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A Characterization of a Modulus of Smoothness
in Multidimensional Setting

LAURA ANGELONI

Abstract. — A classical result of approximation theory states that lims_o+ w(f,d) =0,
where w s the modulus of smoothness of f defined by means of the variation func-
tional, if and only if f is absolutely continuous. Such theorem is crucial in order to
obtain results about convergence and order of approximation for linear and non-
linear integral operators in BV-spaces. It was an open problem to extend the above
result to the setting of p-variation in the multidimensional frame. In this paper,
working with a concept of multidimensional p-variation introduced in [3], we prove
that an analogous characterization holds for the multidimensional p-modulus of
smoothness.

1. — Introduction.

In [3] a multidimensional concept of g-variation is introduced and results
about convergence and rate of approximation for linear integral operators are
established. This new concept of g-variation extends the (one-dimensional) ¢-
variation introduced by J. Musielak and W. Orlicz ([25]), following the idea of
Tonelli ([31]) for the classical variation of functions of two variables, extended by
C. Vinti ([32]) to the general multidimensional setting. Results concerning ¢-
variation can be found in [36, 25, 17, 30, 20, 22, 9, 26, 14, 21, 8, 28, 7, 29, 10].

A crucial point in order to obtain results about convergence and order of
approximation for linear and nonlinear integral operators (see e.g. [10, 2] and, in
different settings, [9, 8, 28, 4]) is to require that

1) lim @ (2f,6) = 0,

for some A > 0, where w?(Af, ) := sup V?[A(t.f —f)], 0 > 0, is the p-modulus of
[t <o

smoothness of the funcion f ([23, 7]) and 7. f(-) = f(- —t) is the translation op-

erator. This result is the natural reformulation, in terms of g-variation, of the

condition
@) lim o(f,0) = 0,

where w is the modulus of continuity with respect to the classical variation (see
e.g. [6, 7, 1]). It is well known that (2) is equivalent to the class of absolutely
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continuous functions and the same result for the classical variation was proved in
[6] in the multidimensional frame. Working with p-variation, in the one-dimen-

sional setting it is possible to prove that if the g-function ¢ is such that ? — 0,

as u — 0T, then (1) holds if and only if f satisfies a condition of local p-absolute
continuity, which is the natural generalization, in BV”—spaces, of the classical
absolute continuity ([25, 2] and, in the frame of a multiplicative group, [9, 8]).
An analogous characterization of (1) in the multidimensional frame was an
open problem (see [3], where condition (1) is assumed and discussed). In this
paper we prove that (1) holds if the function f is g-absolutely continuous in the

Tonelli sense (f € AC], C(RN ), assuming that (’0;—%) — 0asu — 0T, analogously to

the one-dimensional case and to the case of classical variation (i.e., p(u) = u),
even if, in the instance of BV?—spaces, an integral representation does not hold
for p-absolutely continuous functions. Due to this fact, in order to obtain the main
theorem it is necessary to establish several preliminary results about the mul-
tidimensional g-variation (Section 3) and to introduce suitable auxiliary functions
(Section 4) for which convergence results are established and through which the
function f is approximated. Since the converse implication can be immediately
deduced by the results in [3], we finally obtain a complete characterization of (1)
in terms of g-absolutely continuous functions, which generalizes, to the multi-
dimensional frame, a classical and important property of variation.

Since our concept of p-variation is inspired by Tonelli’s idea, a fundamental
role is played by the variation of the sections of f. For this reason we will ex-
tensively work, in the following, with a kind of variation (V,‘f [f]) which takes into
account of the single k—th direction (see Section 2). In view of these con-
siderations, the crucial step in the passage from the one-dimensional to the
N—dimensional setting is completely pointed out already by the 2-dimensional
case. This is the reason for which, in order to simplify the notation and with the
purpose of more clearness, we will work in detail with functions of two variables,
taking into account that all the results can be easily generalized to the case of N
variables (see Remark 4). Again for the sake of simplicity we shall work with ¢-
variation defined through “pythagorean” partitions, namely partitions generated
by a grid (see e.g. [11, 33]); anyway, with simple considerations, all the results can
be extended to the case of general partitions.

2. — Notations.

Let @ be the class of all the functions ¢ : Rj — IR such that

1. ¢ is a p-function, namely ¢ is a convex function on R such that ¢(0) = 0
and ¢(u) > 0 for u > 0;
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2. utp(u) — 0asu — 0F.

From now on we will assume that ¢ € @.

We will work with the multidimensional g-variation introduced in [3]. This
concept extends to the setting of Musielak and Orlicz p-variation ([25]) a multi-
dimensional concept of variation introduced by C. Vinti ([32]), following the
Tonelli approach ([31]). We recall that this multidimensional version of the
classical variation is equivalent to the distributional variation under some
properties of approximate continuity (see e.g. [13, 15, 16, 7]).

We now introduce some notations of the multidimensional setting that we
shall use in the following.

Given a functionf : RN — R and avectorx = (x1,...,2x) € RY, N € N, if we
are interested in its k—th coordinate we will write

/ »N—-1
wy, = (@1, ..., %1, %41, -, 0N) € RTT,

so that
x = (@, x), fOx)=f(ry,xp).

N
For an (N—dimensional) interval I = [] [a;,b;], I}, = [a;,, b,,] will denote the

-1
(N — 1)—dimensional interval obtained ll)y deleting the k—th coordinate from I,
so that

I =1a;, b1 x [ag, bel, k=1,...,N.

For k=1,...,N, gr(xr) := f(x},2;) will denote the k—th section of f. Let us
consider the (N — 1)—dimensional integrals

b,
D, ]) = f Ve [F @, e,
i

where V[(flk_’bk][f(ocﬁc, -)]is the (one-dimensional) Musielak-Orlicz g-variation of the
k—th section of f. The gp-variation was introduced by J. Musielak and W. Orlicz as
a generalization of Wiener’s quadratic variation ([34]), extended by Young ([35,
36]) to the concept of p—variation, p > 1. We recall that the g-variation of a
function g : [a,b] — R is defined as

Vi nlgl == sgp 2—1: o(lg(si) — g(si—1)),

where D = {s) =a,s1,...,S, = b} denotes a partition of the interval [a,b]
(25,23, 7]),and g : [a,b] — R is said to be of bounded p-variation (g € BV?([a, b]))
if there exists 4 > 0 such that V[‘fhb][/lg] < + oo. We refer to [25] for the properties
of the classical one-dimensional p-variation.



82 LAURA ANGELONI

Now, let &(f,1) be the euclidean norm of the vector (®{(f,I),. .., % (f, 1),

namely
1

N 2
o(f,1) = {Z[d?;f’(f, I)]z} ,
j=1

where we put @’(f, 1) = oo if ®7(f,I) = oo for somej=1,...,N.
The multidimensional p-variation of f on an interval I ¢ RY is then defined as

VOLf, I :=sup Y °(f, T,
=1
where the supremum is taken over all the finite families of N —dimensional in-
tervals {Ji,...,J,} which form partitions of /.
The p-variation of f over the whole space RY is defined as
VO[f]:= sup V[f, 1],
IcRY
where the supremum is taken over all the intervals 7 ¢ RY.
In a similar fashion it is possible to define the ¢-variation of f over a half-space
J=Rx...x(—o00,a;]%x...x RorJ =R x ... x[a;,+00) x...x R) as
VOLf,J1:= sup V/[f 1],
IcJ
where the supremum is taken over all the intervals I C J.

By BV?(RY) we will denote the space of functions of bounded p-variation
over RN, ie.,

BV?*(RN) = {f e L\(RY) : 31> 0 s.t. VP[if]1< 4 oo}

We also define, for every k = 1,..., N, the “separated” variations

VI ] = sup{ > qﬁ,"c’(f,Ji)},
1=1

where the supremum is taken over all the partitions {Jy,...,J,} of I. V][ f,I]is
a kind of variation with respect to just the k—th direction, while V?[f, I] takes
into account of all the N directions. Of course, if N =1, V{[f,I1 = V?[f,I] co-
incides with the classical Musielak-Orlicz p-variation of f. Moreover obviously we
have, for every k =1,...,N,

N
VIS, < VoL I < Y VIS I
k=1

In [3] a multidimensional concept of p-absolute continuity is also introduced:
a function f: RY — R is locally p-absolutely continuous (f € AC? (RY)) if

loc



A CHARACTERIZATION OF A MODULUS OF SMOOTHNESS ETC. 83

it is g-absolutely continuous in the Tonelli sense, i.e., for any interval
N

I=1]la;,bilC RY and for everyk=1,2,..., N, the k—th section g;, : [ay, by] — R
i=1

is p-absolutely continuous for almost every x), € [}, b;.]. We recall that a function

g : [a, b] — Ris p-absolutely continuous if there exists A > 0 such that the following

property holds:

for every ¢ > 0, there exists 6 > 0 such that

n

Z p(Ag(By) — glap)]) <e,

=1

Jor all finite collections of non-overlapping intervals [o;, ;1 C [a,0], 1 =1,...,n
such that

n

> 0B — o) <.

i=1
By AC?(RY) we will denote the space of functions f € BV?(RY) N ACY (R™M).

We now introduce the notion of p-modulus of smoothness, which is the natural
generalization, in the frame of BV?—spaces, of the classical modulus of con-
tinuity (see, for example, [24, 7, 3]). The gp-modulus of smoothness of a function
fe BV?(RY) will be denoted by w?(f,0d), 0 > 0, and it is defined as

o’ (f,0) = sup V’[tef —f1,

[t[<o

where (t:f)(s) := f(s — t), for every s,t € RY, is the translation operator.

Our aim will be to prove that w?(f,0) — 0, as 6 — 0", if and only if
feAC) (RY).

For the sake of simplicity from now on we will work in the case N = 2, hence
in IRZ, but all the results can be easily extended to the general case of RY (see
Remark 4).

Moreover, as pointed out in the Introduction, in order to simplify notations
and proofs, we will work in the particular case of p-variation defined through
“pythagorean” partitions, instead of general partitions. Nevertheless, it is easy
to prove that the main result of the paper holds also for g-variation defined as
usual with general (“extended”) partitions (see Remark 3). Working with py-
thagorean partitions means that, in the particular case N = 2, that we will ex-
amine in detail in the following, the ¢-variation of f : R? — R on an interval
I =[a,x] x [b, f] C R? is defined as

m p
V[f.1] := sup { P f,]ij)},

i=1 j=1
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where the supremum is taken over all the finite families of intervals {I11, ..., 1}
such that Iy = [w;_1,2;] X [yj-1,¥;], where xy=a<w;<...<¥, =0 and
Yo=b<y1<...<yp,=p are partitions of [a,a] and [b,f], respectively.
Moreover

m_p
V]?[.f71] = Sup{zzqu(fvlu)}a k= 1327

=1 j—1
where the supremum is taken over all the (pythagorean) partitions {I;} of I,
where I;j = [x; 1, %] x [yj_1,y)] and a =<1 < ... <¥p =0, b=yo<y1< ... <

yp = f are partitions of [a,«] and [b, f], respectively. We also notice that, by
Proposition 1.17 of [25], there holds, for every partition {I;;} of I,

B
ZZ@ FIp=3"% f Ve, e lFCpldy < [ Ve IfCunay,
b

=1 j= 11;1J7

hence, passing to the supremum over all the partitions of 7,

B
VI < [ Ve Gy dy.
b

Since also the converse inequality obviously holds, then we conclude that

(3) VILF, T = f ¢ FCpldy
and, analogously,

“) VILF T = [ Vil e, e

3. — Preliminary results about g-variation.

In order to prove the main results, we first need to establish some pre-
liminary propositions that extend to the multidimensional frame some properties
of the classical Musielak-Orlicz p-variation (see [25]). In particular, we will prove
that Propositions 1.12, 1.17 and 1.18 of [25] can be generalized to the setting of
multidimensional ¢-variation.
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PROPOSITION 1. — Let fi, ..., f, € BV*(R?). Then
(4 1 (4 (4
VI 0 < {Vk[ﬂvnfl] +o+ Vk[lnfn]}, k=12
and

VO + ...+ )] < %{V«’[Mﬁ] N anfn]}, 2> 0.

Proor. — For the sake of simplicity we can take 4 = 1, since, in the trivial case,
all the inequalities are obviously satisfied for every 1 > 0. Let I =[a,«] X
[b, 81 € R® and let {I;;}, I;j = (w1, 2] x [y 1,%),i=1,...,m,j=1,...,p,bea
partition of I, with xy =a<x:1< ... <¥p =o and yo=b<y1<... <y, =p.
Then, by Proposition 1.12 of [25],

1 n
Vi anl(fi o PGyl < ; Ve aahiC )],
for a.e.y € [b,f], for everyi =1,...,m, and

1 n
Vel )@, )] < %; Ve,

for a.e. x € [a, o], for everyj =1,...,p. Hence
Yi n Y
Y( Lp= |V [( )Coldy < L Vi [nf, (-, )1d
1 fit ot s Y/ = [ 1,2] fit G yldy _7_221 [eei1.4] nf,C,y)ldy
Yj-1 V=Y

1 n
= %Z D (nf,, L)
v=1

and
1 n
BY(fi+ ...+ fu L) < ;LZ Dy (nf,, Iy).
v=1
This implies, summing over 1 =1,...,m, j =1,...,p, and passing to the su-

premum over all the partitions of 7, that
14 1 14 4
VILf 4.+ f Il < %{Vk[nflJ]Jr...+Vk[nf%,1]}, k=1,2

Moreover, by the Minkowski inequality,
1 n
D(fr+ ..+ fu L) < %‘; D’ (nf,, 1),

and so, summing again over 1 =1,...,m, j=1,...,p, and passing to the su-
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premum over all the possible partitions of 7,

1 n
VOIfi+ .+ f 1< %ZV‘/’[nﬁ,J].

v=1
Hence the thesis follows by the arbitrariness of the interval I c R2. O
PROPOSITION 2. — Let f € BV/(RY) and let {I;} be a fixed partition of
an interval I =[a,a] x[b,pl, with Iy =I[x;_1, 2] x [y—1,9]), i=1,...,m,

Jj=1,...,p, where xvp=a<x:1<...<xp=0a and Yo =b<y1<...<y, =P,
Then, if 7 >0 is such that V?[2)f]1< + oo,

@) iffx;,y) =0 foreveryi=1,...,m — 1 and almost every y € [b, f],

m_p
<S> VIIRAf I

i=1 j=1

VIUf, I

NIP—‘

(b) if f(x,y;) =0 for every j =1,...,p — 1 and almost every x € [a, o],

=

VIUf, 11 <

m. P
VIRAf, I;];
=1

DO —

=1 j
(© if flai,y) =0=F(w,y) for every i=1,....m—1, ae. y€[b,f] and
j=1,....,p—1,ae x € la,aol,

m

1 P
LA ] < — ?[2Af, 1;].
Vi s s > VORI I

ProOF. — Let us prove (a). We notice that, by Proposition 1.18 of [25], there
holds

i=1 j=1

1 m
Vol 0 < 5 3 Ve 200

for almost every y € [b, f]. Hence, by (3),

By
1
VOLS I = f Vi UGl dy < f Ve 2 Cpldy
b

1=1

m

p m P
> f Vi, w24 Gl dy = §ZZVf[zzf,1ij].

=1 =1 4 i=1 j=1

[\ \

Now (b) follows with analogous reasonings, while in order to obtain (c¢) it is
sufficient to notice that, by (a) and (b), if {J ,,v} is an arbitrary partition of I,
where J,, =[a,1,a,] x[by—1,0,], u=1,....,m, v=1,...,q, with gy =a<
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m<...<ay=oaand by =b<b < ... <by; =pf, then

n q n q
SN UL <30S {BUUF T+ B T} < VIDE T+ VU
v=1

1=1 v=1

||
—

-lFlﬂHt
M=

-
||

—
.
I

—

3

> { #1231y + #4123 11}

(ST

IN

{(@f12ar. 1) + (#4127, 1,1)"}

1 m P
OI20f , I;)] < —= 7% Z 1 VO[2)f, I;1.

i=1 j=

Sl sl
s 1

i
N
.
I
N

[0 -

So, passing to the supremum over all the possible partitions of 7,

VU 1< — Z Z VOI2if, I). O

11]

PROPOSITION 3. — Let f € BV?(R?) and let I = [a, o] x [b, B]. Then for every
a<a<ao b<b<f,

(@ VIUfII< = {V"’[2)f, [a,@] x [b, B1] + V[2f @, ] x [b, /3]]} k=12,
and VoUf, 11 < = {Vq”[ZAf [a, @] x [b, B1] + VO[24f, [@, o] x [b, /3]]} 2> 0;

b) VIUF I <= {fo”[zzf, [a, o] x [0, 1] + VI122f,[a, o] x [D, ﬂ]]} k=12,
and VOUF, 11 < 3 (VORI Ta, o0 % b, B1) + VVIZIf [, 00 < 5. f1)}, 7> 0

ProOF. — As in Proposition 1, for the sake of simplicity we can take 4 = 1. By
(3) and Proposition 1.17 of [25], we have

VI, = [ o Cpldy <5 f (Vi a2 + Vi 26, ) dy

= (V{”[zf [a, @] x [b, 11 + VI2f [, ] % [b, ﬂ]])_

Moreover, by (4), by convexity of ¢ and since ¢(0) = 0,

VIS, ] = f o @, )]dac<—{f+f}V“,’)ﬁ[2f(ac de

[\DIP—‘@

— 5 (VE12f [, al x (b, 1) + VIL2f [a, 2] x [b, B11)..
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Hence (a) is proved, taking into account that the statement for V7 follows by the
previous relations and by the Minkowski inequality. (b) follows with similar ar-
guments. O

PROPOSITION 4. — Let f € BV*(R?) and let I = [a, o] x [b, B Then for every
a<a<o, b<b<p,

(@) VIS, la,a] x [b, B11+ VIAf, [a, o] x [b, f1) < VIS I, k=1,2, 2> 0;

() VLU [a, o] x [b,b]] + VLA, [a,ol x [b, 11 < VI, 11, k=1,2, > 0.

ProOF. — For the sake of simplicity let us take A = 1, as in Proposition 1. In
order to prove (a), for k = 1 it is sufficient to notice that, by (3) and by Proposition
1.17 of [25],

0‘\‘% vSm

VEIf Lol x 16, B1) + VI If L, o0 x [, 81] = [ (Vi ol Copl + Vi, LFC, ) dy

while for k = 2 it is obvious. (b) follows with analogous reasonings. O

REMARK 1. — (a) Propositions 2, 3 and 4 generalize Propositions 1.18 and 1.17
of [25] to the multidimensional frame and such results reproduce, working with ¢-
variation, the usual additivity with respect to intervals of the classical variation. In
the present multidimensional setting, since we will work with the single directions
in order to obtain the main theorems, we need to state the results with respect to
each section, i.e., for the “separated” variations V{ and V.

(b) We remark that Propositions 3 and 4 hold also in the case of un-

bounded intervals: indeed the proofs can be easily adapted if, for example,
I = ([a,a] x R)U([a,«] x R) or in all the other cases.

In order to prove the main theorems we finally need the following result in
the one-dimensional case, which is similar to 1.18 of [25] but in the particular case
of step functions. We note that, in order to get the property of subadditivity on
intervals for a step function defined as below, it is not necessary to assume that
the function vanishes on the nodes of the fixed partition, as it happens in the
general case (see also Proposition 2).

PROPOSITION 5. — Let v: R — R be defined as
oo, r<¥y = a,
V@) =< o1, X1 <<,

O x> Xy =0,
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where a4 =x)<x1<...<Xpy =0b 1s a partition of [a,b] CR and o; € R,
1=0,...,m. Then for every . > 0,

1 m
Vel <5 SOVE 2.
i=1

Proor. — Let {a,}, u=0,...,n be a partition of [a,b] such that
n}ax {a, —au1}< r{lln {x; — x;_1}. Let A be the set of the indexes x such that
n

..........

a1 <x;<ay forsomei = 0,...,m and let B be the set of the remaining indexes.
If 1 € A then there holds, for every 1 > 0,

o(Aa) —vau1)) =0 (Ao — 2iq]) < 5 0(24v@) — v(a,-1)]) + %(p(Zﬂ»IV(aﬂ) —v(y)|)

1

[a ~1,%;

»—ll\')\b—*

A2+ SVE 2],

[%a

taking into account that ¢ is convex and that ¢(0) = 0. Hence

Z (P(MV(%) V(aﬂ 1)| (Z + Z) )|V(a,u) V(a/kl)D

n=1 neA  peB
<3 Z sl 247]

by 1.17 of [25] and so, passing to the supremum over all the partitions of [a, b], we
conclude that

Vi bl < ZVT agl2A],
for every 1 > 0. O

REMARK 2. — We remark that Proposition 5 holds also if the step function
v: R — Ris defined as

oy, x<xo=a,
X)) = ¢ o, Lo <ax < X,
Oy &> Ty = b,

with the same notations as before.

4. — Convergence results for the auxiliary step functions.

We will now define two step functions, associated to a function f € BV*(R?),
which will be useful in order to obtain the main result.
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Let f € BV?(R?) be fixed. Let I = [a,a] x [b,f] be a fixed interval and let
{I;;} be a partition of I, with I;; = [w;_1, 2] x [y;—1, 951, 1 =1,...,m,j=1,...,p,
where a =xp<x1< ... <¥wm =0, b=yo<y1< ... <y, = f. We define a func-
tion v1 : RZ — R as follows: in the set ([a, 0] x R)U (R x [b, f]) it is defined as

f@i,y), xiq <w<xg, yelb,pl,
fla,y), r<a, y €[b,p],
fle,y), x> o, y € [bpl
i@, y) = f@i1,0), x1 <w<w;, y<b,
fii1,p), xiog <w<wg, y>p,
[, b), x=o, y<b,

fla, p), r=o,y>p,

1 =1,...,m, while elsewhere the definition of v; is constant and extended with
continuity. Hence v, is defined in such a way that it coincides with f on the
segments (x;,-), 1 = 0,...,m, while the sections v;(-,y) are constant in each in-
terval Ja; 1, a;[, for every y € R.

We now define another function vy : R* — R, that will play a symmetric role
with respect to vi: in particular, v, coincides with f on the segments (-,¥;),
J=0,...,p, while the sections vz(x, -) are constant in each interval Jy;_1, y;[, for
every x € R. Hence on ([a,a] x R) U (R x [b, f]) v2 is defined as

fl,y-0), xela,al, yj1 <y<y;,
f(@,b), v €la,a], y <0,

S, B, v €la,a], y > p,
vo(w,y) =  fla,yj-1), x<a, yji-1 <Y<y;,
flonyi-), > o Yy <Y<y,
fla,p), r<a, y=p,

JACH N x>, y=p,

j=1,...,p, otherwise it is constant and extended with continuity, so
vo(@, ) = vi(w, ), for every (x,y) ¢ ([a,a] x R) U (R x [b, B].

Fig. 1. — An example: f(z,y) = e @+, v (z,y) and w(z,y), [ = [ — 1,1]%
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We will now prove a first convergence result for v; and ve. In the following, if
I =1a,a] x [b, ] is a fixed interval in RZ, we will use the notations

VOIf, 1) := VO[f, (— o0, al x [b, Bl + VY[, [&, +00) x [b, B1] + V[, [@, o] x (— 00, b]]

+VOIf, [a,a] X [, +00)]+ VPIf, (— o0, a] X (— oo, b]] + VIf, [o, +00) X (— o0, b]]

+VOIf, (= o0,a] x [, +00)] + V?[f, [o, +00) x [, +00)],

(VIIf, 1], k = 1,2, will be defined in a similar way) and
Is:=[a—0d,a+d]x[b—0,+05], 6>0.

PROPOSITION 6. — Let f € AC?(R%). Then there exists ). >0 such that, for
every ¢ > 0, there exist an interval I = [a,a] x [b,f] and a constant o > 0 for
which, if {I;;} is a partition of I, Iy =[x;_1,0] % [yj—1,y], i=1,....m,
j=1,...,p, such that  max {@; —xi_1,y; — Yj-1} <0, then

i=1,...m, j=1,...p
@) VeUf I <e
m P

® XSV Iyl<s k= 1,2

i=1j=1

(c) the step functions vi and ve defined as above in correspondence to the

partition {I;;} are such that

VIS =)Dl <5, VELS =) I5l< 5,
for some 5> 0.

PROOF. — Since f € AC?(R?), in particular f € BV?(R?). Let 4 > 0 be such
that V’[if]< +oc and let us fix ¢>0. Then there exists an interval
I =la,a] x[b,p] C IR% such that

VI 1< VIS I +§, k=1,2,
and so, by Proposition 4,
VEUf T+ VI, 1 < VITGF<VEDf D+ 5.
which implies that
(5) V,f[ZﬂFk%, k=12
Hence (a) follows since

VOUf, I < VIS I+ VIS I <e.
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We now prove (). Sincef € AC ZOC(RZ) and u 'p(u) — 0asu — 0F (assumption
2. on ¢ € @), then there is 1 > 0 such that, in correspondence to ¢, there exists
0 = 6(e) > 0 such that, if {I;} is a fixed partition of I, I;; = [;_1,2;] % [yj_1,9;],

t=1,....m,j=1,...,pwith  max  {&; — 21,9 —yj_1} <9, then
i=1,...m, j=1,...p ' '

m

Ve JF( &
; sy e LA € 7?/)]<ﬁ_b,

p

> 1] [Af(.%' )]<—a, ae. x € [o,al,

j=1

a.e. y € [0, pl,

(see 2.1 of [25]).
Hence, by (3),

m P _ m P Yi 4 m
S VIGA I =3 [ Ve e pldy = [ 3OVE GG dy<e,
i=1 j=1 i=1 j=1 Yj-1 p =1
and, analogously,
m p -
VIS Iijl<e.
i=1 j=1
Let us now prove the first relation of (c).
Let 0<d<d. By (3) and by 1.18 of [25], we have
p+o
VIO = Il = [ Ve B = Gl dy
b—9

p+d
%f ( 03B = v, P+ Vi B — v, )]

1
V] B = 1) dy = 5 (81 + 8o + Sy).

About S; and Ss, let us notice that, for every y € [b, f],

@) = fla,y), ©<a,
VI x7y a f(a’y)7 xz“?

While vi(x,y) is constant if y >f or y<b and x<a or x>o. Hence
a 3 ][ﬂvl( N]=0= V(” _][ivl(-,y)], for every y € [b — 6,8+ 6], 4 > 0. Then,
by 1.12 of [25],
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B+6
1
S48 <y [ (Vi s ul60 G+ Vi 6+ VY, 637 )
b—o
+ VP s l6m, y)])
1 B+o
=5 | (Visal6¥ G+ Vi 6376 1) dy
b—o
1 b p f+o
_2( [«[+] )( sl + V63 ) dy
b—6 b B

< VI T <3,

if 61 </, by (5).
About Sy, as before we can write

)
Sy <= f( Ve 62 Can] + [m][GM(-,y)]) dy +f VeI — Wl dy
b

p+o

1 ,
+5 ﬁf (Vi 6301 + V6201 C, 1) dy
b B+

1 — 1
< SVII6H T +5 ( [+ ﬁf ) Vi, 6 C. ] dy + VIBA(S — ). 11

b—o
We notice that, by the definition of vi, (f — v1)(x;, %) = 0,71 =0,...,m, for every
y € [b, f]. Then, by Proposition 2, for every /< f

(6) VI =), [T < 5 ZZV"’[M f =), Iyl

11]1

Hence, using (6) and then Propositlon 1,

VIBAf —v), 11 < 5 Z Z VIIBA(S — vo), I]
i=1 j=1
p

SV I+ ZZV“[lzﬂvl,Iu]

j=1 z 1 j=1
P
> ovineif, IU]<

=1

=1 J

INA
ANy

z |
N

T

IN
Do —

by part (b), provided that 0 </ < 1}—2
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Moreover, let us notice that, if @ < x;_1 < x<wx; < o, then

v (ﬁc ) _ f(xiflvb)a ?/ S b7
PO @i ), b2 B,

fla,b), y <0,
f,p), y>p,

while v (o, y) = { and so

f Ve (62 ()l dy < OV, 16, b)),

+0
Vi 6 G, p1dy < SV, 162, .

h\m w

Now, if V[(fz,a][zf (,0)] # 0 and V{, [Af(-, /)] # 0 and if we consider 0 <J <J such
that

J< min & ¢
4V[(f1.oz][)“f('a b)] 4V/;,a][}f(',ﬁ)]

Jf 1 = 0 we just take
and analogously in the other cases), then in particular

[aoc

(of course if, for example, V[‘Zﬁ%][jyf (,0)] # 0 and V,

P
2V, FC.b)]

< min ¢ ¢
V0 6301 VT [637C, B)]

for every 1 > 0 such that 61< 1, and so

Sg <é&.

Hence we conclude that

VIS = I < 3,

A ) .
61 2} that is, the first relation of (c).

The second relation can be proved with similar reasonings to the previous
ones. Indeed, it is sufficient to change the variables and to repeat the same ar-
guments replacing the x—section with the y—section and viceversa. Then it is
possible to prove that

if0<i< mm{

VIL(S — o), Iy]< g
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if 0<A< min L2 , for &' < min e id — i (as before
612 Vi gl @, )1 4V5, yf (2, )]

of course if V[ﬁ 5 [if (a, )]V, 0 m[if (, )] # 0). In conclusion, we have proved that

z DY
there exists o = mm{é d'} > 0 such that, if 0<i< mm{6 1A2}

VLS — v I5l< =, VELAS — va), I;1< g

27

which concludes the proof of the theorem. O

We now prove a first convergence result for (z;v;, — vi), k = 1,2, where 7; is
the translation operator, defined as 7./ (x,y) = f(x — t1,y — t2), if t = (£1, t2).

THEOREM 1. — Let f € AC?(R?). Then there exists ) > 0 such that, for every
&> 0, there exist I = [a, o] x [b, f] and & > 0 for which

VUG =) <3, Vil =), 1<
where t = (t,0) ort = (0,1), if —0 <t <0, with vy, vo defined as in Proposition 6.

Proor. — We first prove the result in the case ¢ = (¢, 0).
Let us fix ¢ > 0. By Proposition 6 there exist A > 0, I = [a,«] x [b, ] and
6 > 0 such that
p —
(7) > VIS Ljl<e, k=1.2,

J=1

Ms

I
—

7

for a suitable partition {I;} of I, Iy =I[x; 1, 2] % [y1, 9], i=1,...,m,
j=1,...,p (such that, in particular, = max {@i — 21,95 — Yj—1} <0).
P

Moreover, VO[I(f — ), I;]1< E, k = 1,2, for some & > 0.
Let us now consider 0 < 5 < J such that < min {wi — @i,y —yj1 )

We first prove that V{[A(tev1 — v1), I1< 5 it —5<t<0.

Let us notice that, for every fixed y € [b, f], the function v (-, %) is a step
function on [a, o] defined exactly as the function v of Theorem 1 in [2]. Hence,
following the proof of Theorem 1 in [2], one can show that, if —d <t <0, then, for
every 4 >0,y € [b, ],

(8) Vi Ay — v (] < Z (o 44 G )

Now, by Proposition 1.17 of [25] and using (8) and (7),
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B Yj

or 9 p 1 m_p
VILi(tvy —vy), 1] = f Vi bz —vCyldy <5 3> f 0 4Gyl dy
b =1 j=1 Yi1
1 K, &
=5 SO VI I < 5
i=1 j=1

if 2 > 0is such that 41 </ and —d <t <0.
Let us now prove that Vi [A(tyv2 — v), I1< 5

We first notice that, for every fixed x € [a, a], vo(x,-) is a step function to
which it is possible to apply Proposition 5, hence, for every 1 > 0,

9) Vi v, 01 < 5 Z 2, ]
Proposition 5 can be applied also to 7va(x,-) = ve(x —t,-), for every fixed
t =(t,0), and so

1

P
(10) V[(Zﬁ][irtw(ac, )] < 5 Zl 5 1.1 [2/1‘ctvz(ac, 3.

Now, by the definition of v we have that, for every x € [a, o],
(11) [4a(ar, < VL, | [43fGe, ],
while if © > «, vo(x, -) = vo(«, -), hence in this case

(12) J[4Ave (e, )] <V y - NEZACIDIN

for everyj = 1,...,p. Then there holds, by Propositions 1.12 and 1.17 of [25] and
by (9)-(12),

[?/ —1.Y5]

yly

Vylalzeve —v2), 1= f oyl ATeve = vo)(a, ) da

1
<3 f ( Vi pl22teva (@, )1+ Vi [22s(a, .)]) dx
1 (&
Szl f 21:( éjilﬁw][ﬂ.‘rtvz(%, ')]+V[(/Z/j71<,y]][4j'v2(xa )]) da
a J=
1 o—t P 1 m p x;
=1 | oV lde + Zf 0 4G )l de
a—t J=1 i1 =T

~ D
Vi 44 @, ﬂdﬁ“%f Z o 4 (@, )] dee

IN

ANQ—

Sg
g

S}
3 |
T

fV[Z Ll @, )] de = *(Sl+S2+S3)

Ci-1

+
NN

.
I

—
~.
Il

—
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About S; and S3 we have, by (7) and taking into account that ¢ is convex and ¢(0) = 0,

m p m_p
=N VI I < 5> YV 8/Lf11]]<

i=1 j=1 i=1 j=1

l\DIF—‘

if 8/ </ and, similarly,

Sy <fZV i, )]dx—zz fv 4, N de

a]_ 21]196'71

= Z > VIS, I <

=1 j=1

=

About Sy, notice that, if —0<t<0, then by 1.17 of [25], Sp < (SV[(‘;,ﬁ [44f (o, -)].
Let us now recall that ¢ is such that, in particular,

&

< B ——

(see Proposition 6), therefore, if 41 < 4, then

&

V[(Z.ﬁ] [4/1.](.(05; )]

0<

(of course here we considgr the case V['/I’,ﬁ][Zf (o, )] # 0, since the other case is

obvious). Hence, if 0 <1< g and —d <t<0, we conclude that

&
Vil (teve — v2), I1< 3

and so the thesis follows.
The proof in the case t = (0,¢) follows with analogous reasonings. We just
remark that, in this case, one has to use the fact that, by Proposition 6,

e P
0<o< Jit0<i<?. .
) [Muﬂ P Vit

If we use a slight modification of the auxiliary step functions, it is possible
to repeat all the previous results and to get the convergence result of
Theorem 1 for positive values of ¢, i.e., for 0 <t<d. In particular, we have to
use V; instead of v; and 7» instead of v, where ¥; : RZ — R is defined in the set
([a,0] x R)U (R x [b, B]) as
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f@iy), wia<a <, yelbpl
fla,y), x<a, yelbpl
fly), x>0, yelbpl
i(w,y) = q f@;,0), @i1<w<wx;, y<b,
f@i, B, wi<x <, y>p,
fla,b), x=a, y<b,

fla.p), x=a, y>Pp,

1=1,...,m, while v (x,y) = v1(x, y) otherwise. Hence v; and v; are defined in a
similar way, except for the fact that vi(-,y) is continuous from the left in the
points (x;, y), for every fixed y € [b, f], while v; is continuous from the right. In a
similar fashion 7, : R? — R is defined analogously to vz, but in such a way that it
is continuous from the left in the points (x,y;), 7 =0,...,p, for every fixed
x € la,al

Since Proposition 6 can be proved also replacing v; and vy with v and g,
respectively, with similar reasonings to Theorem 1 it is possible to prove the
following:

THEOREM 2. — Let f € AC?(R?). Then there exists A > 0 such that, for every
&> 0, there exist I = [a, o] x [b, f] and 6 > 0 for which

VUi =) 1< 5, ViA@iz =), 0< 3.

where t = (t,0) ort = (0,t), if 0<t <.

Wée nowé extend the previous results to the set Ig = {a — g o+ g] X
o004

THEOREM 3. — Let f € AC?(R?). Then there exists ). > 0 such that, for every
&> 0, there exist I = [a,a] x [b, f] and 6 > 0 for which
(13) VUG =), I< 5,
(14) ViU — ), I < 5,

wheret = (t,0) ort = (0,1) and —6 <t <0, with v, ve defined as in Proposition 6.
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Proor. — We will prove the result in the case ¢ = (¢, 0) since, as before, the
case t = (0, 1) follows with similar reasonings.

Let us fix ¢ > 0. By Theorem 1 there exists 4 > 0 such that, in correspondence
to ¢ > 0, there exist I = [a,a] x [b, f] and 6 > 0 for which V{/’[i(ftvl -, I]1<§

and Vzw [;l(rtvz - V2),I]<§, if —0<t<0, where v; and ve are defined as in

Proposition 6, hence associated to a suitable partition {/;;} of 1. We also recall
m

that, by Proposition 6, > Z V”’[/lf I;j]1<e, k=1,2, and that ¢ is such that, in
=1 j=1

particular, § < min {@ — 1,95 — yj-1}-
i=1,...m, j=1,....p

Let us prove (14). 5
We first study the set [a ~5 a] x [b, 1. Let us notice that ve(x, ) = va(a, y) =

) . .
f(a,y;-1), for every x e [a—z,a}, y € lyi—1,yl j=1,...,p. Hence, with

similar reasonings to Theorem 1 one can prove that

5 a
vy {i(ftvz —v2), {a - 5’4 X [bvﬂ]:| —.[Vg,’/;][/l(ftVZ — vo)(a, )] da

(V{/’ [4hrpae, N+ V! [4iwma, -)]) dz

[yj-1.9] [yj-1.9]
a-g 7/
a—t P a »
—2 [ v ety [ SV i da
a—3—¢t j=1 a9 j=1 -
2 2
1 [ 1 [ &
fzle Vi 44 (@, )] de ;lf 1 Vi 4 @, )] de
a-$ J= o J=
a
1 P
+1 [ oW, i@ e
s J=1
2
1, S o chs I & e
)= i=1 j=
recalling that (5< ¢ for 4i<i</ (7 is such that

Vi, ,;][/lf (@,)] V{é’, pldif @, )Y
Velf ]< + 00), if V; b, ﬂ][} f (a, -)] # 0. Since, by Proposition 6, Z Z V"’[4/1f Ijl<e
1f4)</1 then i=1 j=1

(15) 1744 [x(mz ~ W), [a - g , a] % [b, ﬁ]} < %
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0 o ol ., . . . .
About the set |o,a+ 5 X |b— % B+ 5| it is sufficient to notice that, if x €

[a, o+ 2} ,thenx —t > o and so, foreveryy € [b ~3 P+ 2} , Teve(e, y) = valie, ),

0 0 0
which obviously implies that VJ {ﬂv(rth — v2), [oc, o+ é} X [b ~3 B+ 5 H =0.

Let us now study the sets [a,a] x [b —g,b} and [a, o] x {ﬁ,ﬁ—&—g]. Here

(tpve — vo) is defined exactly as in [a, o] X [b,y1[ and [a,a] x {f}, respectively.
Hence, by Theorem 1,

(16) vy [i(rtvz —w),[a, o] x [b — (2—5 , b” < VI[Ameve — w), I1< %,
and

(17) vy [Mmz — o)., 4] x [ﬁ, /3+ZH <L

if <. Finally, if (x,y) € [a—g,a] X {b—g,b} U [a—g,a} X [/)’,ﬁ—i—g] both

vo(x, ) and t;ve(x, -) are constant with respect to the second variable, hence ob-
viously

0 0 0
(18) Vz Mtgve — v2), a—g,a X b_é’b =0

=Vy {ﬂv(rtvz — V2), {a—g,a} X [ﬂ,ﬁ—l—é”

Now, using Proposition 3,
) 0 0 0
V3 [A(Ttvz - vz),lg} =Vy [A(ftvz — ), {a - §’4 X [b — §’ﬁ + 5”

<

DO —

vy [Z)V(rtvz — Vg), {a —g,a} X [b,ﬁ]]

1 1) 1
+ ZV; {4/1(1,5\12 — ), [a, o] x {b —5 b” + szw[Si(rth — ), 1]

1 1) £
+§V; {8/1(‘”\12 — ), [a,a] x {/3,/”2” < 5
by (15)-(18), if 84 < A.

We now prove (13).
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0 0 0
Let us first notice that, if (x,y) € [a—ﬁ,a] X {b—é,/ﬁ—l—é}, nx,y) =
fla,y) = i, y), if —0<t<0, hence

[ [ 0 1) 1)
1 %4 _}~(TtV1*V1), _az,a} X [b2’ﬁ+2” =0.

For similar reasons, there also holds

[ [ 0 0 0
%4 _A(ttvl—vl), _oc,oc—&—é] X {b—é,/f—l—é” =0.

If (x,y) € [a, o] x [b - g , b} , then (zgv; — v)(x, ) = (t4v1 — v1)(x, b). Hence, as in

Theorem 1, and using in particular (8), one can prove that

b
0
vy {)»(Tﬂd =), [a, o] x [b - E’bH = f Vi qlmevy = vi)(, b)1 dy
b4

0
= éV[(fM][)~(TtV1 —v)(, 0)]

ZV lx[][4)vf(',b)] S [M 447G, b)]< 5
2¢

 fordi<i<7,
[M][Jf( o VoG T

recalling that (see Proposition 6) d <

of course if V[’fm [Af (-, b)] # 0.
In a similar way it is possible to prove that

i 511
VI Mgy — n), [@, o] % |:ﬂaﬁ+2:| <3

In conclusion, by Proposition 3 and Theorem 1,

Vi | At — vl),Ig} =V{ | Mmv1 —n), @, o] x {b —g,/)’ +g ]

|:2].(‘L’tvl Vl), [(1/, O(] X |:b — g s bj|:|

<Ly
2
1 1 0 &
ZV¢[4}(‘L}V1—V1) I} 4 |:4},(‘L't\)1—\)1), [(l, OC} X[ﬁ,ﬂ+§]}<§,
if 42 < ).
Using the step functions v; and s it is possible to obtain the previous con-
vergence result on I; also for positive values of ¢. In particular, with similar
reasonings to Theorem 3 it is possible to obtain the following:
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THEOREM 4. — Let f € AC?(R?). Then there exists A > 0 such that, for every
&> 0, there exist I = [a, o] x [b, f] and 6 > 0 for which

VUG =) 1)< 5, Vil = W) L)< 5.

where t = (t,0) or t = (0,t) and 0<t<o.

5. — The main result.

We are now ready to prove the main result which furnishes a characterization
about the p-modulus of smoothness of f.

THEOREM 5. — Let f € BV?(R?). Then there exists & > 0 such that
. 0 _
}g{r)g o’(f ,0) =0,

if and only if f € ACY (R?).

PROOF. — Let f € BV?(R?%). We first assume that f € ACZ’;C(R2) and we will
prove that

(19) lim V?[A(zef — )1 =0,

[t|—0

for some A > 0, from which the sufficient condition obviously follows.

We first prove (19) in the particular case t = (¢,0), with ¢ <0.

Since f € AC?(R?), by Theorem 3 there is 4 > 0 such that, for every fixed
& > 0, there exist I = [a,a] x [b, 5] and J > 0 for which

(20) ViU — v, 1)< % k=12,

and (a) — (c) of Proposition 6 hold. By Proposition 3 and Proposition 1 there holds

VOwef — 1 < %V‘”[%(rtf =), R x (—00,0]|

+ jzw [4ACeef — ), R x [B,+00)]

+%V¢ |:8}(th 7f)5 <OO,G/ - g:| X [baﬁ]:|

1

ER {wmf -, {a + (2—5 , +oo) « [b,ﬂ]}

1 ) )
+EW {16/1(th - [a—?owé] X [b,/f]]
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VOt f, R x (—00,b]] + S VPHIf, R x (=00, b]

<
- 4

=R

FSVOBITS, R x [, o0)] + S VIISH R x [f, +o0)]

) N 0
+ 1—6V¢ -16/L‘th, (—OO,G/ — é:l X [b,ﬁ]:|
v liear (—oo.a— 2] x b,
16 I ) ’ 2 ’

1 [ 0
V(39 e
+ 32 V _32/L‘th, {oc + 5 +oo> X [b,ﬂ]}

<

1
+§V

1
16

321, {oc +g,+oo) « [b,/ﬂ]

<

v

:wmf P [a da g] . [b,m} |

0 0
Now, if (¢,0) is such that 5 <t<0, then x —t<a if x<a—§ and x —t > o if

x> oc+g,whﬂea75<x7t<cx+5ifafg<x<a+§. Hence
@) v [mt f, (—oo,a - g] < b, ﬂ]} < VOL16f,( ~ o0,al x [b, 1,

(22) Ve [SZ/Ith, [oc +g,+oo> X [b,ﬁ]} < VP[822f, [a, +00) x [b, 1],

and so

VOMnf =] < %V¢[4/1f, R x (—o0, b]] + %V"’[Sif, R x [B, +00)]
+%V¢'[16/1f, (—o0,a] x [b,41] +%V¢’[32/1f, [0, +00) x [b, ]

1
+EW |:16)~(th_f)7 [a—;wg} X [b,ﬁ]]

15 1 0 1)

P v _ 0 2
<16e+16V [16/1(rtf il [a 2,a+2} x[b,ﬁ]},
if 32/ </, by (a) of Proposition 6.

About V* [lGJ.(rt -5, [a — g,a + g} x [b, ﬂ]], obviously there holds
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pe [mz(rtffx [a das g} . [b,m} <vr [16/1(rtf _p. {a 0t g} « [b,ﬁ]}

+ V; |:16)V(th _f)7 |:CL _g7a +g:| X [baﬁ]:|
=:J1 +Jo.

Concerning J1, using Proposition 1 we have
1 0 0
J1 <5 Vi [48A(ref — v, |a — 5,0+ 5| x [b, ]
3 2 2
0 0
+V{ﬂ 48}V(TtV1 - Vl)a a_éva"_é X [baﬂ]
" 0 0
+V1 48},(1)1 _f)7 a_§7a+é X[bvﬁ]

< 2 {2V7[4840v1 — ), I5] + V{[48(zev1 — v1), L]} < %

Wl =

by (c) of Proposition 6 and by (20), if 2 > 0 is such that 484 <1 and —g <t<0.
For the same reasons,

1 0 0
J2 < 3 {Vé” |:48)~(ftf — Tv2), [a —go0t é] X [b,ﬂ]}
0 1)
+ Vg [48)L(rtvz — Vp), {a - i,a + 2} X [b,ﬂ]].

+Vy {482(1/2 -1, {ag,a+g} X [b,ﬂ]} }

1

< S{2VEI48I02 — ), 1) + VE48ATve — v, IjJ} < o

Wl

Hence we conclude that

1% [m@tf -1, {a —g,a +g} X [b,/ﬂ} <e

and so

VUwf —Pl<e
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This concludes the proof of (19) in the case t = (¢,0). The case t = (0,1), t <0, is
similar.

If t = (¢,0) with ¢ > 0 (analogously if £ = (0,%), £ > 0) we can repeat all the
proof with v; and v, instead of v; and v, and using Theorems 2 and 4 instead of
Theorems 1 and 3, respectively.

Finally, in order to treat the general case t = (1, t2), it is sufficient to notice
that, by Proposition 1,

VOwef —H1 < %{Vw[zfl(f(tl,tz)f = Tt ]+ VA1 f — )1}

where in the two terms of the right-hand side we have two translations of the
kind t¢ ) f and 7y f, respectively, which can be separately treated as indicated

above, just replacing g with g

Let us now prove the necessary condition. Let f € BV?(R?) and assume that
there exists 4 > 0 such that 5lir(r)1+ @?(Af,0) = 0. Let us consider a family of ap-

proximating integral operators of the form

(T f)(s) = f (s —tdt, w>0, s € R,

R?

where {p, },,~o is a net of mollifiers. Then obviously {p,,},.-, satisfy all the as-
sumptions of Theorem 3.3 of [3], and so there exists x>0 such that
hm VouTywf — )] — 0, as w — + oo, namely the operators {T',f},,., con-

verge in p-variation to f. Now, T,,f € AC?(R?), by Proposition 4.2 of [3], and so,
being AC?(R?) a closed subspace of BV?(R?) with respect to the g-variation
functional (Theorem 4.3 of [3]), f € ACV’(RZ), which concludes the proof of the
theorem. O

REMARK 3. — As pointed out in the Introduction, Theorem 5 holds also in
the case of g-variation defined through general partitions. We recall that it
is possible to define the variation (and hence also the g-variation) using
“pythagorean” or “extended” partitions (see e.g. [11, 33]). In particular, if

=[a,o] x [b,f] C RZ, a partition {Ji,...,J} of I is said to be “pytha-
gorean” if the subsets J; (i =1,...,m) are obtained as cartesian product of
two partitions of [a,«] and [b, f], while it is “extended” if the subsets J; are
rectangular, but without the previous constraint. If we denote by V; L]
and V,Z’ JLf 1], k=1,2, the separated g-variations of f defined through py-
thagorean or extended partitions, respectively, then obviously

Ve < VLT, k=12
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On the other side, using simple geometric considerations, it is not difficult to
prove that also the converse inequality holds, hence

Vlﬁp[f’ I] = Vk(p.e[f71]’ k= 1,2

Now, Propositions 1 and 3 and (a) of Proposition 6 obviously hold also for
the g-variation V?[f] defined through extended partitions, hence the proof
of Theorem 5 can be repeated, taking into account that Jj :=V/ [f,1]=
V,f p[f,I], k=1,2, and using all the previous results given in the case of
pythagorean partitions.

REMARK 4. — All the previous results can be proved in the general frame of
R¥. In particular, in the more general case it is necessary to define N auxiliary
N

step functions vy, ..., vy, similarly to v; and vs. For example, if I = [] [a;, b;] and

=1
{O,, ... g} is a partition of [a;, b;], for every i = 1,..., N, then v; is defined
in such a way that it is equal to f on the segments ®w:. ), k=1,...,m;, and
constant on the (N — 1)—dimensional intervals ](k‘l)acg,(k) @[
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