BOLLETTINO UNIONE MATEMATICA ITALIANA

FABIO PARONETTO

A Time Regularity Result for Forward-Backward Parabolic Equations

Bollettino dell'Unione Matematica Italiana, Serie 9, Vol. 4 (2011), n.1, p. 69–77.

Unione Matematica Italiana

 $<\!\!\mathtt{http://www.bdim.eu/item?id=BUMI_2011_9_4_1_69_0}\!>$

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

A Time Regularity Result for Forward-Backward Parabolic Equations

Fabio Paronetto

Abstract. – We give a time regularity result for an abstract mixed type equation whose toy model may be $(ru)_t - \Delta u = f$ where r is a coefficient whose sign may be positive, null and negative.

1. – Introduction.

In the paper [2] an existence result for a mixed type evolution equation is given. This result is slightly generalized in [1] to Banach spaces depending on a parameter.

Consider the following family of evolution triplets

$$V(t) \subset H(t) \subset V(t)'$$
 $t \in [0, T]$

where H(t) is a Hilbert space, V(t) a reflexive Banach space which continuously and densely embeds in H(t) and V(t)' the dual space of V(t).

Moreover we will suppose the existence of a set U such that

(1)
$$U \subset V(t)$$
 dense in $V(t)$ for a.e. $t \in [0, T]$

We define \mathcal{U} the set of polynomials $v(t)=\sum\limits_{k=0}^Nu_kt^k$ with $u_k\in U,\ N\in \mathbf{N}$ and suppose that the functions

$$t \mapsto \|v(t)\|_{V(t)}, \quad t \mapsto \|v(t)\|_{H(t)}, \quad t \mapsto \|v(t)\|_{V(t)'}, \quad t \in [0, T],$$

are measurable for every $v \in \mathcal{U}$. We denote respectively by \mathcal{V} and \mathcal{H} the spaces defines as the closure of \mathcal{U} with respect to the following norms

$$\|v\|_{\mathcal{V}}^2 := \int\limits_0^T \|v(t)\|_{V(t)}^2 dt \qquad ext{and} \qquad \|v\|_{\mathcal{H}}^2 := \int\limits_0^T \|v(t)\|_{H(t)}^2 dt$$

and by \mathcal{V}' the dual space of \mathcal{V} .

DEFINITION 1.1. – Consider $S:[0,T] \longrightarrow \mathcal{L}(H(t))$, being $\mathcal{L}(H(t))$ the set of linear and bounded operators from H(t) in itself. We say that S belongs to the

class $\mathcal{E}(C_1, C_2)$, $C_1, C_2 > 0$, if it satisfies what follows for every $u, v \in U$:

- S(t) is self-adjoint and $||S(t)||_{\mathcal{L}(H(t))} \leq C_1$ for every $t \in [0, T]$,
- $t \mapsto (S(t)u, v)_{H(t)}$ is absolutely continuos on [0, T],

•
$$\left| \frac{d}{dt} (S(t)u, v)_{H(t)} \right| \leq C_2 \|u\|_{V(t)} \|v\|_{V(t)}$$
 for a.e. $t \in [0, T]$.

Consider $R \in \mathcal{E}(C_1, C_2)$; we can define an operator \mathcal{R} by

(2)
$$\mathcal{R}: \mathcal{H} \longrightarrow \mathcal{H}$$
 by $\mathcal{R}u(t) := R(t)u(t)$

which turns out to be linear and bounded by the constant C_1 . Now define the Banach space

$$(3) \qquad \mathcal{W}_{\mathcal{R}} = \left\{ u \in \mathcal{V} \mid (\mathcal{R}u)' \in \mathcal{V}' \right\}, \qquad \|u\|_{\mathcal{W}_{\mathcal{R}}} := \|u\|_{\mathcal{V}} + \|(\mathcal{R}u)'\|_{\mathcal{V}'}.$$

where $(\mathcal{R}u)'$ denotes the derivative of $\mathcal{R}u$ with respect to the variable t. One can prove that if $u \in \mathcal{W}_{\mathcal{R}}$ the function

$$t \mapsto (R(t)u(t), u(t))_{H(t)}$$

turns out to be continuous in [0,T]. If we consider, for each $t,H_+(t)$ and $H_-(t)$ respectively the positive and negative part of the spectrum of R(t), by $R_+(t)$ we denote the restriction of R(t) to $H_+(t)$, by $R_-(t)$ we denote the restriction of -R(t) to $H_-(t)$, $\tilde{H}_+(t)$ (respect. $\tilde{H}_-(t)$) the completion of $H_+(t)$ (of $H_-(t)$) with respect to the norm $\|R_+(t)^{1/2}w\|_{H(t)}$ (to the norm $\|R_-(t)^{1/2}w\|_{H(t)}$), we define by $P_+(t)$ and $P_-(t)$ the orthogonal projections defined in $\tilde{H}(t)$ and valued respectively in $H_+(t)$ and $H_-(t)$, where $\tilde{H}(t) := \tilde{H}_+(t) \oplus \operatorname{Ker} R(t) \oplus \tilde{H}_-(t)$. We can also define a family of equibounded operators

$$R': [0,T] \to \mathcal{L}(V(t),V(t)') \quad \text{by} \quad \langle R'(t)u,v \rangle_{V(t)' \times V(t)} := \frac{d}{dt} \big(R(t)u,v \big)_{H(t)}$$

and, by the density of \mathcal{U} in \mathcal{V} , an operator

$$\mathcal{R}': \mathcal{V}
ightarrow \mathcal{V}' \quad ext{by} \quad ig\langle \mathcal{R}'u,v ig
angle_{\mathcal{V}' imes \mathcal{V}} := \int\limits_0^T \langle R'(t)u(t),v(t)
angle_{V(t)' imes V(t)} dt$$

which turns out to be linear and bounded by C_2 . Consider a family of operators

$$A(t):V(t) \to V(t)'\,, \ t \in [0,T]\,, \qquad t \mapsto \langle A(t)u,v \rangle_{V(t)' \times V(t)}$$

measurable and define an operator A as follows

$$A: \mathcal{V} \longrightarrow \mathcal{V}', \qquad Au(t) = A(t)u(t) \qquad 0 \leqslant t \leqslant T.$$

Suppose the operators \mathcal{R}' and \mathcal{A} are linear and bounded and moreover

(4)
$$\left\langle \mathcal{A}v + \frac{1}{2}\mathcal{R}'v, v \right\rangle_{\mathcal{V}' \times \mathcal{V}} \geqslant a \|v\|_{\mathcal{V}}^{2},$$

for some positive constant a and every $v \in \mathcal{V}$. Now suppose you are given $f \in \mathcal{V}'$, $\varphi \in \tilde{H}_+(0)$ and $\psi \in \tilde{H}_-(T)$. Consider the problem

(5)
$$\begin{cases} (\mathcal{R}u)' + \mathcal{A}u = f \\ P_{+}(0)u(0) = \varphi \\ P_{-}(T)u(T) = \psi \end{cases}$$

Then the following existence result holds.

THEOREM 1.2. – Given $R \in \mathcal{E}$ and \mathcal{A} such that (4) holds, problem (5) admits a unique solution in $\mathcal{W}_{\mathcal{R}}$.

In [2] a time regularity result is given, but only for non-negative \mathcal{R} . In this note we extend it to a more general setting and to \mathcal{R} with variable sign.

2. - The result.

Given A as above suppose that $[0,T]\ni t\mapsto \langle A(t)u,v\rangle_{V'(t),V(t)}$ is absolutely continuous and

(6)
$$\left| \frac{d}{dt} \langle A(t)u, v \rangle_{V'(t), V(t)} \right| \leqslant C_3 ||u||_{V(t)} ||v||_{V(t)}$$

for every $u,v\in U$ and for a.e. $t\in [0,T]$. In this way one can define $A':[0,T]\longrightarrow \mathcal{L}(V(t),V(t))$ and $\mathcal{A}':\mathcal{V}\to\mathcal{V}$.

THEOREM 2.1. – Denote by u the solution of (5). Assume $R, R' \in \mathcal{E}(C_1, C_2)$ and (6) holds. Instead of (4) assume

$$\langle [R'(t) + A(t)]w, w \rangle_{V(t)', V(t)} \geqslant a ||w||_{V(t)}^2$$

for every $t \in [0,T]$ and $w \in U$. Assume $f' \in \mathcal{V}'$ and the existence of $u_0 \in V(0)$, $u_T \in V(T)$ such that $P_+(0)u_0 = \varphi$ in such a way that $f(0) - A(0)u_0 - R'(0)u_0 \in \operatorname{Im} R(0)$ and $f(T) - A(T)u_T - R'(T)u_T \in \operatorname{Im} R(T)$. Then $u' \in \mathcal{V}$.

COROLLARY 2.2. – If $u, u' \in \mathcal{V}$ the function $[0, T] \ni t \mapsto \|u(t)\|_{V(t)}$ is continuous.

Remark 2.3. – If $V(t) \equiv V$ for every t theorem and corollary above reduce to say that $u \in H^1(0, T; V) \subset C^0([0, T]; V)$.

Remark 2.4. – If R is defined by a function r, i.e. $\mathcal{R}u = r(x,t)u(x,t)$, to require that $R, R' \in \mathcal{E}$ implies that r admits a weak derivative with respect to time, so

 $(R'(t)u(t))(x) = \partial_t r(x,t)u(x,t)$. In particular assumptions of Theorem 2.1 are satisfied if A(t) is strictly monotone and $\partial_t r \geqslant 0$.

Proof. – Consider u to be the solution of the problem

$$\begin{cases} (\mathcal{R}u)' + \mathcal{A}u = f \\ P_{+}(0)u(0) = \varphi \\ P_{-}(T)u(T) = \psi \end{cases}$$

Deriving the equation one gets

$$(\mathcal{R}'u)' + (\mathcal{R}u')' + \mathcal{A}'u + \mathcal{A}u' = f'$$

and since $\mathcal{R}u'(t) = f(t) - \mathcal{A}u(t) - \mathcal{R}'u(t)$ we consider the problem

(7)
$$\begin{cases} (\mathcal{R}v)' + \mathcal{A}v = f' - \mathcal{A}'u - (\mathcal{R}'u)' \\ P_{+}(0)v(0) = R_{+}(0)^{-1} [P_{+}(0)(f(0) - A(0)u_{0} - R'(0)u_{0})] \\ P_{-}(T)v(T) = R_{-}(T)^{-1} [P_{-}(T)(f(T) - A(T)u_{T} - R'(T)u_{T})] \end{cases}$$

with

$$u_0 \in V(0), u_T \in V(T), \qquad P_+(0)u_0 = \varphi, P_-(T)u_T = \psi,$$

(8)
$$P_{+}(0)[f(0) - A(0)u_{0} - R'(0)u_{0}] \in \operatorname{Im} R_{+}(0),$$

$$P_{-}(T)[f(T) - A(T)u_{T} - R'(T)u_{T}] \in \operatorname{Im} R_{-}(T).$$

Denote by v the solution of (12) and consider

$$w(u_0;t) = w(t) = u_0 + \int_0^t v(s) \, ds$$
.

Integrating the equation above one obtains

$$\mathcal{R}v(t) = f(t) - f(0) - \int_0^t \mathcal{A}'u(s)ds - \int_0^t (\mathcal{R}'u)'(s)\,ds + \mathcal{R}v(0) - \int_0^t \mathcal{A}v(s)ds$$

Using $\mathcal{R}v(t) = (\mathcal{R}w)'(t) - (\mathcal{R}'w)(t)$ we first get

$$\begin{split} (\mathcal{R}w)'(t) - (\mathcal{R}'w)(t) &= f(t) - f(0) + \\ - \int_0^t \mathcal{A}'u(s)ds - \int_0^t (\mathcal{R}'u)'(s) \, ds + (\mathcal{R}w)'(0) - (\mathcal{R}'w)(0) - \int_0^t \mathcal{A}v(s)ds \, ; \end{split}$$

then using

$$\int_{0}^{t} \mathcal{A}v(s)ds = \int_{0}^{t} \mathcal{A}w'(s)ds = \mathcal{A}w(t) - \mathcal{A}w(0) - \int_{0}^{t} \mathcal{A}'w(s)ds$$

we get

$$\begin{split} (\mathcal{R}(w-u))'(t) + \mathcal{A}(w-u)(t) &= (\mathcal{R}w)'(t) + \mathcal{A}w(t) - f(t) = \\ &= (\mathcal{R}'w)(t) + f(t) - f(0) - \int_0^t \mathcal{A}'u(s)ds - \int_0^t (\mathcal{R}'u)'(s)\,ds + (\mathcal{R}w)'(0) \\ &- (\mathcal{R}'w)(0) - \mathcal{A}w(t) + \mathcal{A}w(0) + \int_0^t \mathcal{A}'w(s)ds + \mathcal{A}w(t) - f(t) \\ &= \int_0^t (\mathcal{R}'w)'(s)ds - f(0) - \int_0^t \mathcal{A}'u(s)ds - \int_0^t (\mathcal{R}'u)'(s)\,ds + (\mathcal{R}w)'(0) \\ &+ \mathcal{A}w(0) + \int_0^t \mathcal{A}'w(s)ds \\ &= \int_0^t [(\mathcal{R}'w)'(s) - (\mathcal{R}'u)'(s)]ds + \int_0^t [\mathcal{A}'w(s) - \mathcal{A}'u(s)]ds \\ &+ \mathcal{R}(0)v(0) + \mathcal{R}'(0)u_0 - f(0) + \mathcal{A}(0)u_0 \,. \end{split}$$

The quantity $(\mathcal{R}v)(0) - f(0) + \mathcal{R}'u(0) + \mathcal{A}w(0)$ is nothing else but $R(0)v(0) + R'(0)u_0 - f(0) + A(0)u_0$. We can choose u_0 in such a way that

$$R(0)v(0) + R'(0)u_0 - f(0) + A(0)u_0 = 0.$$

We can do that modifying u_0 if necessary taking $u_0 \in V(0)$ the be the solution of the following problem (we recall that A(0) + R'(0) is corcive and bounded in V(0))

$$A(0)z + R'(0)z = f(0) - R(0)v(0), \qquad z \in V.$$

Consequently, in particular, $P_+(0)[f(0) - A(0)u_0 - R'(0)u_0] = R_+(0)v(0)$ and the initial condition in (12) still holds.

In this way we obtain that the function w-u solves the problem

(9)
$$\begin{cases} (\mathcal{R}y)' + \mathcal{A}y = h \\ P_{+}(0)y(0) = 0 \\ P_{-}(0)y(T) = P_{-}(T)[u_0 + \int_0^T v(s)ds - u_T] \end{cases}$$

where

(10)
$$h = \int_0^t [(\mathcal{R}'w)'(s) - (\mathcal{R}'u)'(s)]ds + \int_0^t [\mathcal{A}'w(s) - \mathcal{A}'u(s)]ds.$$

Now consider the function

$$\tilde{w}(t) = \tilde{w}(u_T;t) := u_T + \int_T^t v(s) ds = \left[u_T - \int_0^T v(s) ds\right] + \int_0^t v(s) ds,$$

Since $\Re v(t) = (\Re \tilde{w})'(t) - (\Re' \tilde{w})(t)$ we get, as done for w, but integrating between T and $t \in (0, T)$,

$$\begin{split} (\mathcal{R}\tilde{w})'(t) - (\mathcal{R}'\tilde{w})(t) &= f(t) - f(T) + \\ - \int_{T}^{t} \mathcal{A}'u(s)ds - \int_{T}^{t} (\mathcal{R}'u)'(s)ds - \int_{T}^{t} \mathcal{A}v(s)ds + (\mathcal{R}\tilde{w})'(T) - (\mathcal{R}'\tilde{w})(T) \end{split}$$

then using

$$\int_{T}^{t} \mathcal{A}v(s)ds = \int_{T}^{t} \mathcal{A}\tilde{w}'(s)ds = \mathcal{A}\tilde{w}(t) - \mathcal{A}\tilde{w}(T) - \int_{T}^{t} \mathcal{A}'\tilde{w}(s)ds$$

we get similarly as before for w

$$(\mathcal{R}\tilde{w})'(t) + \mathcal{A}\tilde{w}(t) - (\mathcal{R}u)'(t) - \mathcal{A}u(t)$$

$$= \int_{T}^{t} [(\mathcal{R}'\tilde{w})'(s) - (\mathcal{R}'u)'(s)]ds + \int_{T}^{t} [\mathcal{A}'\tilde{w}(s) - \mathcal{A}'u(s)]ds$$

$$+ R(T)v(T) - f(T) + R'(T)u_{T} + A(T)u_{T}$$

As before, we can choose u_T in such a way $R(T)v(T) - f(T) + R'(T)u_T + A(T)u_T = 0$. Therefore the function $\tilde{w} - u$ solves the problem

$$\begin{cases} (\mathcal{R}y)' + \mathcal{A}y = \tilde{h} \\ P_{+}(0)y(0) = P_{-}(0) \left[u_{T} + \int_{T}^{0} v(s)ds - u_{0} \right] \\ P_{-}(0)y(T) = 0 \end{cases}$$

where

$$\tilde{h}(t) = \int_{T}^{t} \left[(\mathcal{R}'\tilde{w})'(s) - (\mathcal{R}'u)'(s) \right] ds + \int_{T}^{t} \left[\mathcal{A}'\tilde{w}(s) - \mathcal{A}'u(s) \right] ds.$$

Now define the function $z := w - \tilde{w}$ and notice that

$$w(u_0, t) - \tilde{w}(u_T, t) = u_0 - u_T + \int_0^T v(s)ds$$

is independent of t and in particular z is the solution of the evolutionary (but elliptic) problem

$$(\mathcal{R}z)' + \mathcal{A}z = \mathcal{R}'z + \mathcal{A}z = g := h - \tilde{h}$$

where

$$\begin{split} g(t) &= \int_0^t [(\mathcal{R}'w)'(s) - (\mathcal{R}'u)'(s)] ds + \int_0^t [\mathcal{A}'w(s) - \mathcal{A}'u(s)] ds \\ &+ \int_t^T [(\mathcal{R}'\tilde{w})'(s) - (\mathcal{R}'u)'(s)] ds + \int_t^T [\mathcal{A}'\tilde{w}(s) - \mathcal{A}'u(s)] ds \\ &= \int_0^t [(\mathcal{R}'w)'(s) - (\mathcal{R}'\tilde{w})'(s)] ds + \int_0^T [(\mathcal{R}'\tilde{w})'(s) - (\mathcal{R}'u)'(s)] ds \\ &+ \int_0^t [\mathcal{A}'w(s) - \mathcal{A}'\tilde{w}(s)] ds + \int_0^T [\mathcal{A}'\tilde{w}(s) - \mathcal{A}'u(s)] ds. \end{split}$$

We denote by y the term, independent of t, $\int\limits_0^T [(\mathcal{R}'\tilde{w})(s) - (\mathcal{R}'u)(s)]ds + \int\limits_0^T [\mathcal{A}'\tilde{w}(s) - \mathcal{A}'u(s)]ds$. Estimating g, since $R' \in \mathcal{E}(C_1, C_2)$ and $||A'(t)|| \leqslant C_3$, one has

$$\begin{split} \|g(t)\|_{V(t)'} &\leqslant \int_{0}^{T} \|(\mathcal{R}'w)'(s) - (\mathcal{R}'\tilde{w})'(s)\|_{V(s)} ds + \int_{0}^{T} C_{3} \|w(s) - \tilde{w}(s)\|_{V(s)} ds \\ &+ \int_{0}^{T} \|(\mathcal{R}'\tilde{w})'(s) - (\mathcal{R}'u)'(s)\|_{V(s)} ds + \int_{0}^{T} C_{3} \|\tilde{w}(s) - u(s)\|_{V(s)} ds \\ &\leqslant \max\{1, C_{3}\} \, T^{1/2} \left[\|\tilde{w} - w\|_{\mathcal{W}_{\mathcal{R}'}} + \|\tilde{w} - u\|_{\mathcal{W}_{\mathcal{R}'}} \right]. \end{split}$$

By the continuity of g we get

$$\max_{t \in [0,T]} \|g(t)\|_{V(t)'} \leqslant c \, T^{1/2}$$

which gives g(0) = 0. By the regularity of the coefficients equation (11) is in fact

$$R'(t)z + A(t)z = g(t)$$
 in $V(t)$ for every $t \in [0, T]$.

Thus we get that the solution of the equation with t=0 is only z=0. This implies that $u_T-u_0-\int\limits_0^T v(s)ds=0$ and then, in particular, w-u solves the problem (9) with $P_-(0)y(T)=0$. Now proceeding as in the proof of Theorem 3.11 in [2] we come to

$$||w - u||_{\mathcal{V}} \le c T^{1/2} ||w - u||_{\mathcal{V}}$$

and again, since this holds independently of T, ones gets that w-u=0 and then the thesis.

COROLLARY 2.5. – Under the same hypotheses as in Theorem 2.1, suppose for simplicity that $f(0) - A(0)\varphi - R'(0)\varphi \in \text{Im } R(0)$ and $f(T) - A(T)u_T - R'(T)\psi \in \text{Im } R(T)$, the solution u of (5) satisfies

$$(\mathcal{R}u')' \in \mathcal{V}'$$

and moreover there exists a positive constant c depending (only) on a^{-1} , $\|A\|$, $\|R'\|$, $\|A'\|$, such that

$$\begin{split} \|u\|_{\mathcal{W}_{\mathcal{R}}} + \|u'\|_{\mathcal{W}_{\mathcal{R}}} + \max_{t \in [0,T]} \|u(t)\|_{V(t)} \\ &\leqslant c \left[\|f\|_{\mathcal{V}'} + \|R_{+}^{1/2}(0)(u(0) - v(0))\|_{H_{+}(0)} + \|R_{-}^{1/2}(T)(u(T) - v(T))\|_{H_{-}(T)} \right] \\ &+ \|f'\|_{\mathcal{V}'} + \|R_{+}^{-1/2}(0) \big[P_{+}(0) \big(f(0) - A(0)\varphi - R'(0)\varphi \big) \big] \|_{H_{+}(0)} \\ &+ \|R_{-}^{-1/2}(T) \big[P_{-}(T) \big(f(T) - A(T)\psi - R'(T)\psi \big) \big] \|_{H_{-}(T)} \big] \end{split}$$

PROOF. – By Theorem 3.5 in [1] we have that $u, v \in \mathcal{W}_{\mathcal{R}}$ satisfy

$$\begin{split} \|u-v\|_{\mathcal{W}_{\mathcal{R}}} & \leq \|\mathcal{P}u-\mathcal{P}v\|_{\mathcal{V}'} + c \left[\|\mathcal{P}u-\mathcal{P}v\|_{\mathcal{V}'} \right. \\ & + \|R_{+}^{1/2}(0)(u(0)-v(0))\|_{H_{+}(0)} + \|R_{-}^{1/2}(T)(u(T)-v(T))\|_{H_{-}(T)}^{2/p} \right] \end{split}$$

where c depends only on a^{-1} and ||A||. If u denotes the solution of (5), u solves also

(12)
$$\begin{cases} (\mathcal{R}v)' + \mathcal{A}v = f' - \mathcal{A}'u - (\mathcal{R}'u)' \\ P_{+}(0)v(0) = R_{+}(0)^{-1} [P_{+}(0)(f(0) - A(0)u_{0} - R'(0)u_{0})] \\ P_{-}(T)v(T) = R_{-}(T)^{-1} [P_{-}(T)(f(T) - A(T)u_{T} - R'(T)u_{T})] \end{cases}$$

and consequently in particular we get

$$\begin{split} \|u'\|_{\mathcal{W}_{\mathcal{R}}} & \leqslant \|f' - \mathcal{A}'u - (\mathcal{R}'u)'\|_{\mathcal{V}'} + c \left[\|f' - \mathcal{A}'u - (\mathcal{R}'u)'\|_{\mathcal{V}'} \right. \\ & + \|R_{+}^{-1/2}(0) \big[P_{+}(0) \big(f(0) - A(0)\varphi - R'(0)\varphi \big) \big] \|_{H_{+}(0)} \\ & + \|R_{-}^{-1/2}(T) \big[P_{-}(T) \big(f(T) - A(T)\psi - R'(T)\psi \big) \big] \|_{H_{-}(T)} \bigg] \end{split}$$

where c depends only on a^{-1} and ||A||, i.e., calling c' the constant c+1,

$$\begin{split} \|u'\|_{\mathcal{W}_{\mathcal{R}}} \leqslant & c' \left[\|f' - \mathcal{P}'u\|_{\mathcal{V}'} + \|R_{+}^{-1/2}(0) \big[P_{+}(0) \big(f(0) - A(0) \varphi - R'(0) \varphi \big) \big] \|_{H_{+}(0)} \right. \\ & + \|R_{-}^{-1/2}(T) \big[P_{-}(T) \big(f(T) - A(T) \psi - R'(T) \psi \big) \big] \|_{H_{-}(T)} \Big] \end{split}$$

where with \mathcal{P}' we denote for simplicity the operator $\mathcal{P}'u := (\mathcal{R}'u)' + \mathcal{A}'u$. By the estimate above we finally get

$$\begin{split} \|u\|_{\mathcal{W}_{\mathcal{R}}} + \|u'\|_{\mathcal{W}_{\mathcal{R}}} + \max_{t \in [0,T]} \|u(t)\|_{V(t)} \\ &\leqslant c'' \left[\|f\|_{\mathcal{V}'} + \|R_{+}^{1/2}(0)(u(0) - v(0))\|_{H_{+}(0)} + \|R_{-}^{1/2}(T)(u(T) - v(T))\|_{H_{-}(T)} \right] \\ &+ \|f'\|_{\mathcal{V}'} + \left\|R_{+}^{-1/2}(0) \left[P_{+}(0) \left(f(0) - A(0)\varphi - R'(0)\varphi \right) \right] \right\|_{H_{+}(0)} \\ &+ \left\| R_{-}^{-1/2}(T) \left[P_{-}(T) \left(f(T) - A(T)\psi - R'(T)\psi \right) \right] \right\|_{H_{-}(T)} \right] \end{split}$$

where c'' depends only on a^{-1} , $\|A\|$, $\|P'\|$.

REFERENCES

- F. PARONETTO, G-convergence of mixed type evolution operators, J. Math. Pures Appl. (9) 93 (2010), no. 4, 361-407.
- [2] F. Paronetto, Existence results for a class of evolution equations of mixed type, J. Funct. Anal., 212 (2) (2004), 324-356.

Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università degli Studi di Padova, Via Trieste - 35121, Padova, Italy E-mail: fabio.paronetto@unipd.it

Received April 16, 2010 and in revised form September 4, 2010