure spinors is a projective variety, called
spinor variety, and that it is in 1 — 1 correspondence with the variety of maximal
totally isotropic vector subspaces of V. Furthermore, the spinor variety has two
isomorphic irreducible components, called even and odd pure spinors variety.
From now on we focus our attention on the first one, which we denote by Sj,.

Let B={es,...,enf1,-...fn} beabasisof V =E @ F, where {ej,...,e,}isa

5..
basis of E and {fi,....f;} is a basis of F, such that B(e;,f;) :g, for all
1,7 € {1,...,h}. We remark that the matrix ¥ of the form B with respect to 5 is

1
On I
B = 1 2
=1
51n On
where O, and I;, are the null matrix and the identity matrix of size &, respec-
tively. Moreover, we pose f =f1 ... fj-
Let W be a vector subspace of V such that dim-W = h,i.e. W € Gr(h,2h), the
usual Grassmannian. Thus, we can associate to W the & by 2k matrix

P = [Cw|Dw]

where Cyw, Dw € M(h,C). In particular, if Cy is invertible, then we can assume
that

P = [I;|Uw]
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where Uy = Cv‘VlDW. So, we have that W is totally isotropic if and only if
P.-%B.P =0,
in other words if and only if
Uy = —Uly.
We immediately get the following:

THEOREM 2.1. — The generic element of Sj, can be represented in blocks matrix
Sform as [I;,|U), where U € M (h, C) is skew symmetric.

Now, let U = {uu} be a skew symmetric matrix of size & with complex entries
and let

h h h
s(0) = (el * Z“Uff) ' (62 + Z“Zifi) ee <6h + Z“hjf;‘)
J=1 j=1 =1

be an element of S, in a neighborhood of
So=¢€1-...-€p.

We remark that s(U) and s are representative spinors of

h h h
W) = <61 + Zuwg,ez + Zuzjﬁ, N e Zumﬁ>
j=1 J=1 J=1
and of £ = W(0,,) respectively. By computing s(U)f we get the following for-
mula, [4] and [15]:
s(U) =Y Pfx(U)ek:
K
where K denotes any sequence of integers between 1 and & of even lenght,
K¢ ={1,...,h}\K, Pfg(U)is the Pfaffian of the submatrix of U made up by rows

and columns indexed by K, and eg. is the Clifford product of the e;’s, 7 € K° .
In this way we get one of the main tools for our investigations:

THEOREM 2.2. — All the principal sub-Pfaffians of a gefr}wm'c skew symmetric
h—1
matrix of size h parametrize a generic element of Sj, in P> ~1(C).

Before closing this section we remark that, given

g1 912
= e SO(2h,
g [921 922] (2. Q)
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where g;; € M(h,C), i,j € {1,2} and
P =[I|U] €S,

where U € M(h,C) is skew symmetric, g acts on P as follows:
-1
9(P) = 1] (g + Ungho) ™ (g + Ungl) .

when (g%, + Upgl,) " is defined. As we can see in [15], this action is generically
3-transitive ,i.e. Spin(2h, @) has an open orbit in S;, x S;, x S;.. In order to prove
theorem 1.1 part (ii), in section 5 we provide a proof of this statement based on a
new argument: namely we consider 3 points of S;, that are in the same para-
metrization (see theorem 5.1).

3. — Higher secant varieties

Let X C PV (C) be a d-dimensional projective variety.
We pose the following:

DEFINITION 3.1. — The k-secant variety oy(X) is the Zariski closure of the
union of all linear spaces spanned by k points of X, that is

aX)= |J (... m).

X1, X €EX

Ifxcpy (C)is non-degenerate, i.e. it is not contained in any hyperplane, then we
have the following estimate on the dimension of g (X):

dimcoy(X) < min{kd + k — 1, N}.

The problem of determining when the dimension of the secant variety o (X)
reaches this upper bound is called defectivity problem for X. In this sense we have
the following:

DEFINITION 3.2. — Let X C PY(C) be a non-degenerate projective variety of
dimension d .

1. If dimcoy(X) = min{kd + k — 1, N} then we say that o,(X) has the ex-
pected dimension.

2. If dimcoy(X) <min{kd + k — 1, N} then we say that X has a defective k -
secant variety and that

o = mln{kd1m<X +k— 1,N} - dimcak(X)

1s its k-defect.
3. If there’s a k such that X is k-defective then we say that X s defective.
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Now we recall the main tool to compute the dimensions of higher secant
varieties:

LEMMA 3.1 (Terracini, 1911). — Let X c PV (C) be a projective variety and let
2 be a generic point of o, (X). Then the projective tangent space to o(X) at z is
given by

To(X) = <TX L TX>

where x1,. . .,x), are generic points of X such that z€(xy, ..., x;) and ?xiX de-
notes the projective tangent space to X at x;.

By upper semicontinuity, we immediately get an argument to prove that a
variety isn’t defective:

_ COROLLARY 3.2. — Let w1,...,x, €X be smooth points such that
Te X, ..., Ty X are linearly independent, or else

<TMX, o TX> = PY(0).
Then o1(X) has the expected dimension.

Terracini’s lemma also provides a method to show that X has a defective k-
secant variety. More precisely, we have the following:

COROLLARY 3.3 ([9]). — Let d = dimcX and let us suppose that
kd+k—-1<N.

Ifthere exists an irreducible curve of X, embedded in P*~2(C) and containing k
general points of X, then o,(X) hasn't the expected dimension.

4. — An algorithm for the secant defect of spinor varieties

To deal with our problem, we constructed an algorithm through the
Macaulay2 computation system, ([12]).
The script of the algorithm is given below:

h = value read “h?”
k = value read “k?”
p = floor(h*(h-1)/2)
R = QQIx_0.x_(p-1)]
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X =vars R

M = X -> genericSkewMatrix(R,x_0,h)

par = X -> apply(floor(h/2)+1,i- >generators pfaffians(2*i,M(X)))

f =1-> (a=1#0;for i from 1 to #(1)-1 do(a=a|(#i););a)

S = f(par(X))

J = jacobian S

g =1-> (a=1#0;for i from 1 to #(1)-1 do(a=al|(1#i););a)

punti = apply(k,i->for j from 1 to p list random(1000))

puntibis = apply(k,i-> matrix{punti#:})

Spunti = apply(k,i-> substitute(S,matrix(R,{flatten entries puntibis#i})))
Jpunti = apply(k,i-> substitute(J,matrix(R,{flatten entries puntibis#i})))
JS = apply(k,i->(Spunti#i)||(Jpunti#i))

JJS = g(JS)

rank JJS.

This algorithm is based on Terracini’s lemma and on the fact that Pfaffians
parametrize S;; moreover it was conceived for every & and k integers, where

1 ..
h= édlm@V.

The main steps of our algorithm are the following:

1. Preliminaries.
Given &, k and further computed the dimension of S),

h(h — 1)
2 i

we define the polinomial ring R with rational coefficients in the variables
{ao, ..., 2y 1}

2. Parametrization of Sj,.

In order to parametrize the variety of even pure spinors, we construct the
function

M : M) (Q) = My (Q)
defined by
X = (xo,...,2p-1) — M(X) = {m;}
where
My

= .’)Ci+j+(i71)h7(i+1)2(i+2) with 1 <i<j<h

and m;; = —m;;. Then we compute the principal sub-Pfaffians of this matrix by
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using the function
par : M(l,m(Q) - M(lyzh—l)(@)

such that
X = (o, ...,%y-1) — par(X) = (principal sub — Pfaffians of M(X)).

3. Definition of S,

From the theorem 2.2 we obtain that S;, is the image of the function par, i.e. it
belongs to M q 21-1)(Q):

S = par(X) = (si)i—. 2-11-

h
We observe that par, being defined through apply, produces a list of EJ + 1row

matrices; by means of the function f we juxtapose all Pfaffians in one row matrix.

4. Computation of the jacobian matrix of the parametrization.

Applying jacobian to S we get the following p by 2"~! matrix:

J = (ajsi)i:o 2h-1_1;j=0,...p—1"

5. Choice of k random points in S;, and computation of their coordinates.

In order to study o5 (S}), we have to choose k elements of S): so, we consider a
list of k sets ( punti) of p random rational numbers and we construct the cor-
responding skew symmetric / by - matrices; then we compute the principal sub-
Pfaffians of these matrices. In this way we get a list ( Spunti) composed of the
parametric coordinates of the k selected points:

punti = {punti,...,puntiy_1}
punti; = (q@, . ,q;'H), ¢ € Q random, ¢} <1000
Spunti = {S(puntiy),...,S(punti_1)} = {Po,...,Pr_1}

6. Construction of the affine tangent spaces to S;, at the k points.

Now we evaluate the jacobian matrix J at the points under consideration.
Thus we obtain a list (Jpunti) of matrices whose images correspond to the vector
tangent spaces to Sy,; placing the row made up of the coordinates of one point
before the corresponding jacobian matrix we get the affine tangent space to Sj, at
such point:

Jpunti
JS

{J|X:punti07 s 7J‘X:p7.mtik,1} = {J07 s 7Jk—1}
{PolJos - - s Pr1lJk-1} = {JSo, ..., JSk-1}-



HIGHER SECANTS OF SPINOR VARIETIES 221

7. Computation of the dimension of a;,(Sy,).

Finally, we arrange in columns the (p + 1) by 2"~! matrices JS,...,JS;_;
and we obtain the k(p + 1) by 2"~1 matrix JJS associated with the span of the
affine tangent spaces. From Terracini’s Lemma we get that the rank of JJS
produces the affine dimension of ;(S),); subtracting 1 to the output we get the
required dimension:

g : {lists of matrices} — {matrices}
B={B,Bs,...} — g(B)=(Bi|Bs|...)

JSo
g(JS) = - JJS

JSk-1

OUTPUT rank(JJS).

REMARK 4.1. — If the achieved value coincides with the expected dimension of
ax(Sy), i.e. if JJS has maximum rank, then we can be sure that the actual di-
mension is that value (corollary 3.2); otherwise we can only guess Sj, is k -de-
fective.

It’s not hard to check, by direct computations, that, if » <5, then S, isn’t
defective, [4] and [11]. So we used this algorithm from the stage (2, k) = (6,2) to
the stage (h,k) = (9,5): beyond these values the memory of the computer was
used up.

Our results are summarized as follows.

k=2
h p N expdimgg(S,) dimog(S;) defective
6 15 31 31 31 NO
7 21 63 43 43 NO
8 28 127 57 57 NO
9 36 255 73 73 NO
10 45 511 91 91 NO

11 55 1023 111 111 NO
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k=3
h p N expdimog(S,) dimoy(S,) defective
7 21 63 63 58 YES ()
8 28 127 86 85 YES (%)
9 36 255 110 110 NO
10 45 511 137 137 NO
11 55 1023 167 167 NO
12 66 2047 200 200 NO

k=4
h p N expdimog(S,) dimo,(S;) defective
7 21 63 63 63 NO
8 28 127 115 111 YES 3)
9 36 255 147 147 NO
10 45 511 183 183 NO

k=5
h p N expdimogg(S,) dimog(S,) defective
8 28 127 127 127 NO
9 36 255 184 184 NO

The last three tables provide a proof of theorem 1.1 part (i) till 2~ = 12 and
even some cases more.

In the first table we can see that, if 6 < 7 < 11, then 02(S},) has the expected
dimension; this fact agrees with already known theoretical results, ([11]).

However, we found some “anomalies” when (%, k) € {(7,3), (8,3), (8,4)}. So,
we supposed that actually these varieties haven’t the expected dimension.
Indeed, in the next section we explain, from a theoretical point of view, that Sg
has a defective 3-secant variety and a defective 4-secant variety and that S; has a
defective 3-secant variety. Hence we get a proof of theorem 1.1 part (ii).

5. — The defective cases

In order to prove that o3(Ss) and g4(Sg) haven’t the expected dimension, we

proceed as follows.
Let assume that & is an even number, 2 = 2m. With the notations of section 2,

M) see theorem 5.5.
) see theorem 5.3.
() see corollary 5.4.
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let

m m

so=er-..oep, 5= [[(1+ez1-e2), 52 = [[(1—ei1-e2)

i=1 i=1

be elements of Sj: they are representative spinors of the maximal totally iso-
tropic subspaces

E=(ei,...,en)
G =(e2i—1 + fai, €21 — foi-1,1 <1 <m)
H =(esi_1 — foi, 02i + foi1,1 < 1. <m)

respectively. Their corresponding % by 2k matrices are

Py =[1;|04]
Pl :[lhum]
P2 :[IIL|_JWL]

where J,, denotes the skew symmetric matrix of size 2 made up of m diagonal

. 0 1
blocks like < 1 0 > .
THEOREM 5.1. — The orbit of (Po, P1,P2) is open in Sj, x Sy, X Sj,.

Proor. — Let consider the function
fo S0@h,Q) — Sy xSy xSy
g = (9(Po),9(P1),9(Pz))

where
9(Po) =[11(¢h1) 6%

9(P1) Z[Ih (Qtn +ngt12)71(9§1 + ngéz)}

9(P2) = (1] (ghs — Tugho) " (0hs — Tuthe) |
we remark that
Im f = {(g(Po),9(P1),9(P2))|g € SORh,Q)}

is the orbit of (Py, P1, P2). Taking g = I3, the tangent map of f at the point g is:

Afy,, : s0(2h, Q) — T(p,p, P, Sk X S x Sp],
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where so(2h, Q) is the Lie algebra of SO2h, @), that is:
s0(2h, Q) = {A € SOCh,Q)|A"B = —VA}.

We have that Im df7, is the tangent space to the orbit of (Py,P;,Pz) at
(Po, P1,Ps). Our aim is to show that dfy,, is surjective, or that

dimker dfy,, = dim s0(2h, Q) — dim. Imdf;,,
2h@h—1) 3h(h—1)
-T2 2

h(h +1)
5

In order to study kerdf;,, we use the first-order Taylor expansion of
= (fi,f2,f3) about Iy,. So, let H € so(2h,Q), i.e.

oo Hy Hp
Hy Ho

with H;j € M(h,C), i,j € {1,2}, such that H}; = —Hs and Hys, Hs are skew
symmetric; we get that

filloy +H) = {Ih/‘(lhﬂLth)_lHtm} = [L|Hy + .. ]

folle+ H) = [ (I Hyy 4 TuH) ™ (Hy 4+ (1 4+ Hy)) |
= [Ih|=]m +H§1 +JmH§2_thJm_JmHﬁsz"’---}
Follo+HY = [ (I HYy — T H) ™ (Hy — T (54 HS))|

= [Iy|-Jw + Hby — JnHby + Hi Sy — JuHig T + . ]
and then we have that
H, =0
kerdfy, = ¢ H € s0(2h, Q)| Hy + JyHby — HY Jy — JH gy = 0
Hyy =Sl + Hyy o — i) = 0

A direct computation shows that

H7é1 = Ht12 =0
kerdfy, = < H € so(2h,Q) ) ’

J. mng = (J mthz
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thus
dim ker dfy,, = dim{A € M(h,C)

= (JuA)'}.

Since the set in question is the pull-back via multiplication by J;,! (which is a
diffeomorphism) of the set of symmetric matrices, we get that

h(h +1
= ()} ="

which concludes the proof. O

dim@{A e M(h,C)

COROLLARY 5.2. — If h = 2m then

m

m
so=e1-...cep, 1= [(1+eai1-ex) s2=][[(1 - e2i1-e2)
i1 i1

are general points of S,

Now we are ready to prove the following:
THEOREM 5.3. — The variety Sg is 3-defective and o3 = 1.

ProoF. — From corollary 5.2 we get that

4

4
so=e1-...-es, 1= [[(1+eaic1 - ex), s2 = [[(1 — eaic - e2)
=1 1=1

are general points of Sg; their corresponding 8 by 16 matrices are:

Py =[I5|0g]
Py =[Ig|J4]
Py =[Ig|—J4].

Let C be the rational normal curve defined by
C(t) = [Is[t]4].
We have that C is embedded in P*(C), it’s contained in Sg and
C(0) = Py, C(1) = Py, C(—1) = Pa.

Since
3dimSg + 2 = 86<2%1 — 1 =127,

we may apply corollary 3.3 and we get that o3(Sg) hasn’t the expected dimension,
as desired. O
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REMARK 5.1. — Same argument says that, for all 7 = 2m, there exists a ra-
tional normal curve of degree m in S), through three general points.

Theorem 5.3 implies that four projective tangent spaces to Sg are always
linearly dependent. Hence the following holds, see also the table for k =4 in
previous section:

COROLLARY 5.4. — The variety Ss is 4-defective and o4 = 4.

In the case of & =7 we can’t apply corollary 5.2. Nevertheless we have the
following:

THEOREM 5.5. — The variety St is 3-defective and o3 = 5.

ProoF. — Let X7, X5, X3 € S7 represented in blocks matrix form and let
f:8014,Q) — S7 x S7 xSy
be the function defined by
f(9) = (9(X1),9(X2),9(X3)), for all g € SO(14, Q).
Taking g = I4, the tangent map of f at the point g is:
dfr,, : 80(14,Q) — T (x, x, x,) [S7 x S7 x Sq].
To complete the proof it suffices to find Xy = [I7|U1], Xz = [[7|Us], X3 =

[I7|Us] € S7 such that:

1. the orbit of (X7, X, X3) is open in S7 x S7 x S7;
2. dim(e<TXIS7, Tx,S7, TXSS7> = 59 (we recall that 59 is the value we got by
applying our algorithm at the stage (h, k) = (7,3)).

In order that X7, X, X3 may satisfy the first property, the rank of the 91 by 63
matrix corresponding to dfy,, has to be maximum.
So, we use the first-order Taylor expansion of f = (f1,fs,f3) about I14. If

Hy Hype
Hyy Ho

H:

] € s0(14,Q),

with H;; € M(7,C), i,j € {1,2}, we have that, for i € {1,2,3},
filha + H) = I\ (I + Hiy + UiH'y) ™ (Hy, + Us (I + Hiy) )|

=[I1|U; + Hy + Uiy, — Hy U; — UiHRU; + ..
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Since H € so(14,@Q), it’s not hard to show ([4]) that, for 7 € {1,2,3},
A; = Hy, + U;Hy, — H,U; — UH,Uj

is a skew symmetric matrix. By computing the jacobian of Pfaffians of size 2 of
A;, 1€ {0,1,2}, we get the matrix corresponding to dfy,,.

In order to find such points we employed the Macaulay2 software system,
([4D); in particular U; = O7 whereas Uy and Us are made of random rational
entries. With these choices the above conditions 1. and 2. are satisfied. O

REMARK 5.2. — The result of theorem 5.5 agrees with the fact that the ideal of
g2(S7) is generated in degree 4, as we can see in [14].

6. — Non defective spinor varieties

In this section, by using induction, we get our main result.
First of all we have the following:

THEOREM 6.1. — For all h > 12, the affine tangent spaces to S;, at

ph I O12x(h-12) O12 O12x(1-12) |
O 1 Og-12x12 In12 |Ogi-12x12 Oj-iz

ph Is O12x(-12) Je O12x(1-12) |
V7 Ogzxiz Tz |Ogimxiz Ojre

I O12x(-12) Ks O12x(1-12) |
|Ot-12x12 D1z |Og1zyxz Op-rz

ho_
pP; =

where Jg is the standard skew symmetric matrix of size 12 already used before
and Kg 1s the skew symmetric matrix of size 12 with six diagonal blocks of type

0 ¢
(_t O),te{2,3,...,7},

are linearly independent.

ProOF. — We proceed by using induction on A.
If h = 12, a slight modification of our algorithm in step 5 allows us to check

the statement.
Therefore, we assume that the theorem holds for all z such that 12 < h < s,

we want to prove it also for s + 1.
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First of all we remark that S is embedded in S, as follows:

) Is Os><l U Os><l o 77
mmoes s or %ol %] = feal] e s
where U € M(s, C) is skew symmetric.

Now, let
Y1
P= [Isﬂ‘f]} = |11 u © | €8s,
Ys
s 0

with U = {u;;} skew symmetric of size s; we can parametrize P in (e
in such a way that the first coordinates correspond to the principal sub-Pfaffians
of U and the last one to those of U that involve the last column. Moreover, if
P € S, then, because of (1), the affine tangent space to Sg;; at i(P) can be re-

presented by the following (s +21)S +1 x 267D matrix M5+!, whose blocks
form is:
Ms+l _ (Cl CZ)
where
1 Pf2( ) Pfy(U) Pfi(U)
Cy=| Oc-ne 6% Pf, (U) %”Pﬁ; w) --- %”Pfl (U)
O:"><25*1
and
Ol><23—1
Cy = 0(5—21)s w91 :
I ‘ Astl ‘ *

Pf,(U) is the set of the principal sub-Pfaffians of U of size [, A*™! is the s x (;)

matrix made up of the derivatives, with respect to y1,...,ys, of the principal
sub-Pfaffians of U of size 4 that involve the last column and the entries of * are
the derivatives, with respect to y1,...,¥s, of the principal sub-Pfaffians of U of
order » > 6 that involve the last column.

We remark that the first two blocks of C;

] P (0) Pf4() - _P(0)
Oc-vsy  g.-PR(U) Pf(U) - F-Pf(U)

represent the affine tangent space to S at P.



A direct computation shows that A%*! has the following blocks structure:

where Dj’s entries, i € {1,...,s —2}, are the derivatives, with respect to
Y1,--.,Ys, of the principal sub-Pfaffians of U of size 4 whose first row is the i-th.

HIGHER SECANTS OF SPINOR VARIETIES

(D1

Ds

0372 )

For our aim, we need only the first four blocks of A5*1, i.e.:

Dy

Dy

U23 U2q - - U2s Uzq U35 - U3s U(s—1)s
U1z —Ui4 - — Ups Ovvovorenenns 0 0
uals_o —Ur4 —UL5 - — Uls 0
ui3ls 3
0
—Uls
U1(s—1)11
O vvrrnnnnn. 0 Ovvovorennns 0 0
U3z4 U35 -~ U3s Ugs Ugp Ugs U(s—1)s
Uy —Ugs - — Uns Ovvovoveninns 0 0
Ug3ls_3 —Us —Uge " -+ — U2
Ugals_4
0
—U2s
ug(s—1)11
Ovoveneninns 0 0
O vvovrnnnns 0 0
Ugs Ugg -+ Ugs U(s—1)s
—U35 —U36 " — U3s 0
D3 = uzgls_4
0
—U3s
ug(s—1)11
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O 0 0
O 0 0
O 0 0

Us6 UsT * -+ Uss ] Us—1)s
Dy = | Tta6 —tar - = s 0

ugsls—5
0
—U4s
U4(s—1)11

So, if instead of a generic skew symmetric U € M(s, C), we consider, re-

spectively,
s _ Os2 O12x(s-12)
0 Oi-12x12 Os-12

Us — Je O12x(s-12)
! Og-12x12 Os-12

Us — Ks O12x(5-12)
2 0(5712)><12 05—12

and we arrange in columns the corresponding M**! matrices, we get the span of
the affine tangent spaces to Sy.1 at Pyt = i(P), Pi™ =i(P}), Py = i(Py).
Reorganizing opportunely the rows, we can focus our attention on the following

{3 (s ;1)8 + 3} x 26701 matrix:

S
s+l ( d 03—(821)3+3X2“>

OSSXZ"*I Q
where
1 O1x2:-11

O sy ge1y
- 1 PhHL{U;) PR - PHLTY)
T | Oconeyy OPfoy, OPfyu; o Py
1 PhRUs)  PHU5) -+ PL{US)
O%Xl an2‘U§ an4|U2*‘ apfl|U2“

IS ()SX(Z) *0
Q=[1, | A5H k1|
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We want to prove that 7%+ has maximum rank, i.e. that

rankTs =3 (s ;1)8 +3.
By induction,
ronkT® = 3 (s _21)8 +3,

being 7* the matrix corresponding to the span of the affine tangent spaces to S
at Pj, P;, P5. Then we have only to prove that

AS+1
(2) rank (A§+1> = 2s.

We remark that A3 = AT;1 and A" = AT;?,; so we consider the following
S . 1 2
2s X (3) blocks matrix:
As+1
<A£+1>=(Bl By -+ Bgsa)
. Di|Us . .
with B; = tl,7€{1,...,s —2}. In particular we have that:
i|Us
0---0[10---0]0---0[10---0 1/0
0---0l00---0/0---0/00---0 0
I..2 |00---0[0---0[00---0
O._3 0---0100---0
Os—4 | 00---0
0575
B, = O1
Y7100 30--0[0---0[40---0 7/0 [
0---0/00---0/0---0/00---0 0
2l 5 [ 00---0{0---0]00---0
O._3 0---0100---0
Os_4 |00---0
()575
0O,
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10---0{0---0]10---0 1/0
O. 3 0---0100---0
Og_4 |100---0
Os—5
— Ol
By = 00---010---0l00---0 0/
30-.--0(0---0140---0 7/0
O._3 0---0100---0
Og_4 |100---0
0575
O
0---0[10---0 1/0
00---0 0
T 000 10---0 1/0
s 00---0 0
0575 0575
_ O _ 01
Bs =507 00.0 0o 12+ =00 0
0---0100---0 0 00---0 0
0---0140---0 7/0 00---0 0
0---0100---0 0 40---0 7/0
3[,_4 | 00---0 00---0 0
05_5 0575
O, O

We observe that in the case of s =12 we consider the element before /,
otherwise the element after.
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By the Gauss elimination algorithm, the blocks Bi, By, Bs and B4 become,
respectively:

00---0l0---0l00---01--- 0
I, 0---0/00---0
Os_3 00---0
Os—4
0375
O,
0---010---0]0---0[10---0 1/0
T 0---0/00---0/l0---0]l00---0 0
Y00 l00--0[0--0[10---0 4/0
00---0l0---01l00---0
Os_s 0---0]00---0
O, 3 00---0
0574
0875
0
O,
00---0]0---0]00---01--- 0
0---0]00---0
Oy 3 00---0
0874
08—5
O
B | 10---0]0---0[10---0 1/0
> [00--0[0---0[00---0 0
00---0]|0---0[10---0 4/0
0---0/00---0
Os_3 00---0
0574
0.5‘75
0
o
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0---0[10---0[---]1/0 00---01--- 0
0---000---0 0 10---0 1/0
00---0 00---0 0
[5'74
05_5 05—5
0 0
01 Ol
0---0100---0 0 00---0 0
- | 0---0]00---0 0 |- |00---0 0
B =50 000 0 [ P1=[000 0
0---000---0 0 00---0 0
0---0[20---0 5/0 00---0 0
0---0100---0 0 20---0 5/0
00---0 00---0 0
-[574
0575 0375
01 Ol
Now it’s easy to check that (2) holds, as desired. |

As a consequence we get immediately:

THEOREM 6.2. — For all h > 12, 03(S},) has the expected dimension.
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