BOLLETTINO
UNIONE MATEMATICA ITALIANA

FEDERICO BASSETTI, ESTER GABETTA

Survey on Probabilistic Methods for the Study
of Kac-like Equations

Bollettino dell’Unione Matematica Italiana, Serie 9, Vol. 4 (2011), n.2,
p. 187-212.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2011_9_4_2_187_0>

L’utilizzo e la stampa di questo documento digitale é consentito liberamente per mo-
tivi di ricerca e studio. Non ¢é consentito I’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim. eu/


http://www.bdim.eu/item?id=BUMI_2011_9_4_2_187_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2011.



Bollettino U. M. 1.
9) IV (2011), 187-212

Survey on Probabilistic Methods for the Study
of Kac-like Equations

FEDERICO BASSETTI - ESTER GABETTA

Dedicated to the memory of Carlo Cercignani

Sunto. — This mainly explanatory paper shows how divect application of probabilistic
methods, pertaining to central limit general theory, can enlighten us about the re-
laxation to equilibrium of the solutions of one—dimensional Boltzmann type equa-
tions. In particular, conditions under which the solutions of these equations converge
to suitable scale mixture of stable distributions are reviewed. In addition, some recent
results about the rate of convergence to steady states, with respect to various metrics,
are summarized. Finally, by resorting to the above mentioned probabilistic methods,
some new results related to a linear kinetic model are proven.

1. — Introduction

Dynamical processes in many body systems are often modeled by kinetic
equations, that describe the dynamics of a single particle distribution. In these
equations the so called collisional term takes into account the complicated in-
teraction between particles. A classical problem related to kinetic equations is the
study of the asymptotic behavior of the solution as the time goes to infinity, that is
the study of the relaxation to equilibrium [21, 22, 23, 25, 26]. This problem is very
challenging for physically realistic (multidimensional) kinetic models. For this
reason, simplified one-dimensional and spatially homogeneous equations, such as
the celebrated Kac equation [44], has been introduced and studied. Since the
simplified models usually preserve many essential features of the more realistic
ones (for example the non-linearity), their analysis provides a pattern for sub-
sequent possible generalizations. To study the above mentioned problem, many
specific tools has been fruitfully employed in the analytic setting, such as: closed
moment equations, Fourier transforms, contracting distances, etc. An alternative
approach to the study of the relaxation to equilibrium has been developed starting
from the idea of H.P. McKean Jr. of relating the solution of the Kac equation to a
stochastic process. See [45, 46, 56, 57, 55]. In point of fact, in the last decade, the
transition from the analytic to the probabilistic approach produced interesting
new results. The aim of the present review is to show how probabilistic techniques,
essentially linked to the central limit theorem (CLT) of probability theory, per-
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mitted to solve some open problems and to refine some already known results
concerning the Kac equation and some of its generalizations.

The paper is organized as follows. In Section 2 we introduce the Kac model
and its generalizations. In Section 3 we provide the probabilistic representation
of the solution of the generalized Kac equation. In Section 4 we summarize the
relevant material on stable distributions and central limit theorems. Section 5
deals with the stationary solutions, showing that they are suitable scale mixtures
of stable laws. In Section 6 we review the main results concerning the relaxation
to equilibrium of the solution of the Kac equation and of the kinetic equations
presented in Section 2. In Section 7 we give a brief exposition of some recent
results about the rate of convergence to equilibrium with respect to various
distances. Some new results related to a linear kinetic model are proven in the
last section.

2. — The Kac equation and some of its generalizations

An important example of kinetic equation is the classical homogeneous
Boltzamnn equation with Maxwell-type interactions, where scattering probability
rates of the two particles at time of the interaction are independent of their re-
lative velocity [21]. In order to better understand the connection between the -
particles system and the corresponding kinetic equation, M. Kac [44] introduced
and studied a one-dimensional caricature of a Maxwellian gas. He considered a
system of n interacting particles on the real axis and, under suitable conditions,
he got, for n — + oo, the following analogous of the Boltzmann equation:

0
2.1) 51/ @D +f@.D = Q" (f(.0.f(. D))
f@,0):=fv) ({>0,veR)

where f(-,t) stands for the probability density function of the velocity of a mo-
lecule at time ¢ and the bilinear collisional term is

2.2) QT D.f(. )W) := f f(’vc(H)—ws(@),t)f(vs(@)+wc(9),t)M

2n
Rx[0,27)

with ¢(0) := cos 0 and s(6) := sin . It is easy to check that the Fourier transform
F(E 1) := [ (v,t)dv of f(-,) satisfies the equation

2n
9 1
23) aM@+Mﬁ=%!amww@@ﬂw
$(E0):=¢)(&)  (t>0,E€R),

where ¢, stands for the Fourier transform of f. See [9].
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Relatively recently, models of granular gases were introduced in the math-
ematical physics framework [10, 24]. In this case one considers pseudo-
Maxwellian particles approximating dissipative hard spheres. The undergoing
interparticle inelastic collisions are described by a Boltzamnn-like collision term
that does not preserve the kinetic energy. To model one-dimensional caricature
of granular gases suitable modifications of the Kac equation (2.1) have been
introduced. See [3, 8, 52]. For instance, [52] used equation (2.3) with
c(0) = cos(0)|cos()|” and s(0) = sin(0)|sin(0)|’, where the positive constant p
measures the degree of inelasticity during collisions. From now on we shall call
this equation inelastic Kac equation.

The previous one-dimensional models can be seen as special cases of a more
general model, introduced in [4], governed by a Kac like non-linear kinetic
equation of the form

0 A ' '

(2.4) { 6O+, = Q7@ ), ¢, NCO =0, R)
$0,8) = ¢,(O)

where the collisional gain term Q* is a generalized Wild convolution,

(25) QM (@t ), 4t Q) = E[$t; LOFGERD] (€ € R).

Above, (L, R) is a random vector defined on a probability space (@, F, P) and E
denotes the expectation with respect to the probability measure P. The initial
condition ¢, is a prefixed Fourier-Stieltjes transform of a probability measure ,
ie. )& = [e’uy(dv). Hence, ¢(t;-) can be viewed as a Fourier-Stieltjes
transform of a time dependent probability measure g, ie. ¢t; &) = 1,6 =

[ €<’w,(dv). In the following, we will say that y, is a solution of the generalized
R

Kac equation (2.4), with initial condition x,, provided that its Fourier-Stieltjes
transform ¢(¢,-) is a solution of (2.4) with initial condition ¢,. Finally, we
shall denote by Fy the probability distribution function of gy, that is
Fo@):= [ uyldv).

(—o0,x]
A fundamental assumption on (L, R) in this kind of equation is that there
exists an a in (0, 2] such that

(2.6) E[L" +|R"] = 1.

It is worth noticing that (2.6) expresses a conservation law. For instance if o = 1
or 2 condition (2.6) entails the conservation of momentum and energy, respec-
tively.

We recall that the generalized Kac equation (2.4)—(2.5) is strictly related to a
class of Maxwell-type equations introduced and studied, by analytic techniques,
in [11].
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The Kac equation (2.3) is obtained as a special case of (2.4) for the particular
choice L = cos@ and R = sin®, where O is uniformly distributed on [0, 27). In
this case, since L2+ R% = sin® @ + cos2 @ = 1 almost surely (a.s.), (2.6) holds
with a = 2. The above—mentioned inelastic Kac equation fits into the framework
of (2.4)-(2.5) letting L = cosO|cos O' and R = sinO|sin OFF. Indeed, for
a=2/(p+ 1), one has

(2.7 IL|" +|R|" =1, a.s.

and thus also (2.6) holds.

Finally, we mention that equation (2.4)-(2.5) with a = 1 has been used also
to model the temporal distribution of wealth, represented by 1, in a simplified
economy. See [49] and references therein. In these models the relaxed con-
dition (2.6) is very important, as it takes into account stochastic gains and
losses due to the trade with risky investments. In particular, wealth dis-
tributions with heavy tails are consistent with certain models satisfying (2.6),
but are excluded under the stricter condition (2.7) of deterministic trading.
See [49, 4].

It is worth pointing out that a semi-explicit expression for the Fourier-
Stieltjes transform of the solution of (2.4)-(2.5) is given by the Wild sum

(2.8) ¢t =) e'l—e Vg (t>0EeR)

n=0
where @, is recursively defined by

q0(&) == ¢y()

(2.9) =
0 =Y EIGLOG1/RI] (0 =1.2,...).
=0

Originally, the series (2.8) has been derived in [62] for the solution of the Kac
equation. It is easy to prove, following the same line of reasoning of the
original paper of Wild [62], that (2.8) is also the unique solution of equation
(2.4) in the class of the Fourier-Stieltjes transforms. See, e.g., Proposition 1
in [4].

We conclude this section by recalling that the aim of the present paper is to
survey some results concerning the relaxation to equilibrium of the solution of
(2.4)-(2.5), obtained via the application of probabilistic methods.

In particular, we will investigate the conditions under which ¢(¢, -) converges,
as t — + o0, to a stationary profile ¢, solution of the integral equation

(2.10) 6. =Q"(¢..,9.00) (eR).
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3. — Probabilistic representation of the solutions

As already recalled in the introduction, the starting point of the probabilistic
approach is a suitable representation of the solution of the generalized Kac
equation, derived from the ideas of McKean [45, 46]. In point of fact, in [36] it has
been proved that the solution ¢ of the Kac equation is the characteristic function
of a sum of a random number of randomly weighted random variables. Later, in
[4] the validity of a slightly different representation has been provided for the
solution of the generalized Kac equation (2.4)-(2.5).

Now, a description of all the elements, which are necessary for the under-
standing of this probabilistic representation, is given.

Let the probability space (2, F, P), mentioned apropos of (2.5), be large en-
ough to support the following random elements:

e a sequence (X,),cn of independent and identically distributed random
variables with probability distribution function Fy, i.e. P{X; < x} = Fy(x);

e a sequence ((Ln,RH))n o of independent and identically distributed ran-
dom vectors, distributed as (L., R);

e asequence (I,,),cn of independent integer random variables, each I, being
uniformly distributed on the indices {1,2,...,n};

e a stochastic process (v, With v € N and P{w; =n} =e'(1 - ety 1
n > 1.

Moreover, let (Z;)nexs Lin, Rpen, Xnnen and (v)io be stochastically in-
dependent.
Next, define a random array of weights f := [Bjn:d=1,...,nly>1 recur-
sively:
/)71‘1 =1, (ﬁ1,2aﬂz,2) = (L1, Ry)
and, for any n > 3,

(ﬁl,nJrlv ce 7/))n+1,n+1)

(3.1)
= (ﬁl,na s 7/))I,n—1,mLnﬁlmmRnﬁ],ﬂwﬁlm—lma s 7ﬁn,n)'

Finally, set

n 1
(3.2) W, =Y p.,X; and Vi=W, => g X
j=1 j=1

We are now in a position to formulate the announced representation.

ProposiTION 3.1 (Probabilistic representation of ¢(¢), [36]-[4]). — The char-
acteristic function ¢(t,-) of Vi, is given by

(¢, &) = E[e"""] = i e 'l —eY'E[" ] (t>0,EeR).
n=0
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It represents the unique and global solution to equation (2.4)-(2.5), with initial
condition ¢y(0,&) = ¢,(&).

The probabilistic representation contained in the previous proposition is
based on the idea, due to McKean, of re-writing the Wild series in terms of a
random walk on a class of binary trees, the so-called McKean trees, [45, 46]. In
point of fact, each finite sequence 7, = (I1,1s,...,I,_1) corresponds to a
McKean tree with » leaves. The tree associated with Z,,.; is obtained from the
tree associated to Z,, upon replacing the I,,-th leaf (counting from the left) by a
binary branching with two new leaves. The left of the new branches is labeled
with L,,, and the right branch with R,,. The weights /)’]-"n are associated with the
leaves of the T,-tree: f5;, is the product of the labels assigned to the branches
along the ascending path connecting the j-th leaf to the root. See Figure 1 for an
illustration. For more information on the connection between the McKean trees
and the Wild series, see [15, 6, 36]. It is worth recalling that, in the probabilistic
literature, McKean trees are usually referred to as random binary search trees.
See, e.g., [31].

B4 2,4 B34 Ba4

Baa  Paa

Fig. 1. Two 4-leafed McKean trees, with relative weights f; ;: the left tree is generated by
74 =(1,1,3) and its weights are f§, ; = L1 Lo, 4 = L1 Ry, B3, = RiLs, f14 = RiRs; the
right tree is generated by 7, = (1,1,2) and its weights are f3;, y = L1 La, iy, = L1 Ro L3,
/7)34 = L1RyR3, ﬁ4,4 = R

By Proposition 3.1 it is clear that the behavior of ¢(t) as ¢ — + oo is de-
termined by the behavior of the law of W,, as n — + oc. Apropos of this, we
anticipate that direct application of the classical central limit theorem is not al-
lowed to investigate the weak limit of W,, since the weights in (3.2) are not
mutually independent. However, as we shall see in Section 6, by resorting to
suitable forms of conditioning for W,,, one can take advantage of classical pro-
positions pertaining to the central limit problems. The idea of using the prob-
abilistic representation of the solution ¢(,-), in combination with a suitable
conditioning argument, to study the relaxation to equilibrium of Kac like equa-
tions, has been used for the first time in [36], and it is in part inspired to a
technique developed in [33] to prove central limit theorems for triangular arrays
of exchangeable random variables.
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From now on we make the following assumption:
(Hy) L and R are positive random variables.

Since the original Kac model assumes uniform distribution of (., R) on the
circle, the assumption (H;) could seem very severe. However, the study of both
the classical Kac model and of the inelastic Kac model can be reduced to the
study of the positive case. Indeed, it is well-known that their solution can be
written as

¢(t; é) = eitlm(¢0(é)) + ¢* (tv é)a

where ¢ is the solution to problem (2.4)-(2.5), with Re(¢,) in the place of ¢,
L = |sin(@)|""? and R = |cos(®)["™” (p > 0). Hence, note that if s, is a sym-
metric probability distribution, then ¢(, -) itself is a solution of (2.4)-(2.5), with
L = [sin(@)|*"? and R = |cos(@)|" ™.

Finally, in addition to hypothesis (H1), we will assume that

(Ha) g ts symmetric.

This assumption is unnecessarily restrictive for the validity of the results we
will present, but it simplifies the statements of the results and certain types of
computations. The reader will be referred to the suitable references for the
results concerning the non—symmetric initial datum.

In spite of the above remark about the direct applicability of the classical
central limit theorem, such a distinguished theorem of the probability theory
provides a fundamental direction toward the results we want to review. Then, in
the next section, some basic facts concerning stable distributions and central
limit theorems will be recalled.

4. — Stable laws and central limit theorem

We recall that a symmetric a-stable distribution (for a € (0,2]) — in symbol
I', 1, —is a probability measure with Fourier-Stieltjes transform

(4.1) Pasey (@ = eI (e R).

Here k¢ > 0 is a positive parameter, and k(l)/ * is the so called scale parameter.
Note that if a = 2 then j,,, is the Fourier-Stieltjes transform of a Gaussian
distribution with variance ¢ = 2k, and zero mean. It is well-known that any
stable distribution is absolutely continuous and its density will be denoted by
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Yaky» 0 particular

P -
¢ kol :fe“”ya,ko(v)dv.
R

Stable laws are strictly related to the limit in distribution of normalized sums
of independent and identically distributed random variables, i.e. to a particular
form of the central limit problem of probability theory.

Before proceeding, it is worth recalling that a sequence of probability mea-
sures (u,)n>1 converges weakly to a probability measure x if, for every bounded
and continuous real valued function g,

Jim [ gy = [ gucy).

Analogously, a sequence of random variables (Y,,),>1, with probability distribu-
tions (u,,)n>1, is said to converge in distribution to a random variable Y, with law
1, if (u,,)y>1 converges weakly to y, or, what is the same, if

lim_EB[g(¥,)] = Blg(Y)],

for every bounded continuous function g. Recall also that the Lévy continuity
theorem, see e.g. Theorem 8.28 in [14], states that (Y,,), converges in distribution
to Y if and only if the characteristic function of Y,, converges pointwise to the
characteristic function of Y, i.e.
lim E[e"] = E[e“Y] (€€ R).
n—-+00

Now we are in a position to formulate the characterization of a (symmetric)
stable distribution in terms of limit of a normed sum of random variables.
According to the hypothesis that the initial datum is symmetric, we confine
ourselves to considering only the case of symmetric summands. For the general
statement of this well-known result, as well as for the general definition of stable
law, see, for instance, [14].

Let X1, Xy, ... be independent and identically distributed real-valued ran-
dom variables, with symmetric probability distribution, and set

1 &

i=1

A random variable X, is the limait in distribution of (4.2) if and only if X, has
characteristic function (4.1) for some ko > 0.

A symmetric distribution function F is said to be an element of the normal
domain of attraction of a symmetric stable law of exponent a if, for any sequence
of independent and identically distributed real-valued random wvariables
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X)n>1, with common distribution function F, S, converges in distribution to a
ramndom variable X, with symmetric stable law of exponent a.

In other words, the normal domain of attraction of a stable law is the class of
all the probability distributions of X; for which a central limit theorem holds for
the normed sum (4.2).

We summarize here some relevant theorems on the characterization of the
normal domain of attraction of a stable law - for the proofs see, for instance, [38]
or [14].

If a = 2, Fy belongs to the normal domain of attraction of a Gaussian law if
and only if it has finite variance

ag ::fxzdFo(ac)< + oo.

In contrast, if a # 2, then a symmetric distribution function Fy belongs to the
normal domain of attraction of a symmetric a-stable law if and only if it satisfies

(4.3) lir+n 2*(1 — Fo(x)) = lim |z|"Fo(x) = ¢" < + cc.
Xr—+ 00 X——00

The parameter kg in (4.1) can be expressed as a function of ¢* by

2nc™

(4.4) ko = S @ysin(na/2)

Among the mathematicians who have given important contributions to the
theory of stable laws as limiting distributions and their domain of attraction one
has to recall P. Lévy, A. Ya. Khintchine, W. Feller, B. V. Gnedenko and W.
Doeblin. See, e.g., [41]. A deep investigation into the area is given in the fun-
damental book of Gnedenko and Kolmogorov [38].

In order to characterize the normal domain of attraction of a stable dis-
tribution in terms of the Fourier-Stieltjes transform ¢,(¢) := f e dFy(v), it is
useful to mention the following result: R

A symmetric probability distribution function Fy belongs to the normal
domain of attraction of an a-stable law if and only if

(4.5) 1= ¢y = (ko +vo(IE]* (€ R,

where vy s bounded and |vy(&)| = o(1) as |&| — 0. See Theorem 2.6.5 in [43].

We conclude this section by stating a central limit theorem for weighted sums
of random variables, which will be useful in the next section. Let (b;,,);, be an
array of positive weights. Given any sequence of identically distributed random
variables (X;);>; with a symmetric distribution function Fy, set

S, = zn: bjn X
j=1
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PROPOSITION 4.1. — Assume that, for some a in (0, 2],

n
(4.6) lim > bY, =ms<+oo, and lim  max bj, = 0.
=1

n—+o0o £ n—+00 j=1..m
J

If the symmetric probability distribution function Fy belongs to the normal
domain of attraction of a symmetric a-stable law, then

(47) lim B[] = 5 g, () = R0l

n—+ 0o

for every & € R, with ko defined in (4.4) for a # 2 and ko = 6%/2 for a = 2.

ProOF. — The proof can be obtained as a consequence of the central limit
theorem for triangular arrays. We give here a simple direct proof. First note that,
by (4.6),

n n
N —kol&|* Y bl — a
V@) 1= [ D (b = €1 2o Pinl” gl

J=1

Hence it suffices to prove that |¢,() — y,,(&)| — 0 where
- & eSS b X n sy "
8,(9) = E[eS] = E[elg i1 Oin _7} _ H [[e<binXi] = H B0(bjnd).
j=1 J=1

Since an a—stable law trivially belongs to its normal domain of attraction, re-
calling that Fy belongs to the normal domain of attraction of an a-stable dis-
tribution, by (4.5), one gets

(48) O —1+kolc" = =0 OIE* Py (© — 1 +kol&]" = —v1(O[E]"

with v; bounded and |v;(£)| = 0(1) as £ — 0 (i = 0,1). Since for every complex

numbers z,...,2, and 2, ...,z,, of modulus <1
n n n
/ /
(4.9) IERIEIED IR
J=1 J=1 J=1

one has

|¢n(é) - l//n(f)| < Z ‘¢0(bj,né) - ya,ko(bj,né)’
j=1

n n
<37 180500 — 1+ Folbicl’| + 3 [y i) — 1+ kolbjcl’|
=1 =1

J J
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and by (4.8) one obtains
16,0 =1, @1 < 3 ool @bl + 3 [0151, 911l
=1 =1

After setting b, == max bj ., one gets
j=1,...n

n

> [vobindlbinél?| < 1E* sup [vo@)] Y [bjul® — 0
=1

j:1 W‘S‘bj.ni‘ J=

n

since Y [bj,|" — ms and  sup  |vo(w)| — 0 by (4.6). Analogously one proves
.':1 ‘u‘gléb(n)l

that

n

2

(%1 (bj,nf)|bj,n5|a — 0.
J=1 =

5. — Steady states and fixed point equations for distributions

An application of the probabilistic representation given in Proposition 3.1
leads to state that the possible limits ¢__ of ¢(t,-), as t — + oo, are solutions of
(2.10), i.e.

(5.1) 6,0 = El¢, (L (RD] (€ R).

A class of solutions of equation (5.1) is described in the remaining part of the
present section.

Let us start by noticing that, if L* + R* = 1 a.s. for a € (0,2], as in the (elastic
and inelastic) Kac model, it is immediate to check that j, , , defined in (4.1), is a
solution of (5.1). Indeed, in this case,

Efefollel g RolRel] — i[RI L] — g Rl = g Rkl

More generally, since W,, is a randomly weighted sum of independent and
identically distributed random variables, in the light of the statements of the
previous section (see Proposition 4.1), it is natural to search possible solutions of
(5.1) as mixtures of stable laws.

Let us start by recalling that a probability measure is said to be a scale
mixture of (symmetric) a-stable distributions if its Fourier-Stieltjes transform is
given by

(52) pO = [ vam  Cew)

R*
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for a probability measure v on R* := [0, +00). Note that, p(¢) is the Fourier-
Stieltjes transform of the probability measure

R() = [ Lo vtam),

R

which turns out to be absolutely continuous, with density

pw):jﬁMAWWm%%
R+

if v{0} = 0.
At this stage observe that if ¢ is defined to be (5.2), then (5.1) reduces to

jk*mKdeno

53 °
- E[ fe_ml‘”“‘é‘av(dmﬂf6_“"2‘R'a'f‘av(d7%z) em,
RT RT
ie.
(5.4) y) = Ely(L wyRw]  (u>0),

where y stands for the Laplace transform of v

me:fa%%@m) (> 0).

R*

In other words:

If vis a probability measure on R™, whose Laplace transform y solves (5.4)

5.5
(5:5) Sforsomea in(0,2], then p defined in (5.2) is a solution of (5.1)

It should be emphasized that equations of the kind of (5.1) and (5.4) are
known, in probability theory, as fixed point equations for distributions or fixed
point equations for smoothing transformations. In point of fact, in the prob-
abilistic literature, several results concerning the solutions of equations like (5.4)
have been proven. See, e.g., [32, 47, 48].

We shall summarize some of these results in the next proposition, in which
S :[0,00) — [ — 1, 00] is the convex function defined by

(5.6) S(s) == E[L* + R*] — 1,

with the convention that 0° = 0.
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PROPOSITION 5.1 ([32],[47],[48]). — Let (Hy) be in force. Assume that condition
(2.6) holds true, that is S(a) = 0.

() If L*+ R* =1 almost surely, then there is a unique probability dis-

tribution v with [ v(dv) = [vv(dv) = 1, and Laplace transform satisfying equa-
R R*
tion (5.4). In this case v corresponds to the unit mass at 1 (51(-)).

@) If P{L* 4+ R* =1} <1 and if S(s)<0 for some s > a, then there is a un-

ique probability distribution v with [v(dv) = [vv(dv) =1 and Laplace trans-
R* R*
form w satisfying (5.4). Moreover v is non-degenerate and, for any p > a,

[viv(dv) < + oo if and only if S(p)<O0.
R
Combining (5.5) with Proposition 5.1 we obtain the characterization of pos-
sible steady states as specific mixture of stable laws, as stated in the next pro-
position.

PROPOSITION 5.2. — Assume that condition (2.6) holds true along with S(s) <0
for some s > a. Then

o= [ et iam)
[0,+00)

18 a solution of (2.10) for every ko > 0, when v is the probability distribution
characterized in Proposition 5.1.

Note that when L*+ R*=1 almost surely, then the Fourier-Stieltjes
transform p, defined in the previous proposition, is simply the Fourier-Stieltjes
transform of a stable distribution, while, if P{L* + R* =1} <1, then p is a non-
trivial mixture of Fourier-Stieltjes transforms of stable distributions.

6. — Central limit theorems for generalized Kac equations

In this section we shall determine conditions on the initial datum assuring
that the solution ¢(¢, -) of (2.4) converges pointwise to a stationary solution, which
is a mixture of stables distributions as described in the previous section. Recall
that we are assuming (H;) and (Hy), that is that L and R in (2.5) are positive
random variables and that x4, is a symmetric probability measure.

Although, as already recalled, W,, is not a sum of independent random
variables, one can apply the central limit theorem, as stated in Proposition 4.1,
to study the conditional law of W,, given the array of weights f =
(i, :5=1,...,m;m > 1]. To this end, according to Proposition 4.1, it suffices to
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prove that
(6.1) M = Zl)} n

.....

Zero in probablhty This allows to apply Proposmon 4.1 to the condltlonal law of
W, given f and to prove that the latter converges weakly to an a—stable law,
rescaled by (M(“)) . Hence, one obtains that the limit law of W,, is a scale
mixture of a-stable laws.

Here, convergence of M to M is derived from the fact that, when S(a) = 0,
the sequence is a martingale, i.e., more precisely,

EIM®1G]=MP  (n>1),

Gy, being, for every n, the o-field generated by (I;, L;, R;)i—1 .. ,—1. For a proof of
this fact, see [4]. Then, since any positive martingale converges almost surely,
see e.g. Theorem 5.14 in [14], one immediately gets the existence of M.
Actually, much more can be said about this limit, as stated in the next proposi-
tion.

PropPOSITION 6.1 (The mixing measure, [4]). — If S(a) =0 and S(y)<0 for
some y >0, then M® converges almost surely to a non-negative random
variable M and maX B.. converges to zero in probability. In particular, if

jn

S(y) <0 for some 0 < y<& then M® = 0 a.s., while, if S(y) <0 for some a <7, then
M@ is distributed according to the law v described in Proposition 5.1.

A fundamental ingredient in the proof of the previous proposition is the
identity

n _ I'(n+86))
62) e[ = s vran

+00
valid for every s > 0 such that E[L® + R*]< + oo, where I'(2) :== [ a*~le “dx

is the Euler gamma function. In point of fact, formula (6.2) was deorived for the
first time in [35], for the special case L = |sin(®)| and R = |cos(0)|, and fruitfully
used in the study of the speed of convergence of the Kac equation in [36, 29, 37].

Proposition 4.1, combined with Proposition 6.1 and the conditioning argument
sketched above, yields the main convergence theorem, i.e. that, under suitable
assumptions, the solution of the generalized Kac equation converges weakly to a
mixture of stable laws.

THEOREM 6.2 (CLT for the generalized Kac equation, [4]). — Let ¢ be the so-
lution of the generalized Kac equation (2.4). Assume that S(a) =0 for some
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a € (0,2] and that S(y) <0 for some y > 0. Assume also that the symmetric dis-
tribution function Fy belongs to the normal domain of attraction of a symmetric
a-stable distribution. If y<a, then thEl @(t, &) = 1, while, if y > a, then

(6.3) 9.0:= lm 6,0 = [ e vdm)  CeR),

[0,+00)

where v is the same as in Proposition 5.1 and the parameter kg is defined in (4.4)
for a<2 and ko = 6%/2 for a = 2.

In spite of differences of mathematical language, the previous theorem
can be referred to results contained in [11], which, on the one hand, are
generally based on hypotheses slightly stronger than those assumed in
Theorem 6.2 and, on the other hand, are valid for more general models. A
detailed comparative analysis does not seem important here. With a view to
the aim of the present paper, it appears more interesting to mention how
the probabilistic approach leads to weaken the hypotheses relating both to
the initial data and to the random collision coefficients (L, R). First, the
martingale convergence theorem plays a fundamental role to prove the
convergence of M'@. Second, starting from this convergence, one can apply
well-known results, concerning fixed point equations for distributions, to
extract useful information on the mixing measure v. Third, the character-
ization of the normal domain of attraction of stable laws indicates how to
refine conditions on ¢,.

It is worth noticing that expression (6.3) permits to obtain information on the
tail behavior of the limit law by using well-known properties of stable distribu-
tions in combination with Proposition 5.1. The interested reader is referred to
[4], where many variants of Theorem 6.2 are also proven. In particular the non-
symmetric case and the positive case have been treated in full detail. It should be
emphasized that, when v # J1, in general it is not easy to give an analytic ex-
pression of ¢_ . In [7] some explicit examples, related to the economic applica-
tions, are provided.

As already noted, when L = |sin(0)| and R = |cos(0)|, equation (2.5) re-
duces to the original Kae equation (2.1). In this case it is clear that M® =1
a.s. since L? + R =1 a.s. Hence, whenever [2?dFy(x) = 03< + 0o, the so-
lution g, converges weakly to the Gaussian law of variance o3. The fact that
the finiteness of the variance, in the case of the Kac model, is a sufficient
condition for the convergence to a Gaussian steady state is well-known, see
for instance [20]. As far as the necessity of this condition is concerned, while
it cannot be doubted from a physical intuitive standpoint, the first mathe-
matical proof of this fact is contained in [36]. The next theorem states this
result.
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THEOREM 6.3 (CLT for the Kac equation, [36]). — The solution u; of the Kac
equation (2.3) converges weakly, ast — + oo, if and only if yy has finite var-
iance a3,

We point out that the determination of a necessary and sufficient condition
for the generalized Kac equation (2.4)-(2.5) is still an open problem, even in the
case of the inelastic Kac equation. In this last case, a necessary condition for the
convergence to a steady state is

liminf &%/ TP (1 — Fo(x)) < + oo,

Xr—+ 00
that is weaker than the sufficient condition — c.f. Theorem 6.2 —

lim 2P — Fy(x) = cf.
&r—+ 00
See [5].

We conclude this section by recalling that Theorem 6.3 has been com-
plemented in [19] by providing a detailed analysis of what does actually happen
to the solution of (2.3) when the initial energy is infinite. More precisely it has
been proven that, as ¢ — + oo, the total mass of the limiting distribution splits
into two equal masses (of value 1/2 each) adherent to — co and +oo, respectively.
In the same paper an estimate of the quantitative rate at which such a phe-
nomenon takes place is provided. In other words, when the initial energy is in-
finite, all of the mass “explodes to infinity” at a rate governed by the tails be-
havior of y. In [18] this result has been extended to the multidimensional case of
the Bolztmann equation for pseudo-Maxwellian molecules and an interesting
connection with the so called eternal solutions of Bobylev and Cercignani [12, 13]
has been established.

7. — Rate of convergence to equilibrium

Probabilistic methods have been successfully used also to obtain explicit rates
of convergence to equilibrium (in suitable metrics) for the solution of both the
original Kac equation and of its generalizations.

Before proceeding let us recall the definition of the metrics that we will use in
the rest of the paper.

Let u; and w, be two probability measures on B(R), the Borel sets of R. Let
Fi(x) = 1;{( — o0,x]} (1 =1,2) be their probability distribution functions and
$;(&) = [ €’ 1;(dv) (i = 1,2) their Fourier-Stieltjes transforms.

(D1) The Kolmogorov uniform distance between py and p, is defined by

K(uy, pp) := sup [Fi(x) — Fa ().
reR
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(D2) The minimal Ly,-metric @) (p > 0) between 1y and us 1s defined by
) min (1,1/p)

)

= inf —yl?

b, 1) = Jnf ( f v — y["h(dxdy)
R2

where H(uy, 1t) is the class of probability measures on B(R?) with marginals

and u, that is the probability measures 7 such that A(- x R) = y4;(-) and

(R x -) = py( ).

(D3) The weighted yx-metric of order p > 0 between 1 and g, is defined by

16,(E) — ()]
1ty 1g) = sup %

(D4) The total variation distance between 1y and p, is defined by

TV (uy, ptz) == sup |y (A) — up(A)l.
AeB(R)

Recall that if x; and p, are absolutely continuous with respect to the Lebesgue
measure, with density functions f; and f;, respectively, then

1 1
TV 1) =5 [ 1@ ~@ldo =51 —fol.
R

We list now a few important properties of these distances. Consider a se-
quence of probability measures (x,,),>1 and a probability measures s.

(P1) If K(u,,u) —0, as n — 400, then pu, converges weakly to u.
Conversely, by a classical result due to Polya, if 1, converges weakly to u and the
probability distribution function of 4 is continuous, then K(x,,, 1) — 0. See, e.g.,
Theorem 1.11 in [51].

P2) If 1,(t,, ) — 0, as n — 400, then yu, converges weakly to u. If
[P, (de) < + oo and [ |x[f u(dae) < + oo, then Ly(u,, 1) — 0 if and only if u,
converges weakly to x and [ |x[fu, (dx) — [ |z’ u(dx). See, e.g., Remark 7.1.11
in [2].

P3) If x,(uy, 1) — 0, then p, converges weakly to u.

For more information on these distances see, for instance, [54].

(") The minimal Ly-metric was invented historically several times from different
perspectives. Maybe historically the name Gini-Dall’Aglio-Kantorovich-Wasserstein-
Mallows metric would be correct for this class of metrics. For simplicity reasons it seems
preferable to use the name minimal “L,,-metric”, and write it as [,,. See, e.g., [2, 54, 60, 61].
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7.1 — Rate of convergence for the Kac equation

In [36] a first bound for the Kolmogorov’s uniform metric between the so-
lution at time ¢ of the Kac equation and the Gaussian distribution has been
proven.

In [37], in addition to Kolmogorov’s uniform metric, the behavior of the /; and
l» metrics (the latter also known as Tanaka functional) and weighted y-metrics of
order p > 2 are analyzed. Explicit rates, new or improvements on already well-
known ones, are deduced both under the necessary assumption that initial data
have finite energy, without assuming existence of moments of order greater than
2, and under the condition that the (2 + d)-moment of the initial distribution is
finite for some J > 0. It is worth noticing that (P1)-(P2)-(P3) combined with
Theorem 6.3, imply that the metrics defined in (D1)-(D2)-(D3) turn out to be
equivalent with respect to the convergence to equilibrium.

In [29] the study of the rate of convergence, with respect to the (more sig-
nificant physically speaking) total variation distance, is dealt with to prove that
the exponential rate of convergence —1/4, conjectured as optimal by McKean
[45], is actually reached. We emphasize that the constant 1/4 is the spectral gap
of the linearized collisional operator of the Kac equation. Thanks to suitable
developments of the probabilistic standpoint, in [29] the optimal rate is achieved
under hypotheses which are definitely weaker than those considered in previous
papers. See [17, 16, 34]. Instead of the finiteness of all absolute moments of the
initial datum [16], one assumes the finiteness of the first four moments only; the
finiteness assumption of the Linnik functional at f; is substituted with a weaker
one on the behavior at infinity of the Fourier transform of the initial datum. The
result is embodied in the next theorem, where

2

e 22

76(V) 1= 759,(V) = >
no

is the Gaussian density of variance o2.
THEOREM 7.1 (Optimal rate in total variation for the Kac equation: upper

bound, [29]). — Let f be the solution to the Kac equation (2.1) with initial con-
dition fy. Assume that [vify(v)dv< + oo and suppose that

500 = [ hwdv = o) 16~ +oc

for some strictly positive p. Then there is a constant C*, depending only on fo,
for which
1FC8) =l < CFet

where a% = [V fy(v)dv.
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In other words this proves that the L!—distance between the solution £ (-, ¢) of
the Kac’s equation and the Gaussian density has an upper bound which goes to
zero, as t — + oo, with an exponential rate equal to —1/4. For a detailed review
of the results concerning the rates of relaxation to equilibrium in the Kac model,
see [53].

We conclude this subsection by recalling that in [30] a lower bound which
decreases exponentially to zero with rate —1/4 has been proved, provided that f;
has nonzero fourth cumulant.

Let us recall that the “fourth cumulant” of a symmetric density function f; is
defined by

k4(fo) ::fv%(v)dv — 3( fv2f0(’l))d1))2.

The precise statement of the fact that the rate —1/4 may be the best possible one
is contained in the following theorem.

THEOREM 7.2 (Optimal rate in total variation for the Kac equation: lower
bound, [30]). — Let f be the solution to the Kac equation (2.1) with initial con-
dition fo. If [ vifo()dv < + oo, 6% = [VE3fo(v)dv and ks(fo) # 0, then there exists a
constant C~—, depending only on fy, for which

[£C.0) =75l = C e/

for every t > 0.

In [30], together with the above stated theorem, it is also proved that
1FC 1) = pgll; < Ceps(t), when [v**ofy(w)dv< + oo for some 0 < <2 and
k4(fo) = 0, with ps vanishing at infinity. In addition, generalizations of these
statements are presented, together with some remarks about non-Gaussian in-
itial conditions which yield the insuperable barrier of —1 for the rate of con-
vergence.

7.2 — Rate of convergence for the generalized Kac equation

In [5] rates of convergence to equilibrium for the inelastic Kac model with
respect to Kolmogorov’s uniform metric and y-weighted metrics have been de-
rived. Explicit bounds are obtained under the sole assumption that the initial
datum belongs to the normal domain of attraction of a stable law of exponent
a =2/(1+ p). Sharper bounds, of an exponential type, are exhibited in the
presence of additional assumptions concerning either the behavior, close to the
origin, of the initial characteristic function, or the behavior, at infinity, of the
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initial probability distribution function. Exponential bounds on the y-weighted
distances were previously obtained (by analytic techniques) in [52], under
slightly stronger assumptions. We state here a result concerning the case in
which an exponential bound is reached. For all the other results the reader is
referred to [5] .

THEOREM 7.3 (Rates for the inelastic Kac models w.r.t. Kolmogorov distance,
[6]). — Let ¢(t,&) = f eif”ﬂt(dv) be the solution to the inelastic Kac equation with
wmitial condition ¢, Assume that

1— 348 = kolé|* + 0" ¢—0

for a=2/1+p) and some J > 0. Let I'y,(dv) = ya,ko(v)dv be a symmetric a-
stable distribution of scale parameter (ko)*'*. Then, there are (explicitly com-

putable) positive constants by and by such that

Ky, Tay) < boe™"".

The methods used to obtain these bounds have been inspired by the works
of H. Cramér [27, 28] and by its developments in [42], concerning bounds for
the Kolmogorov’s metric for the sum of independent and identically dis-
tributed random variables belonging to the normal domain of attraction of a
stable law.

Exponential bounds for the speed of convergence to equilibrium, with respect
to [,-distances, for the solution of the general model (2.4)-(2.5) are proven in [4],
under additional hypotheses on the tail behavior of the initial datum. In the same
paper some sufficient conditions for the convergence with respect to the L!
distance are presented, even if no explicit bounds are given. In [50] the prob-
abilistic representation of Proposition 3.1 has been used to derive explicit rates of
convergence for the L! distance between the solution of the general problem
(2.4)-(2.5) and its steady states when a = 1,2.

The optimality of all the above mentioned rates is still an open problem.

8. — A linear Kac like equation.

As already recalled in Section 6, usually the nonlinearity of the models (2.4)-
(2.5) does not permit to obtain explicit expressions for the steady states when
P{L* 4+ R* =1} <1. For this reason, in [58] a linear kinetic equation has been
introduced to model the wealth redistribution in presence of taxation. In the
same work the wealth distribution is assumed to be driven by collisions under-
gone with a fixed background. The aim of this section is to show how the prob-
abilistic methods can be adapted to deal with this kind of equations.
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To be specific, let us consider the following model

81) K0 + 4 = QU NG (¢ >0,¢E€R)
$(0:8) = $(&)

with
(82) Qlé(t; )IE) = E[d(t; AD)eP]

where (4, B) is a random vector, ¢(¢) := [¢’?dFy(v) for an initial probability
distribution function /'y and, as usual, ¢ is a Fourier-Stieltjes transform. Here B
models the interactions with the background.

In particular, choosing A =1 — ¢ and B = ¢Z, where ¢ € (0,1) is a constant
and Z is a random variable with characteristic function M such that E[Z] = 1,
(8.1) reduces to a special case of the above mentioned redistribution models
studied in [58]. For this special choice of (4, B), by using contracting distances
techniques, in [58] it is shown that, whenever [1?dFy(dv)< + oo, the limit of
@t &), as t — + o0, is

6.0 = [[ M(&1 - o).

k>1

Here we want to show how one can extend these results to dynamics driven
by a general random vector (4, B). First of all we start with the following ele-
mentary proposition.

The unique solution of (8.1) is

t”’e_t A ()
(8.3) 8t =2 — = Q" (IO

n>0

where QVTy1(&) = y(©) and
Qz(")[lﬂ] = QL[@WII//].

Now we recast (8.3) in a probabilistic way. Let V = (4,,, B,),>1 be a sequence
of independent and identically distributed random vectors with the same law of
(A,B), let v=(v,t > 0) be a Poisson process of parameter 1 and let X, be a
random variable with distribution function Fy. Assume that V, v and X, are in-
dependent. Set Z, := X, and, for any n > 1,

j-1
Zy = ﬁAiXo +B1 + zn:Bj <HA7;> :
i=1 j=2 i=1

At this stage, we are in a position to give the probabilistic representation of
the solution ¢.
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PROPOSITION 8.1. — Under the previous hypotheses, for every n > 1

(8.4) E[e4%] = Q" [,()1(©)
and hence

8(t:8) = B,

ProoF. — For every k > 1, Z;, has the same law of the random variable
k k-1 k
Zi, = [ [AiXo + Bi + ZB]( 11 Ak>,
i=1 j=1 i=j+1
and, by induction, it follows easily that

Ele %] = Q™ T4,( 1)
O

Given this representation, we turn our attention to the asymptotic behavior of
the solution. Under suitable hypotheses, we will prove the convergence of the
solution to a steady profile with respect to the /; at an exponential rate.

We need some more notation. Set

-1
Se :=B1 + ZBj (HA1> )

=2 i=1

6, (&) == E[e"5~],
and finally denote by u., the probability distribution of S, and by ; the law of
Zy,y 16, ¢(t,E) = [ u,(dv).

PROPOSITION 8.2. — Assume that A, B and X, are such that B[| Xo|]< + oo,
E[A]l<1l and U[|B|ll<4+o00. Then P{|Sx|<+oo}=1 and E[S.]=
E[B]/(1 — E[AD. Moreover ¢(t) converges pointwise to ¢, , which is solution
of the following integral equation

(8.5) 6 (O =Q O  (eR).

In addition

00?

EI|BIJE[

A|]> o—H1-FIlAD
1+ E[All

(o) < (Enxm1+

Once again, equation (8.5) is well-known in probability theory. In particular,
the random variable S, whose characteristic function is a solution of equation
(8.5), is called perpetuity. See, e.g., [59, 39, 1] and references therein.
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The connection between steady states of equation (8.1) and perpetuities al-
lows to use some already known results to describe the tail behavior of the
stationary solution. Apropos of this, we mention here two important results.

(1) E|Su|? < + oo if and only if E|A]P <1 and E|B|P < + co. See [1].
Gi) If P{lA| <1} =1 and E[e’Fl]l< +0c0 for some &>0, then
[E[erS<11< + oo for 0 < p< sup{0 : E[e"Pl|A|]<1}. See [1, 39, 40].

Proor oF PROPOSITION 8.2. Let us show that

S« =Bi+) B (ﬁA)

>2 i=1
is an a.s. absolutely convergent series. To do this let us show that

lim sup B[S,/ 1< + o0

Nn—+ 00

n j—1 n—1
where S = |Bl|+z|Bj|(n |A1;|). We have E[S+]=E[B]1Y E[JA[]F and
=2 i=1 k=0

hence limsup F[S; 1< + oo which gives P{|Sx|< + oo} =1. Now note that

n—+ 0o

n J-1 n
Z, =8, + R, with S, = B + ZBJ-( I Ai> and R, = [ A:X,. Since E[|R,|] =
i=1

j=2 i=1
E[|A|1"E[|Xo|], then R,, converges in L! to zero and hence Z,, converges in dis-
tribution to S.,. This means that ¢,(¢) := E[e*%] — ¢_ (&) for every ¢ as
n — -+ o0o. Since

$,(O) = Qi (- N,

the monotone convergence theorem shows that ¢ is a fixed point of Ql. To
conclude the proof, observe that

tret
— [ Zy = S«l]

ll(:utmuoo) < EHZW _Soo‘] < Z

n>0

n,—t Jj-1
< Zt; (E[|RW|J+E[| 3 Bj(HAoH)

n>0 j>n+1 i=1
ot ” E[IBIE[A[
=2 (E”A] RO A
N ENBELA]], ~t"e! ”
= X0l + )Y~ ElIAL

n>0
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