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On the Computation of the Spectrum of the Linearized
Boltzmann Collision Operator for Maxwellian Molecules

EMANUELE DOLERA

Dedicated to the memory of Carlo Cercignani

Abstract. — In this article we provide a complete and self-contained treatment of the
spectrum of the linearized Boltzmann collision operator for Maxwellian molecules.

1. — Introduction and motivations.

This paper deals with some mathematical aspects concerning the so-called
linearized Boltzmann collision operator for Maxwellian molecules, namely

L) = [ [ M) (hw.) + hw.) - h@) - hw)]
M o
b<L . w) U (do)duw .
w — vl

The original idea to derive this linear operator from the nonlinear Boltzmann
collision operator goes back to Hilbert [9], who laid the foundations of the theory
of the linearized Boltzmann equation. Successively, Grad [8] elaborated and
adapted these pioneering insights to the specific case of the spatially homo-
geneous Boltzmann equation for Maxwellian molecules, with the aim at in-
vestigating the asymptotic behavior of its solution. See [4, 15] for basic and
complete information about the Boltzmann equation. Actually, Grad succeeded in
establishing a remarkable connection between certain spectral properties of L,
and the rapidity of convergence to equilibrium of the solution of the original
nonlinear Boltzmann equation. Even though the Grad estimation is valid only in
a small neighborhood of the equilibrium itself — which is far from being a sa-
tisfactory conclusion — it is worth stressing that the importance of that esti-
mation lies in its quantitative nature, which can be made explicit just in the case
of Maxwellian molecules. Indeed, as shown in [1, 3, 16], the spectrum of L; can be
given in closed form, after specifying a suitable domain for this operator, and the
dependence of the eigenvalues on the angular collision kernel b is made explicit.
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It is just this feature — which is unexpected in the case of other interaction
potentials — to make Maxwellian molecules of paramount importance, at least
from a mathematical point of view. Recently, Mouhot [10, 11] has established an
analog of the Grad estimation in the case of the so-called hard potential by in-
troducing new strategies for the linearization of the Boltzmann collision op-
erator. Anyway, in the hard potential case, no explicit formula has been given
until now for the eigenvalues of the linearized operator in terms of the angular
collision kernel.

This paper aims at reviewing some specific spectral properties of the
operator Ly, in the case of Maxwellian molecules, when its domain is the
Hilbert space

H = {z R} SR ’ fM(v)zz(v)dv< n oo}
R?
endowed with the scalar product (z1,22), := fM (0)z1(v)z2(v)dv. Here, M stands
R®
for the standard Maxwellian probability density function, i.e.

1\3/2
M@) := (%) o P2

The choice of H agrees with the original Hilbert’s investigations and is sui-
table for the study of L;, which turns out to be a self-adjoint and negative
operator on this domain. Moreover, H admits an explicit Fourier basis made
of eigenfunctions of L;, introduced for the first time in [6]. On the other hand,
the choice of H is unnatural with respect to the nonlinear problem, for it is
tantamount to asserting that the solution of the nonlinear Boltzmann equa-
tion belongs to L2(R*, M~1(x)dx), a very strong condition not yet entirely
understood. Indeed, even if this condition is imposed on the initial datum, it is
not propagated in time in any useful way and there is no straightforward
strategy to control the differences between the true nonlinear evolution and
the linearized one, except when the initial data are extremely close to equi-
librium and possess rapidly decaying Gaussian tails. See [5]. In any case,
since the nonlinear problem is not dealt with here, the spectral analysis is
carried out by viewing L, as an operator on H, with the aim at unifying well-
known results and different methods which, in part, are still scattered in
various sources. See Section 6 of [1], Section 5 of Chapter III of [3] and [16].
This way, a uniform and self-contained exposition of the subject is reached in
a coherent notation, and this is achieved by simplifying some of the existing
arguments in Section 3. The proofs of some technical statements are deferred
to the Appendix, while some preliminary facts, concerning the linearization of
the Boltzmann collision operator, are recalled in Section 2.



ON THE COMPUTATION OF THE SPECTRUM OF THE LINEARIZED ETC. 49

This section concludes with a detailed description of the symbols introduced
in (1) and not yet explained. First, #g stands for the uniform probability measure
on the sphere S2, which is thought of as embedded in R?. The symbols v, and w,
are abbreviations for the expressions

v, =0 + [(w—-v)- ol
w, =w — [(wW-v)olo

which are obtained in such a way that each binary collision preserves momentum
and kinetic energy, i.e.

(2) vV+w= v, +tw, and P+ wf® = |v.]* + jw.[*

Lastly, the measurable function b:(—1,1) - [0,+0c0) is the so-called
Maxwellian collision kernel, which describes the microscopical interaction be-
tween the particles. This function constitutes the main variable of interest and
the aim of the paper is to show the dependence of the spectrum of L; on b. For
the physical meaning of b and ensuing mathematical properties, see Section 5.11
of [4] and Subsections 3.3-6 in Chapter 2A of [15]. The following two hypotheses
are assumed henceforth: The former is a symmetry condition, encapsulated in
the equation

e
3 b(a) = b( ?) ——
) i
which is valid for all « in (— 1,1). The latter is the so-called cutoff hypothesis,
given in the form of

1
4) f b)dw =1 .
0

It is worth recalling that assumption (3) is not restrictive: Indeed, if b does not
satisfy (3), then it can be replaced by the function

b*(x) := [b(|x|) +b(V1 —x?) \/%

which meets (3), without changing the numerical value of Ly, i.e.
Lylh] = Ly-[R] .

On the contrary, the cutoff hypothesis is restrictive and can be mainly justified
on the basis of arguments of a mathematical nature. Throughout the paper, (4)
will be always in force since, otherwise, the integral in (1) could be meaningless
for a general & in H. A non-integrable kernel would require a domain strictly
smaller than H, formed of smoother functions. Finally, the constant 1 in (4)
derives from a conventional choice.
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2. — Derivation of L, and basic properties.

The aforementioned nonlinear Boltzmann collision kernel for Maxwellian
molecules reads

w—v

Gl 1) = [ [Trwarw.) —f(v)f(w)]b<f . w) s (Ao

R? S w =l

and it turns out to be well-defined, under the hypotheses (3)-(4), for every f in
L1(R?). With a view to the study of the nonlinear evolution equation

o) O £, = GLIC 07 010)

which corresponds to the spatially homogeneous Boltzmann equation for
Maxwellian molecules, the domain of Cy is restricted to the set

Py = {f - R? = [0, +-00) ‘ ff(v)dv -1, f|v|2f(v)dv< + oo}
R3 R3

whose elements are probability density functions with finite second moments.
The most important feature of the operator Cy is that it conserves mass, mo-
mentum and kinetic energy, namely

(6) [owciLr: fiwav =0

RS
when ¢(v) = 1,0, |v\2 respectively, for every f in P2. This property is a trans-
position in macroscopic terms of the identities (2) which pertain to the relative
microscopic dynamics. See Section 6 of Chapter II of [4]. It is also well-known
that the only solutions in Ps to the equation C,[f; f1(v) = 0 are the Maxwellian
probability density functions

Mu,JZ(U) = <271'0'2> 67‘v7u| /

with mean u in R® and variance 62 in (0, +o00). A complete proof of this fact is
given in [14]. It is a cornerstone in kinetic theory that, for any given initial datum
fo(-)1in Pq, the relative solution f(-, t) converges strongly in LY(R?) to the specific
Maxwellian M, »(-) with u = [vfy(@)dv and o® = [ |v — u[*fy(v)dv, a choice

R? R?
which agrees with (6). This is proved in [2].

In view of (6), it is nonrestrictive to assume f vfp(v)dv = 0 and f v \ng(v)dv =3,
R? R?
so that the only equilibrium point for the nonlinear dynamics is represented by

M. These remarks leads to consider

fw,t) = M@)1 + k(v,1))
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with A(-,t) becoming smaller and smaller as ¢ increases. Putting this in (5) gives
0
Eh(v, 1) = Ly[h(-, D)) + Ry[h(-, H)]©)

with
1

Ry[h(-,))w) := i)

ColM(R(-, 0); MCHR(, )]@) .

Since / is supposed to be small and R; is quadratic in &, while L is linear, it is
tempting to assume that R, is negligible with respect to L;. On the one hand, this
need not be true but, on the other hand, it represents a hint about how to study
the operator L;. See [5].

An important property of Lj is that

@i =~ [ [ [ M@M@) thw.) + 1) - o)~ hw)]
R? R? S

(7) x [g.) + gw.) — g©) — gw)]
x b (H - w> g (do)dvdw
lw —v|

holds true for every & and g in H. See Appendix A.1 for a proof. A straightfor-
ward consequence of (7) is the following

PRrOPOSITION 2.1. — The operator Ly, : H — H is self-adjoint and negative.

Another remarkable property of L is connected with a natural decomposition
which will constitute the starting point for the computations contained in the

next section. Since (4) entails fb(u - o)ug(do) = 1 for every u in S?, equality
SZ

8) Lylllw) = K,[h©w) — f M@w)h(w)dw — h@)
R®
holds true with
O Klho) = [ [ o) + 1w oM@ 0 Jus o

It is evident that the only term which, in the above decomposition, deserves
attention is Kp[h].
To simplify the ensuing computations, (3) can be exploited to prove that
w —

(10) Ky[hw) = 2 f Sf hv.)M(w)b (ﬁ-w)usz(dw)dw .
RS 2
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See Appendix A.2. Finally, observe that

(11) 1Ky — Kylhl | <22 [h]]1b — 0[5,

for every h in H, and for any pair (b, ') of collision kernels satisfying (3)-(4), || - ||
being the norm in H. The proof of (11), which is an immediate consequence of the
Jensen inequality, is deferred to Appendix A.3.

3. — Computation of the spectrum.

The main result of the paper is encapsulated in the following

THEOREM 3.1. — Let the collision kernel b be any measurable function sa-
tisfying (3)-(4). Then, the spectrum of Ly, : H — H is discrete and the eigenvalues
are given by

(12) inﬁl = 2a(n,l) — 50.1150.1 -1
with n,lin Ny := {0,1,...} and
/2

a(n,l) = f Py(sin 0) sin™2"1 9 b(cos )d0
0

Py and 6;; standing for the l-th Legendre polynomial and the standard
Kronecker symbol, respectively. Moreover, each 1, has multiplicity 21 + 1 and
00 =710 =401 =0, the remaining eigenvalues being strictly megative. The
value Ay of the least negative eigenvalues gives the spectral gap of L and can be
obtained for any (n,l) such that I +2n = 4, i.e.

1
(13) Ay = —2 f 221 — e)b(@)de. O
0

The rest of the section is devoted to a proof, based on the study of the op-
erator Kjp, of this theorem. Thanks to (11) and the standard approximation
technique for functions in LP?, the proof will be carried out first for a bounded b
and then completed by resorting to a suitable approximation process.

To start with, change the variables in (10) according to z = w — v to obtain

z
2]

K [hw) =2 f f W + (- 0)o)M© + z)b(

R3 S2

—4f [0 + - oM +z)b<

R® 2

. w> ugz(dw)dz

z

Z] . w> ug(dw)dz
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where S2 := {x = (w1, %2, 3) € S* | w3 > 0}. After putting

Ri = {x = (x1,x2,23) € R? | €3 > 0}
R® = {x = (@y, 2, 23) € R® | 23<0}
Q. ::{(z,a))eRng2+|z-m>0}
Q- ={z,0)eRP xS |z -0<0}

Q. ={x,y e R} xR |x-y=0}
Qo ::{(x,y)eR%xRﬂx-y:O},

consider the diffeomorphism T': ©; Uy — €2 U Qs _ given by

@y =Tz 0)=(z 0)o,z-(z o).
If 44 denotes the d-dimensional Lebesgue measure ), then T transforms the
measure %3 @ ug: on £; . UQ; _ into the measure %|x|72mx(dy)n%’3(dx) on

Qy Uy, withm,(dy) defined as follows. First, set [7(x) := {y € R® | x -y = 0}
and let pg : R® — R%bethe projection ps : (x1, X2, x3) — (X1, x2). Second, for every
x in R} := R} UR?, let Q¥ be any element of the group SO@3) such that
QYx = |x|es. Finally, for every A in .Z(R?), put

me(A) == L2 (ps[@W(A N IT(x))])

which turns out to be well-defined, independently of the specific choice of Q. All
these facts are analyzed and proved in Appendix A.4. Then,

z
2]

1f [+ - oM +z)b<

R® S2

w> ug(dw)dz

4 f W + xz, 0)M@ + x, 0) + Yz, 0))
Q1,UQ; -

x b< x, ) )dzusz(da))
VG o)f + lye o)

1
— [ ot oME b <L> x| 2 (dy)de
T 2 2
Qo Uy _ x| + |y

:%]-h(v—s—x)

3
R}

x| ) ) dx
M +x +y)b<7 me(dy) | — -
n{) ol + [y el

() when no ambiguity will arise, % ;(dx) will be shortened to dx.
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x|

VI + lyf?

dx
fM(v +x +y)Q(|y|/|x)mx(dy)] ]
A |

Setting q(t) := b( , one gets b< > = q(|ly|/|x|) and

1
\/1+t2>

1
Ky[h](v) == fh(v +x)

RS

f M@ +y)qy|/Ir — vl)mrv(dy)] le

sy
r—v) |l" —-v

R?

where Ri =v -+ Rﬁ. The last formula shows that K;[/] is an integral operator of
the type of

Ky[h]w) = f K(v: »h(r)dr
R?
with

S [ Mern( e it

(14)  K@;r):={ nfr - v[? i) Ir — vl

0 ifr=v.

It is now useful to rewrite the integral in (14) as follows. Fix r and v in such a way
that r £ v and use the fact that y - (r — v) = 0 to write

Mr+y) =(— exps —=(rl"+ ly|"+2r-y)
2n 2

1\ L2 o 2
=(—) exp{——<|r| L +(r+v)~y)}-
T 2

1
Then, decompose the vector 5 (r+v) as

(15) %(r+v):c+oc(r—v)

where { is orthogonal to (r — v) and « is a constant. To find the value of such a
constant, take the scalar product of both members of (15) by ( — v) so that

, o1t —v)
2ol

Then, the triple-product identities show that

16 Loy TEOEI0 ) @ANAE D

r—of* r—of?
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where A stands for the usual wedge product between vectors in R®. Immediate
consequences of (16) are that ¢ belongs to I7(r — v) and

v Ar|
r—v|

¢l =

Thanks to (15), the integral in (14) becomes

1 1\*? 1 2 2 ly|
—_— = expq—5(r|"+y|"+2¢- )} (—)mr_ (dy)
”|"—U|2n<rfv><2”) p{ 5 (rl” + [yl 2 Ul S KSR

whose expression can be simplified after the following change of variables (from
Cartesian to polar coordinates)
¢ e
y=pcosp—+psing——,
€] el

ct being any fixed (non null) vector in I7(r — v) orthogonal to { and ¢ varying in
[0, 27). So, the integral at issue assumes the form

+o00 21

1 1\%2 1, 5 p
W;{ f(%> exp{—§(|r| +p +2|C|pcos¢)}q<|r_v|>pdpd¢.

0

Changing again the coordinates in the above p-integral, according to

gy = tan 0 with 0in (0,7/2), leads to
n/2 27 3/2
1 1 1 5 ) )
2 —| expq—5||r]"+r—v| tan®0
n|r—v|26[ J(Zﬂ) p{ 2(" | |
A
+2||:_;'| |rv|tan0cos¢>}q(tan0)|rv|tang \rfv|cos*20d0d¢

7I/2 2n

1 1\*? 1/, 2, 2

= f f<%> exp{—§<|r| + |r — v|" tan=0
0 0

+2|v Ar|tanf cos ¢)}q(tan 0) tan 0 cos ~20d0d¢ .

At this stage, observe that the definition of ¢ entails g(tan 8) = b(cos 0) and recall
both the definition of the modified Bessel function of order v, I,, and the integral

1 n
representation Iy(z) = - [ e cos$ d¢. See, for example, (2) in Subsection 3.7 and
0

(9) in Subsection 3.71 of [17], respectively. Thus, the integral in (14) can be
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written as
/2 3/2
2 f <21> exp {—; <|r|2 +r—vf? tan2(9>}
(17) 0 T
x Io(|v A 7| tan 0) b(cos 0) Lnf do.
cos30

Denote by w the angle in [0,7] between the vectors v and r to obtain
r-v=|r||v|cosy and |v Ar| = |r||v|siny, so that (17) becomes

n/2
2M(r) f exp{ - % tan®0(|v|* + r2)}
(18) 0

x exp {|r| [v] cos wtanZ0} - In(jr| |v| siny tan 0)b(cos H)ﬂdﬁ .

sin 6
0s3
With a view to further developments, recall the definition of the I”*-Legendre
polynomial, P;, contained, for example, in Subsection 10.10 of [7], along with the

identity

exp {z cos y cos 0 }{y(z sin y sin J)

(19) _ (g
2z

1/2 X
)Y @ Dl p)Pi(eos Pi(eos )
=0

which holds true for every real y, 6 and z. When z =0, put 271211 5(2) :=
[ (3/2)]*15150 for every [ in Ny. The validity of (19) is stated in Appendix A.5.
After putting z = |r| [v| sin 0 cos 20, y = w and § = /2 — 0, (18) is rendered into

n/2

2m) [ exp{ - L tanoqoft ¢ )} [ 70 v
P12 2[r| o[ sin 0
(20) 0
- sin 0 . sin 0
X [; @l+ DIy <|r| [v] —cos26) Py(cosw)Py(sin 9)1 b(cos 6) 30 do.

Now, it can be proved that

n/2

(21) Z(Zl +1) f exp{ - % tan®0(|v|* + |r|2)}Il+1/2(|r| v|) a0 <+
=0 0

cos20 /) cos20

which, after noticing that |P;(x)| < 1foreveryxin[— 1,1]and b(x) < B for every
xin ( — 1, 1), is sufficient to justify the exchange of the integral with the series in
(20), by a straightforward monotone convergence argument. Hence, the ex-
pression (20) is equal to
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n/2

2n sin 0
ol M(r)Z(2l+ 1)Py(cos y) f Py(sin 0)1l+1/2(|r| ol — 9>
(22)
1 2 2 2 A sin 6
X exp{ 5 tan“d(jv|” + |r| )} 020 b(cos 6)d0 .

At this stage, it is worth rewriting (22) according to the following procedure.
Recall the definition of the Laguerre polynomial of order o and degree n, L,
given, for example, in Subsection 10.12 of [7], along with the so-called Hille-
Hardy formula, i.e.

o0

,}/I/' o o n
%m%(%m )t

 (wyt)™? —tx +¥) 2(ayt)!/?
TT1-¢ eXp{ 1-¢ }I"< 1t

which is valid for |{|<1 and « > —1. See (20) in Section 10.12 of [7]. Put
a=1+1/2 t= sin20, x = [v[*/2 and y = |r[*/2 in (23) to obtain

(23)

|r| | | M) Z @21 + 1)Py(cos y)

/2

1+1/2
(24) f Py(sin 0)V/'sin 0 b(cos 0) (|r| lv| sin 0)

o rH12 1+1/2 2 . 9
Zf(n+l+3/2)l’ (lv|?/2)LE Y2 (|r|?/2) sin 0} de

which is the desired rewrite of (22). To proceed, restrict the analysis to the case
in which both v and r are different from the null vector and take account of the
asymptotic relation

x/2

1200 _ 1€ EZ/Z R
Lk (x)_o{\/a_e(x) (n — o0) |

which holds uniformly for all x in every bounded interval [a, b] with 0 <a <b, to
conclude that the series

/2

|
n: |Ll+l/2(|v| /2)| |Ll+1/2(|r| /2)‘ f Sll’l2an6

I'n+1+3/2)

M8

=]

(25) "

f S T(n+1/2)

T X Tl el /Dl /)
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is convergent. For the above asymptotic expression for Lﬁfl/ % see Section 6 of
Chapter III of [13]. By resorting again to a monotone convergence argument, the
convergence of the series (25) entails the possibility of exchanging the integral

with the series, since b is bounded. Thus, (24) can be written as

fM(r)Z(le)('r” |)p(cosy,)
(26) .
Zm”““(lv|2/2>Lif1/2<|r|2/z>a<n,z> .

For any unit vector @ = (sinacosf, sinasinf, cos o) with « in [0,7] and £ in
[0,27), define the real spherical harmonics, Y"(w), with [ in Ny and m in
{—1,....1}, a8 Y)(0) == 4m)~ 12 and, for every lin N\,

2l +1

yp Pi(cos ) form =0
Ylm(w) = 2l+1 §§+m;' P?L(COSOC)COSWL/)) for m — 1’“.’l
!
2l247;1.$jnm®;' M(cosa)sin mp form=—1,...,—1

where P} is the associated Legendre function of the first kind od order [ and
degree m, defined, for example, in Section 17 of Chapter III of [13]. From (4) in
the aforementioned section of [13], it follows that the set of functions {Y}"}
constitutes an orthonormal basis for L?(S?, dw), de being the surface measure.
Consequently, in view of (161)-(162) in Section 1 of Chapter IV of [13], the set of
functions

en. (.)C) — 71’3/4 |:27’L':| 12 < |x|) Ll+1/2(‘.)C| /2)Ym(x/|x\)
e I'n+1+3/2) V2

with n and [ varying in Ny and m in {—[, ..., {} forms an orthonormal basis for H.
In this notation, the well-known addition theorem for the spherical harmonics
reads

— 47-[ l m m
27) Pi(cosy) = mm;lyl /)Y@ /|r|)
leading to the equality

00 l
Z Z en,l/‘m(v )677/7177,7/(7')(1/(7’&, l)

=0 m=-1

gk

K(w;r) =2M(r)

Q
I
)

0



ON THE COMPUTATION OF THE SPECTRUM OF THE LINEARIZED ETC. 59

which is valid when v # r and both v and r are different from the null vector.
Since every & in H admits a Fourier expansion of the type of

00 00 l
h(r) = Z Z Z C?z,l,men.l,m(r)
l

n=0 =0 m=—
with Cnlm = (h7 en,l,m)*, one gets

oo 00

l
Ky[h](w) = Z Z Z zcn,l,ma(n, l)en,lm(v) )

n=0 =0 m=-1

which proves (12) under the extra hypothesis that b is bounded.

The removing of this additional condition is straightforward. Consider any
collision kernel b, satisfying only (3)-(4), and a sequence (b;);>; of bounded col-
lision kernels satisfying (3)-(4) and approximating b in L'( — 1,1). Then,

Lb_,-[en,l,m] = ;tsz;)len.l,m
for each n,lin Ny, m in {—I,... I} and j in N, where

29 = 2a;(n,1) — do.,u00; — 1

nl

and

/2

ajn,l) == f Py(sin 0)sin""#"10 b;(cos 0)dd .

0

Now, lim },Ef)l = )y and, since the eigenfunctions e, ;,, do not depend on b, (11)
)=+ ? ! ’
entails lim Ly [ey 1] = Lylenm], so that each 4, is an eigenvalue of L;. Next,
Jotoo ’ ’ :

to prove that S := {1, | n,l € Ny} coincides with the spectrum of Ly, it is en-
ough to prove that any eigenvalue 1* of L, must belong to S. Indeed, there is an
eigenfunction 2* for which

(28) L] = 7
[e’e] 00 l

and, since h* = 37 > > ¢y ,.€nim for some ¢, . (28) implies
n=0 =0 m=—1 L

* PES

Il = Crim?

%
Cn,l,m

for every n,lin Ny and m in {—1,...,[}. To verify the claim, suffice it to observe
that the Fourier coefficient ¢, , cannot be simultaneously equal to zero.

Finally, it must be proved that /4, is the value of the spectral gap. To this end,
notice that the inequality |Py(x)| < 1, valid for every « in [ — 1, 1], implies that

(29) Ab > ;Ln,l
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holds when either n belongs to N or =0 and !> 4. The cases (n,l) =
(0,0),(0,1),(1,0), which correspond to the five null eigenvalues, do not count. It
remains to consider the cases (n,l) = (0,2),(0,3), in which (29) can be derived
from the inequalities P2(x) < 2? and Ps(x) < x, which are valid for every x in
[0,1].

A. — Appendix.

As mentioned in Section 1, proofs of some of the statements scattered in
previous sections are gathered in this appendix.

A.1 — Proof of (7)

The identity at issue follows immediately after proving

i)
[ [ [ thwo + k@) - k@) - b)) gw)
R3 R S?
b (Iz - Z| : w) M@©)Mw)ug(do)dvdw
= [ [ [1hwo) +htw.) - hw) - haw) gaw)
R® R S?
x b <ﬁ : w> M@©Mw)ug(do)dvdw
i)

[ [ [two +hawo - h@) - hw) gw.)

R? R® S%

b (g - Z| : a)) MM @)ugdo)dodw

= [ [ [ @)+ b)) - hw) - b)) gw.)
]RS RS S2

b <|Z - z i w) M@)Mw)ug(do)dvdw
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iii)
[t + hw.) — hw) - b)) g@)

R? R® 82

b (ﬁ : w) MM @)ug do)dodw

= [ [ [w) + b)) - @) ~ hawlgw.)
R R? S7

b (% : w) M@)M@)ug(do)dvdw.

Now, i) and ii) hold true in view of the change of variable (v,w) — (w,v). As
far as iii) is concerned, exchange the order of integration in the left-hand side,

passing from [ [ [to [ [ [. After noting that |[v — w| = |v. — w.| and (v — w)-
RER®S? SERIRS
o=—, —w,) - o, take account of (2) and (3) to deduce

f [h@.) + hw.) — h®) — hw)] g©)

82 R3 R3

b (% : w) M@©)M@)ug(do)dvdw

= [ [ [ @)+ 1) - hw) - 1) g)
§% R3 R3
w, — U,
X b (W . w)M(v*)M(w*)uSz(dw)dvdw.
Then, consider the linear transformation L, : (v,w) — (v,,w,) from R® into
itself: A straightforward computation shows that LZ =1d, from which

det(JaclL,]) = 1. Hence, choosing v, and w. as new variables of integration in
the integral on the right-hand side of (30) leads to

fff[h(v*) + hw.) — h(v) — h(w)] g(v)

S2 R:i RS
w, —U,
x b <W - w> M@.)Mw.)ug:(dw)dvdw

— f f f [h(©) + hw) — h©,) — hw.)] gv.)

82 R3R3

b <ﬁ : w> M@Mw)ugdo)dvdw
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and the desired conclusion follows after exchanging the order of integration

from [ [ [to[ [ [.

S2RIRE RIRES?

A.2 — Proof of (10)

It is enough to prove that

w —

(31) f h(.)b (fw”%z - w> ug(do) = f h(w.)b (r; - w) g (do)
Sz S2

holds for every bounded and continuous % : R* — R and for every fixed v and w

in R?® with v # w. Since the change o — — o leaves v, unchanged, putting
w-—v

r::mande ={w e S?\ {r} | o-r >0} yields
w—-v w—-0
S[h(u*)b<|w -t w> ug(do) = 2§[h(v*)b (r : w) ug(do)

f h(w.)b <M - a)> ug(do) = 2 f h(w.)b <M - co) g (do)
> |w — v| 4 |w — v|
which lead to the equivalence between (31) and
w —

(32) f h.)b <ﬁ : a)) ug(do) = f h(w.)b (|w——Z| - w> ug(do) .
3 e

At this stage, the map
r—@r- oo

Gr(w) = 5
1-0- o
turns out to be a diffeomorphism from SZ into itself, such that
v + [(w—v) G ()]G (0) = w.
w — [ —v) G(0)]G(0) = v,
for every o in S?. The change of variables o = G,(z) entails

f h(.)b (% : w> ug(do) = f hw. (D)1 — (- DP)ug o Gu(dr)
52

SZ
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where w.(t) = w — [(w —v) - 7] 7. A direct computation shows that

r-t

which, combined with the property (3), yields (32).

Uuge o Gp(dr) = Uuge(dz)

A.3 — Proof of (11)

Fix & in ‘H and a pair (b, ') of collision kernels satisfying (3)-(4). Now, (10)
entails

| Kolh] = Ktk |2 = af | [ [ hwomaw)

R RSP
_ _ 2
X |b u.w — u'w usz(dw)dw‘ M@)dv
|w —v| lw —v|
and, after an application of the Jensen inequality,

| Kolh1 = Kylh1 2 < 4f [| [hew.)
RIR? S
X b(ﬂ o)-b(L=Y 4 usz(dw)fM(u)M(w)dudw.
| lw — v

w—v|

If b = &/, (11) holds trivially. Otherwise,

b(w—v 'w)_b/(w—v w> z
fh(v*) w — vl w =0l ] yede
S2

b_bl 2
198l =T

/12
=110 =Flon 1T

2
sz:Zr”)”inzr”)
f h.) uge(do)
SZ

w—v w-—v

S || b — bl ||L1(071)fh/2(v*) |b<|u]_v| . (,0) — b/ <|u;_v| . w> | 'MSZ(d(U)
S2

by the Jensen inequality again. A combination of the Tonelli theorem with the

properties of the linear transformation L, : (v,w) — (v,,w,) explained in A.1

gives
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[[ [ n(ig=o)-#(E=y o)

R? RS2
x M@0)Mw)ug:(do)dvdw
:ffth(v*) (Y70 o) v (ETY )
. lw — vl lw — vl
§2 R® R3

x M. )Mw.)dvdwug:(do)
-J ez (=)
lw — v| |w — v|
R3 R? 82
x M(v)Mw)dvdwug(dw)
<23

which yields the conclusion.

A4 — Study of T

First, it is an elementary verification that T|o 6 : Qi — &2, and
T\o_:1 - — _ are diffeomorphisms. Then, proving that T transforms

%3 ® uge into 1n |x|72mx(dy)%3(dx) is the same as verifying the identities

(33) [ £:@G o)dzdo = [ £ pk] *mady)dx
Q (o

(34) [ £ @@ o)dzdo = [ -kl Py
Q. Qo

for every fi : 2. — R and f_ : Qo — R continuous with compact support.
Since (33) implies (34) after an obvious change of sign, it is enough to deal with
the former. The definition of m,( - ) and the Fubini theorem yield the equality

[ fewplePmeapax = [ [ .6, 'QVw)lx| dud
Qo ¢

R? RZ

with u = (uq,u2) € R? and @ := (u1,u2,0) € R3. Next, use polar coordinates to
rewrite the variable x belonging to Ri according to x = pw, with pin (0, +o0) and
o in S%, and note that dx changes into p*dpde and @ = Q. Whence,

fff+(X,tQ(x)l~t)|x|_2dudx = jocffer(/’w,tQ(w)ﬁ)dudwdp .

R3 R? 0 82 R?
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To conclude, for any fixed o in Si, consider the map Z(,):Ri—>
{zeR® |z o >0} given by

U1 31
Zy: | uz | = po+ tQ<w>l2 = tQ<w> Uz
P P

which is linear and det (Jac[Z,,]) = 1, in view of the orthogonality of Q. Putting
z =Z,((u1,uz,p)) yields p =z - o and

+00

f f £ (o, 'Qi)dudp — f fi(z- 0o,z — - o))z

0 R2 {zeR? | z-0>0}

for every m in S2. By resorting to the definitions of T' and € ., this last equality
leads immediately to (33).

A.5 — Proof of 19)

S . . 17 .
An application of the integral representation /y(z) = - [ €°9dé yields
0

@FeOSTCOSOT (o sinysind) = p fexp{z(cosycos& + sinysindsing)}deo .
0

Then, in view of well-known equality

(35) e’ = & ; @L+ DI 2R)P ) ,

valid for every real z and x with |x| < 1, one gets

.. 1 [z (&
@FOOSTEOSOT (2 gin ysind) = - \/% f [; @lL+ DIy 2(2)
(36) o7

x Pj(cos ycosd + sinysindsin ¢)] do .

See Section 11.5 of [17] for details about (35). Now, since |Py(x)| < 1 for every x in
[ —1,1] and the series ) (21 + 1)I;.1,2(2) is convergent for every real z, it is

1=0
possible to exchange the integral with the series in the right-hand side of (36).
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Whence,

200870085 . 1 [n &
g7 cos /coS()]O(z Sin y sin 0) :; \/; ; (2l + 1)[l+1/2(2’)
(37) .
X fPl(cosycoséJr sin y sin ¢ sin ¢)d¢
0

and the conclusion follows by resorting to formula (VII’) in Section 19 of Chapter
IIT of [13] — the so-called addition theorem for Legendre polynomials — which
shows that

1 T
p f Py(cosycosd + sinysindsin ¢)dg = Pj(cos y)P;(cos d)
0

for every lin IN,

A.6 — Proof of (21).

Through the change cos?0 = t the integral term in (21) becomes

1
L. 2 N r| v 1
(39) Ofexp{—gqm i >T}Il+1/z( t >2t\/t(1——t)dt

and, after fixing ¢ in (0,1) in such a way that (jv® + [r[*)(1 — &) > 2|r| [v], the
integral in (38) can be split into two integrals as

3 1
1 2 2,11 | [v] 1
(39) <Of+f) exp{ = of + D e (M) oo

Now, to avoid trivialities, assume that both |r| and |v| are different from zero and
start by studying the former integral to obtain

&

1e e 1t Ir| o] 1
feXp{ 2(\UI + [r%) ; }Iz+1/2( i) o h“ﬂt(l—t)dt

0

+o0
1 1, 21 —¢ Ir|[v] -3/2
(40) §2\/17T3 b[ eXP{ - §(|U| + |r| )T }Il+1/2 <T £ Ede

+00
_ 1 IR PR 12
== Of exp{ 5 (o + IrP)a g)f}lm/zm jvlo)ye/2dr .
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Since the last member in (40) can be viewed as a Laplace transform, formula (7)
in Subsection 3.15.1 of [12] can be applied to conclude that

¢ 71 2 2 1-1¢ |r| |U‘ 1
!exp{ 2(\v| +|r|)—t }Im/z( r 2tmdt

(41)
1 2
< | =
<5\/m1= I I0] Qi)
2 2
where & := (o” + Ir XA — &) > 1 and Q; stands for the Legendre function of the

2|r| v
second kind of order [, defined, for example, in Section 10.10 of [7]. At this stage,
use (31) in Section 10.10 of [7] to deduce that

¢E-VE-1)
QUOI <=3

and, since 0<¢ — /& — 1<1, it is immediate to conclude that

o0

1. 5 o l—t r| v 1
E @2l+1) exp{——(|v + |r| )—}Iz+1/2( di< +00.
of 2 t t 2tv/t(1 = 1)

=0

Finally, the monotonicity of the restriction of each I, /2 to [0, 4 c0) entails

1
Lo a1t rllel 1
1 Sty
sfexp{ 5 (U + ) — }HI/Z( t ot t(l—t)dt

1

1 Ir||v] 1

< Z /2 s -
5¢ Il+1/2( p b[\/l—tdt

which, in view of (35), leads to

1
= 1 zl—t} (|r||v|) 1

20+1 —= — ] dt .
ZEZO( + )gfexp{ 2(|v| + [r[) ; w2\ ) A < +o0
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