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A Time Regularity Result for Forward-Backward
Parabolic Equations

FAB1I0 PARONETTO

Abstract. — We give a time regularity result for an abstract mixed type equation whose
toy model may be (ru); — Au = f where r is a coefficient whose sign may be positive,
null and negative.

1. — Introduction.

In the paper [2] an existence result for a mixed type evolution equation is
given. This result is slightly generalized in [1] to Banach spaces depending on a
parameter.

Consider the following family of evolution triplets

V() c Ht) c V() te[0,T]

where H(t) is a Hilbert space, V(¢) a reflexive Banach space which continuously
and densely embeds in H(t) and V(¢)’ the dual space of V(t).
Moreover we will suppose the existence of a set U such that

(1) U c V() densein V() for ae. t € [0,T]

N
We define U the set of polynomials v(t) = > uytt with u, € U, N € N and
suppose that the functions k=0

t=v®llyey, t—= 1vOlay, t= [VOlye . t<I0,T1,

are measurable for every v € . We denote respectively by V and H the spaces
defines as the closure of &/ with respect to the following norms

T T
Il o= [ o7t and ol = [ 0@t
0 0
and by V' the dual space of V.

DEFINITION 1.1. — Consider S : [0,T] — LH®)), being LH X)) the set of
linear and bounded operators from H(t) in itself. We say that S belongs to the
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class E(C1, Cy), C1,Co > 0, if it satisfies what follows for every u,v € U:

o S(t) is self-adjoint and ||S®)|| ;) < C1 for every ¢ €[0,T1],

o t— (SWu,v) e 18 absolutely continuos on [0,T1,

d
= (S(t)u,v)m‘ <Cy [ullyellvlve for ae.telo,T1.

Consider R € £(C, Cy); we can define an operator R by
(2) R:H—H by Rul):=R&u)

which turns out to be linear and bounded by the constant Cj.
Now define the Banach space

8  Wr={ueV|®Rw eV}, llulyy, = luly+ IR0, .

where (Ru) denotes the derivative of Ru with respect to the variable ¢. One can
prove that if u € Wy the function

t — (R@Ou®), u(®) e

turns out to be continuous in [0, T']. If we consider, for each ¢, H,(t) and H_(t)
respectively the positive and negative part of the spectrum of R(t), by R, (t) we
denote the restriction of R(t) to H, (t), by R_(t) we denote the restriction of —R(t)
to H_(1), H . (t) (respect. H_(®)) the completlon of H () (of H_(t)) with respect to
the norm ||R. () 1/ 2w|| H@ (to the norm IR- (t) w|| a@)» we define by P, (t) and
P_(t) the orthogonal projections defined in H (t) and valued respectively in H . (?)
and H_(t), where H(t) := H ) ®KerR(t) & H _(t). We can also define a family
of equibounded operators

R :[0,T]1— LV®),V(®)) by (RO, ey ve = % (RO, ”)H(t)

and, by the density of I/ in V, an operator

T
R VY by <R/u v sy f R (t)%(t) ’U(t) V(t) XV(t)dt
0

which turns out to be linear and bounded by Cs. Consider a family of operators
A : V) - V@), tel0, T,  t— (A, ) yey v
measurable and define an operator A as follows
AV —YV Au(t) = Ayu(t) 0<t<T.

Suppose the operators R’ and A are linear and bounded and moreover

1
(4) A?)+—R,7),v 2(1”7)”?},
2 V'xy
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for some positive constant « and every v € V. Now suppose you are given f' € V',
¢ € H (0) and w € H_(T). Consider the problem

(Ru) + Au =f
(5) P(0)u(0) =¢
P_(DwT) =y

Then the following existence result holds.

THEOREM 1.2. — Given R € £ and A such that (4) holds, problem (5) admits a
unique solution in We.

In [2] a time regularity result is given, but only for non-negative R. In this
note we extend it to a more general setting and to R with variable sign.

2. — The result.

Given A as above suppose that [0,7]> ¢ +— <A(t)u,v)v,(t),v(t) is absolutely
continuous and

d
(6) di (AU, V) v vy | < Csllullyelv]lve

for every u,v € U and for a.e. t€[0,T]. In this way one can define
A [0, T] — LV®, Vi) and A : VY — V.
THEOREM 2.1. — Denote by u the solution of (5). Assume R, R’ € £(Cy, Cs) and
(6) holds. Instead of (4) assume
(LR'() + ADIw, W)y vy = allwl[F

for every t € [0, T] and w € U. Assume ' € V' and the existence of uy € V(0),
uyp € V(T) such that P, (0)uy = ¢ in such a way that £(0) — A(0)ug — R'(0)ug €
Im R(0) and f(T) — A(Tur — R'(Tur € Im R(T). Then v € V.

COROLLARY 2.2. — If w,u' €V the function [0,T]>t — [[u@®||y is contin-
UOUS.

REMARK 2.3. — If V(t) = V for every t theorem and corollary above reduce to
say that w € HY(0,T;V) C C°([0,T1; V).

REMARK 2.4. — If R is defined by a function r,i.e. Ru = r(x, t)u(x, t), to require
that R, R’ € £ implies that » admits a weak derivative with respect to time, so
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(R'(Ou®) (@) = opr(x, yulx, t). In particular assumptions of Theorem 2.1 are sa-
tisfied if A(¢) is strictly monotone and 0;r > 0.

Proor. — Consider u to be the solution of the problem

Rw) + Au=f
P 0)u0) = ¢
P_(TwT) =y

Deriving the equation one gets
R'w) + Ru') + Au+ Au' = f'
and since Ru/(t) = f(t) — Au(t) — R'u(t) we consider the problem
(Rv) 4+ Av =f' — Au — (R'u)
(7) P (0)(0) = R (0)"' [P (0)((0) — A©)ug — R'(O)uo)]
P_(Ty(T) = R_(T)"* [P-(D)(f(I) — Az — R (Tyur)]

u €VO), ur e V(I),  PoOug =9, P-(Thur =y,
(8) P (O)[f(0) — AO)uo — R'O)uo] € TmR(0),
P_(DIf(T) — ATYur — R'(Tyur] € TmR_(T).

Denote by v the solution of (12) and consider
t
wug; t) = w(t) = uo + f v(s)ds.
0

Integrating the equation above one obtains

t

t t
Ro®) = £(t) — F(0) — f Au(s)ds — f (R'u)(s) ds + Ru(0) — f Av(s)ds
0 0

0
Using Ro(t) = (Rw)'(t) — (R'w)(t) we first get

(Rw)' () — (R'w)(®) = f(t) — f(0) +

¢ ¢ ¢
— f A'u(s)ds — f (R'w) (s)ds + (Rw)' (0) — (R'w)(0) — f Av(s)ds ;
0 0 0
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then using
t t t
f Av(s)ds = f Aw/(s)ds = Aw(t) — Aw(0) — f Au(s)ds
0 0 0

we get

(Rw — ) &) + Aw — u)(t) = (Rw)'(t) + Aw(t) — f(t) =

t t
— (R'w)t) + ) — £(0) f Au(s)ds — f (R'uY (s) ds + (Ruw) (0)
0 0

t
— (R'w)(0) — Auw(t) + Aw(0) + f Aw(s)ds + Aw() — £)
0

t

t t
- f (R'w) (s)ds — £(0) — f Au(s)ds — f (R'u) (5)ds + (Ruw) (0)
0 0

0

t
+ Aw(0) + f Aw(s)ds
0

¢ ¢
= f [(R'w) (s) — (R'w) (s)]ds + f [Aw(s) — A'u(s)]ds
0 0

+ R(0)(0) + R'(0)uy — £(0) + A0)uy .

The quantity (Rv)(0) — f(0) + R'u(0) + Aw(0) is nothing else but R(0)v(0)+
R'(0)ug — £(0) + A(0)ug. We can choose u in such a way that

R(0)v(0) + R'(0)up — f(0) + A(0)ug = 0.

We can do that modifying u, if necessary taking uy € V(0) the be the solution of
the following problem (we recall that A(0) + R’(0) is corcive and bounded in V(0))

A(0)z 4+ R'(0)z = £(0) — R(0)v(0), zeV.

Consequently, in particular, P, (0)[f(0) — A(0)uy — R'(0)ug] = R, (0)v(0) and the
initial condition in (12) still holds.
In this way we obtain that the function w — u solves the problem

Ry) + Ay =h
P,(0)y0) =0

T
P_(0y(T) = P_(D)luo + f v(s)ds — ur]
0
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where
t t
(10) h= f [(R'w) (s) — (R'w) (s)Ids + f [Aw(s) — Au(s)lds .
0 0

Now consider the funection
7

t i t
W) = Wup: ) = up + f o(s)ds = [uT _ f w(s)ds| + f w(s)ds,
T 0 0

Since Ru(t) = (Rw)'(t) — (R'w)(t) we get, as done for w, but integrating between
Tandte (0,7),

(Rw)'(t) — (R'w)(¢) = &) — f(T) +

t t t
- f Au(s)ds — f (R'u) (s)ds — f Av(s)ds + (Riv)(T) — (R'@)(T)
T T T

then using

t t t
f Av(s)ds = f A (s)ds = Adt) — AT — f Aliis)ds
T T T

we get similarly as before for w

(Rw) @)+ Aw) — (Ru) ) — Au(t)
t t
= f [(R'w) (s) — (R'w) (s)]ds + f [Aw(s) — A'u(s)lds
T T
+R(Mw(T) — f(T) + R (Tyur + A(T)ur

As before, we can choose uy in such a way R(TWw(T)—f(T)+ R'(T)ur
+A(T)ur = 0. Therefore the function w — u solves the problem

Ry) + Ay =h
0
P.(O)y(0) = P_(0) [uT + [ s - uo]
T
P_Oy(T) =0

where

t t
h(t) = f [(R'w)'(s) — (R'u) (s)lds + f [A"w(s) — A'u(s)]ds .
T T
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Now define the function z := w — w and notice that
T
w(wg, ) — wlur,t) = up — ur + f v(s)ds
0

is independent of ¢ and in particular z is the solution of the evolutionary (but
elliptic) problem

(11) Re) + Az=Rz+Az=g9:=h—h

where

t t
g) = [IRW) () — R/ s + [ [Au(s) — Au(s)lds
0 0
T T
+ f [(R'w)'(s) — (R'w)'(s)1ds + f [A"i(s) — A'u(s)]ds
t t
t T
= [1Rw6) ~ R 9ds + [ [R0)(6) — (R'w) (9)ds
0 0

t T
+fmm@—ﬂmm@+fm%@—ﬂmm%
0 0

T
We denote by y the term, independent of ¢, [ [(R'w)(s)— (R'u)(s)lds
T 0
+ [ [A'w(s) — A'u(s)lds. Estimating g, since R’ € £(Cy,Cz) and ||A'(®t)|| <Cs,
0

one has

T T
lo®llvey< [ IR WS ~ R Gy + [ Callaos) — i)y s
0 0

T T
+ f [(R'w) (s) — (R'u) (5)|| ) ds + f Cali(s) — u(s)| ) ds
0 0

< max{1,Cs} T"* [ ||w — Wy, + 10 —ully, |-
By the continuity of g we get
< Tl/Z
g%MWM>C

which gives g(0) = 0. By the regularity of the coefficients equation (11) is in
fact

R @)z +AWM)z=9g®) in V() for every t € [0,T1].
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Thus we get that the solution of the equation with ¢ = 0is only z = 0. This implies
T
that uy — ug — [ v(s)ds = 0 and then, in particular, w — u solves the problem (9)

0
with P_(0)y(T) = 0. Now proceeding as in the proof of Theorem 3.11 in [2] we
come to

1/2
ko —ully < e T2 [lw — ully

and again, since this holds independently of T, ones gets that w — « = 0 and then
the thesis. O

COROLLARY 2.5. — Under the same hypotheses as in Theorem 2.1, suppose for
simplicity that f(0) —A)p — R'(0)p € Im R(0) and f(T)—A(T)ur — R'(Ty
€ Im R(T), the solution u of (5) satisfies

Ry €V’

and moreover there exists a positive constant ¢ depending (only) on a™', ||Al|,
IR, |A'll, such that

vy, +112 [y, + max @y
<c[IIf v + IRY2O0)a(©) - VO 7. 0) + [RYAD@T) — vl (]

1l + 1RO [P0 (£(0) — A — B'(0)0)] Il o)
+[RZVAD[P(T)(F(T) — ADyw — R DW)] i ()

ProOF. — By Theorem 3.5 in [1] we have that u,v € Wy satisfy
=Vl <IPu = Polly, + ¢ [ [Pu = Polly,
+ IRYZ0)0) = vl + IRYADIUT) = oI5 |
where ¢ depends only on a~! and ||.A||. If u denotes the solution of (5), u solves also
(Rv) + Av =f" — Au — (R'u)
(12) P (0)(0) = R (0) [P, (0)(f(0) — A©)ug — R'(O)uo )]
P_(Dw(T) = R_(T)"' [P_(D)(f(T) — A(Tyur — R'(T)ur)]

and consequently in particular we get
oy < IF" = A= RNy 4 [I1f = A= R |y,
+ IR0 [PL0) (f(0) — A0 — R'O0) ][4, )
+|RZVADPD(fT) ~ AT ~ ROl o]
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where ¢ depends only on a~! and ||.Al], i.e., calling ¢’ the constant ¢ + 1,
[l < I = Pullys + IRZVZO[P- O (fO) — A ~ B'0))] 1.0
+[RAD P D) (FT) ~ ATy ~ ROW) )

where with P’ we denote for simplicity the operator P'u := (R'u) + A'u. By the
estimate above we finally get

!
[l + e [l

< [Iflly + IRV @(0) — w07, 0, + IRYAD@T) = oDy
+ 1+ |[RZO [P ) (£0) — A — R'O)] |7 )
+ R [P@) (FD) — AW ~ R@W)] | o]

where ¢’ depends only on a1, || A|, | 7. O
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