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Perturbation Theory in Terms of a GGeneralized Phase-Space
Quantization Procedure

OMAR MORANDI - LUIGI BARLETTI - GIOVANNI FROSALI

To the memory of Carlo Cercignani

Abstract. — A new approach to perturbation theory in the quantum phase-space form-
alism is proposed, in order to devise some approximated description of the quantum
phase-space dynamics, which is not dirvectly related to the usual semi-classical ap-
proximation. A general class of equivalent quasi-distribution functions based on the
Wigner-Moyal formalism is considered and a first-order invariant formulation of
the dynamics is obtained. The relationship between the various phase-space re-
presentations is expressed in term of a pseudo-differential operator defined by the
Moyal product. In particular, our theory is applied to the sub-class of representations
obtained by a first order perturbation of the Wigner representation. Finally the
connection of our approach with some well established gauge-invariant formulations
of the Wigner dynamics in the presence of an external magnetic field is investigated.

1. — Introduction.

Since the early studies, the Schrodinger formalism was considered the fra-
mework where the perturbative approach to quantum mechanics could been
developed in a natural way [1]. In this context, a particular importance was as-
cribed to the choice of the basis elements used to perform the perturbation ex-
pansion. In particular, when the mathematical formalism of quantum mechanics
was developed, it was recognized the central role played by the unitary opera-
tors. A separable Hilbert space can be characterized by a complete set of basis
elements y;, which in turn can be identified by a unitary transformation © (de-
fined in terms of the projection of the y; on a reference basis). The class of
unitary operators C(@) thus defines all the alternative sets of basis elements or
“representations” of this Hilbert space. Once a representation is defined, the
relevant physical variables and the quantum operator can be explicitly ad-
dressed. The use of a suitable unitary transformation can be considered a simple
and powerful instrument to investigate equivalent mathematical formulations
related to the same physical context. For these reasons a strict connection with
the theory of unitary transformations is often found in the context of the
quantum perturbation theory.

The phase-space formulation of quantum mechanics [2] offers a framework in
which quantum phenomena can be described with a classical language and the
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issue of quantum-classical correspondence can be directly investigated. In par-
ticular, the visual representation of the quantum motion, represented by quan-
tum-corrected phase-space trajectories, is a valuable aid to a conceptual un-
derstanding of the complex quantum dynamics. One of the problems of the de-
scription of a quantum system at the kinetic level is that the overall mathematical
complexity of the problem increases and, often, the solution of the equation of
motion is only available from numerical approximations.

For that reason, it should be very attractive to develop a general procedure
where the quantum correction induced by a perturbation of the Hamiltonian can
be obtained. In connection with the asymptotic study of quantum systems, the
attention is often addressed to the “classical limit” and a huge amount of work
has been devoted to derive quantum corrections to a classical system on term of
n-expansion. Few general results are however available in the phase-space fra-
mework concerning the correction of the quantum solution induced by an “ex-
ternal” perturbation of the Hamiltonian. At the same time, it is well known that
due to the non-commutativity of quantum mechanical operators, there is no a
unique way to describe a quantum system by a phase-space distribution function.
In particular, among all the possible definitions of quantum phase-space dis-
tribution functions, the Wigner function, the Glauber-Sudarshan P and @ func-
tions, the Kirkwood distribution function and the Husimi distribution have at-
tained a considerable interest (see for example [3] for a complete review).

Even if in principle all these different formulations of the quantum mechanics
in the classical phase-space are equivalent, a convenable choice of the re-
presentation could strongly simplify the study of a certain class of problems. For
example, the Glauber-Sudarshan distribution function has revealed to be parti-
cularly convenable to evaluate expectation values of normally-ordered operators
used in the quantum optics [4], and in the field of solid state physics, due to the
strong similarity with the classical Boltzmann equation, the Wigner formalism is
considered as a natural choice to derive quantum corrections to the classical
phase-space motion or in the description of the collision processes [5, 6, 7].
Moreover, the choice of the representation is a crucial aspect in deriving the
semi-classical limit of the quantum many-body evolution problem. In fact, the
Wigner function fails to produce a converging /i-series in the presence of self-
consistent many-particle Hamiltonians, while the convergence of the % expansion
can be improved considerably by viewing the semi-classical limit in the Husimi
representation [3].

The phase-space representation of quantum mechanics is often considered as
a mathematical tool particularly suitable to treat a certain class of physical
problems. In particular, based on some general considerations, the choice of the
convenient representation is defined a priori, and usually no attempt is done to
search for the most convenient representation for the specific problem under
study. If we compare this with the description of quantum mechanics based on
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the Schrodinger wave function, where the use of the basis rotation is often
exploited to obtain simpler mathematical representation of the system, we note
that, in general, the use of a fixed phase-space representation, is not the most
convenient approach. This is particulary evident in connection with the pertur-
bation theory where the convergence of the series is often improved by using a
suitable set of the basis elements.

Despite the progress obtained in this field, a general framework where
quantum effects can be easily included in a particle system, where also classical
transport plays an important role, is far from being achieved. Different ap-
proaches based on the density matrix, non equilibrium Green functions, and the
Wigner function have been proposed to achieve a full quantum description of
electron transport. Among them, the Wigner-function formalism is the one that
bears the closest similarities to the classical Boltzmann equation, which suggests
the possibility of using this formalism in order to obtain quantum corrections to
the single and multi-band classical phase-space motion [8, 9, 10].

At the Schrodinger level, the “position” and the “momentum” representations
are alternative mathematical descriptions of the system, where the position and
momentum operators (1, p), are formally substituted by the operators (r, —i%V,.)
and (ihvp , p) respectively. From a mathematical point of view, a clear distinction
is made between position and momentum degrees of freedom of a particle (and
which are represented by multiplicative or derivative operator). This is in con-
trast with the classical motion described in the phase-space, where the position
and the momentum of a particle are treated equally, and they can be interpreted
just as two different degrees of freedom of the system.

Since the pioneering study of von Neumann [11], considerable interest has
been devoted to the study of the relationship between classical and quantum
systems and in particular various approach has been developed to establish an
appropriate “quantization procedure”. By the term “quantization procedure” we
mean a general correspondence between a function A(r, p) defined on the clas-
sical phase-space, and some well-defined quantum operator ,Z(r, p) acting on the
physical Hilbert space. Due to the non commutativity of the quantum operators r
and p, different choices are possible. In particular in the correspondence
Alr,p) — ﬂ(r, p), any other operator that differs from A(r, p) for the order in
which the operators r and p appear, can in principle been used equally well to
define a new quantum operator. The most common quantization procedures are
the standard (anti-standard) Kirkwood ordering, the Weyl (symmetrical) or-
dering, and the normal (anti-normal) ordering. In particular, standard (anti-
standard) ordering refers to a quantization procedure where, given a function .4
admitting Taylor expansion, all of the p operators appearing in the expansion of
ﬁ(r, p) follow (precede) the v operators. A different choice is made in the Weyl
ordering rule where the following association e/ — i+ holds (here 7, u
are real constants). Following Cohen [12], one can consider a general class of



4 OMAR MORANDI - LUIGI BARLETTI - GIOVANNI FROSALI

quantization procedures defined in term of an auxiliary function y(r, p). We re-
strict to the one-dimensional case for the sake of simplicity (the generalization to
the n-dimensional case being straightforward). The invertible map

A(r.p) = Tr{ A, p)e V(. p)}

(1) i Lol | -
Zﬁf@+EWA

v - %>X(ﬂ7 e A dy dr

defines the correspondence ﬁ(r, p) — A(r,p) and it is referred to as “y-trans-
form”. With different choices of the function y we describe different rules of
association. In particular if A is the density operator p (representing a state of
the system), from Eq. (1) we obtain the quantum distribution function f*. One of
the main advantage in the application of the definition (1) is that the expectation
value of the operator ﬁ(r, p) can be obtained by the mean value of the function
A(r,p) under the “measure” of the distribution density f*

Te{A(e.0)p(.p.0) | = [ A p)frp.t) dpar.

As particular cases, it is possible to recover the definition of the most common
quasi-probability distribution functions (classification scheme of Cohen). For
example for y = e¥51 we obtain the standard (—) or anti-standard (+) ordered
Kirkwood distribution function.

The case of particular interest for our approach is y = 1, which is related to
the Weyl ordering rules and where the distribution density f* becomes the
Wigner distribution function

@ M =g [(r+

~

plr— %>e‘ip’7 dy.

We note that, differing from the Schrodinger formalism, where all the
possible equivalent mathematical descriptions of a given physical system can
be obtained by suitable unitary transformations, it is not clear which class of
transformations can be included in this definition of y-transform given in
Eq. (1). Even though the definition of y-transform is general enough to in-
clude the most relevant quasi-probability distribution densities, it should be
desirable to obtain a different class of bilinear phase-space transformations
(or quantization procedure) where the connection with the Schrodinger wave
function representations can be explicitly investigated. Since at the
Schrodinger level the representation of the system is defined by a basis set
or, equivalently, by a unitary transformation @, such a procedure should
define a bijective map between the representation space C(®) and the cor-
responding phase-space formulation.
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In this work we present some results concerning the application of the per-
turbation theory in the quantum phase-space formalism. Equation (2) is con-
sidered as a starting point, in order to derive a general class of quasi-distribution
functions, alternative to the Cohen classification. We use this formulation to
derive some results based on a perturbation approach.

The rest of the paper is organized as follows. In Section 2 we introduce the g-
representations of the phase-space description of a quantum system and its
dynamics. In Sec. 3 the g-representations are exploited in order to find, by
means of a variational procedure, the g-representation “best suited” to describe a
perturbed dynamics. This is translated in Subsection 3.1 into an equation for g
and, in Subsection 3.2, the special case of the free-particle perturbation is ex-
amined. Then, in Seec. 4, the connections with the phase-space gauge transfor-
mations are discussed, which sets the basis for possible extensions of the method.
Finally, Sec. 5 is devoted to conclusions.

2. — Representation of the phase-space dynamics.

In this section we present the mathematical ground used in our approach, the
starting point being Weyl quantization. For the sake of concreteness hereafter
we will consider a spinless quantum particle which can be represented by a wave
function & € H = L?(R", C). Moreover, we restrict our discussion to the one-
dimensional case (n = 1) because the extension of the method to a #-dimensional
system is straightforward.

Let us consider, formally, an operator A acting on . The Weyl quantization
procedure establishes a unique correspondence between A and a function
A(r, p), called the symbol of the operator [13]. We denote this map as W[A] = A
We have

3) (Xh) @) = W[Ah(zx) = % f A(x ‘; y ,p) hy) =P dy dp .

The inverse of W is given by the Wigner transform

(4) Alr,p) =w! [.Z} (r,p) = fICA (r +g,¢» — g)e*%m dy

where K 4(x,y) is the kernel of the operator A. Let us now fix an orthonormal
basis y = {y; |t = 1,2,...}. A mixed state is defined by its density operator S,

(EW h) (@) = f p (@, da

whose kernel is the density matrix, identified by the coefficients with respect to
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the basis y:
() Py, a) = py vi@p )
i

The von Neumann equation gives the evolution of the density operator
Sy = Sy,(t) for a system with Hamiltonian operator H:

(6) in? W 7.5,]

where, as usual, the brackets denote the commutator. Eq. (6) gives the evolution
of the system expressed in operatorial form. The equivalent Wigner evolution
equation can be obtained by applying the Wigner transform, obtaining

™ in 20— ) = sy fyx

where the symbol 27f, = S, = wt [3},,} is the Wigner transform of the function
Py, @)

_1 n M\ o~ $pn
Jy(r,p) = o fﬂW(V"Fé»W’—é)e P .
The symbol * in Eq. (7) denotes the Moyal product. When two phase-space

functions A and B are smooth enough, the Moyal product between A and B
admits the following h—expansion

8 AxB=>" > Lol A (0ol B
® e (21)k o 1Bk “ﬁ' ( ! )< ! )

and

00 k 2( _ 1) f+1 ~ ~
. %:5 % 0</)’Z<lc/27(k o |(oFo).A) (a5 ofB)
— (o PoyB) (afofA) .

Let us now consider a spinless quantum particle of mass m in the presence of a

potential U. In this case, the Hamiltonian operator has the standard form

~ "0 . . P

H=— o B + U(), corresponding to the classical symbol H(r, p) = o +U().
In the remaining part of this section, we study the modification of the explicit

form of the Hamiltonian H (and thus of the equation of motiAon (7)), induced by a

unitary transformation. We consider a unitary operator @ and the “rotated”

orthonormal basis ¢ = {¢; | 1 =1,2,...}, where ¢; = ) w;. It is easy to verify
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that the following property
9) 0 ~'(r,p) = O(r,p),

holds, where, according to Eq. (4), © (@ 1) is the Weyl symbol of o (@’1). Eq. 9)
suggests to put

(10) O(r,p) = 6o,

where ¢ is a real function. In accordance with the previously introduced nota-
tions, the phase-space representatlon of the state under the unitary transfor-
mation 6 will be denoted by f, =W~ {S,p} , Where S is the new density operator
of the system:

(11) 3,=68,6,

where @ denotes the adjoint operator. By using Eq. (9) it is immediate to verify
that the equation of motion for f, is still expressed by Eq. (7) with the
Hamiltonian H' = @ x H » O~ 1. After some algebra it is possible to show that

H=w! {(:) H @T] is explicitly given by

P L0 " ey o —p
H,(ﬂp):f@( . i 102 p)gl( . P pz p>x

i ppyr) A’ dp” dr” dp”
@nrh)?

x [U(V’) + ;"% =P

)

which, by introducing the phase-space variable

&= (r,p),

can be simplified into

WO = [ @(H;”) o1 (HZ—") HE e (f;i};g

where

{a,b} = a1bs — agb; , with a = (a1,a2) and b = (b1, b2) .

By using the “representation function” g (see Eq. (10)), the previous expression
can be rewritten as

ey S A\ (S /%{57“/,}df,d77
(12) H(é)feXp[zg< 5 >zg< : >]H(é)6f w2

When passing from the position representation (where the basis elements in the
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Schrodinger formalism are the Dirac delta distributions and where 6 is the
identity operator), to another possible representation, the Hamiltonian operator
which governs the evolution of the system modifies according to formula (12).
Despite the mathematical structure of the equation of motion can be strongly
affected by such basis rotation, from the definition of the function f, and from
Eq. (7) we have that the distribution function is always defined in terms of the
classical conjugated variables position and momentum.

In our approach, in analogy with the Schrodinger formalism, we use the class
of unitary operators in order to “rotate” the Hilbert space Il and we define,
accordingly, a class of equivalent quasi-distribution functions, or g-representa-
tions. Differing from the Cohen classification, the generality of our approach is
ensured by the injective correspondence between a generical unitary transfor-
mation (describing all the physical relevant basis transformations) and a fra-
mework where the description of the problem is a priori in the phase-space.

3. — The perturbative procedure.

In this section we present an alternative approach to perturbation theory in
the quantum phase-space framework. We rewrite the total Hamiltonian as

H(r, p) = Ho(r,p) + dH(r, p),

where Ho(r, p) represents the unperturbed system and 6H(r, p) is the pertur-
bation, considered “small” compared to Ho(r,p). Our method is based on the
application of a variational procedure in order to relate the representation
function g, appearing in Eq. (12), and the perturbation JH. To this aim, a wide
class of formulations of quantum mechanics in phase-space is exploited, and the
function g(r, p) is considered as a new available degree of freedom. In particular,
the g-representation can be used to “adapt” the phase-space formulation to the
specific problem under consideration.
We define the evolution operator

Wy'1f] = [H.f1..

where the symbol H' is obtained from Egq.(12) with the substitution
H — Ho + FH. Since the symbol H' depends, through Eq. (12), both on the
original Hamiltonian symbol H and on the representation function g, then we
have indicate explicitly the dependence of the operator %3;1 on g and H. Note that

(13) ih% = W[ f]

is the phase-space equation of motion in the g-representation for a system with
Hamiltonian H.
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We adopt the following strategy: we consider g to be a functional of the total
Hamiltonian H and, by using a variational procedure, we impose some constraint
on the form of the equation of motion (13). Thus, we derive an equation for the
function g(r, p, H), for which the constraint is fulfilled. In this way, we implicitly
define a map between the Hamiltonian of the system and the g-representation in
the phase-space. In particular, in the present work, we shall restrict our atten-
tion to the subclass of the g-representations whose difference with the Wigner
representation (g = 0) is of the first order with respect to the Hamiltonian
perturbation JH, i.e. @)

9(Ho) = 0.
Then, up to the first order in dH, we have

H 'H, H,

with
L (OW g oL\
(14) oW — oK (—— + —) ,
9(Ho) o9 OH = OH o)
) S
where 5533, 55% and % denote Fréchet derivatives. The constraint we are going

to impose is that g is chosen in such a way that (at least at first order in 6H) the
evolution equation for the perturbed problem (13) takes the simplest possible
form, namely the same of the “free” case:

.0
(15) in % — o 1f].

This amounts to solve the following problem: find a representation function
g = g(H) such that

(16) oW 1f1=0

(for all f in a suitable reqularity domain), where 5%3;3{0) 1s given by (14) and
g(Hp) = 0. In other words, if such a function g() exists, then the equation of
motion is an invariant of the infinitesimal transformation Hy — H.

Equation (15) has the same form of a Wigner equation for the free
Hamiltonian Hy. However, f is not the Wigner function of the system but it is the
phase-space function in the g-representation. From Eq. (11) it easily follows that

(") The choice of the Wigner representation for the unperturbed problem is motivated
only by simplicity, since the Wigner formulation leads to the simplest model for a free
particle.
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f is related to the Wigner function fy by the transformation ' = M,[fy], where

' N oy dEd
17 MO = exp{w(é e M) @a"(#)]f“(ém{g - (2fzh)g’

where we used phase-space variables as in (12). Thus, if we assume that the initial
Wigner function fgn is known, then Eq. (15) has to be supplemented with the
initial econdition

f(to) = M.

Note that, somehow, all the effects of the perturbation have been concentrated in
the initial datum. In other words, our procedure results into an extreme sim-
plification of the evolution equation, which is paid by a complication in the initial
datum. Also the physical interpretation becomes more involved since the re-
levant physical quantities of the system (such as density of particles, mean
momentum, ete.) have simple expressions in terms of fj, but usually not in terms
of f. However, f; can always be recovered from f by inverting the relation (17).
To summarize, our procedure leads to the following problem:

8 /10
in %~ a1,
(18) F(to) = MLfi"]

g solves Eq. (16),

where we recall that g(Hy) = 0. Finally, by using the linearity of SIS;‘[ f1 with
respect to f, we note that the solution f, up to the first order in the perturbation,
can also be obtained as f = fy + Jf, where f; is the Wigner function (satisfying
the free Wigner equation) and Jf satisfies

00
{z T (o]
o (t) = MIf™1 - f™

As Dbefore, the description of the “frame rotation” g only affects the initial con-
dition of (ty).

(19)

3.1 — The equation for g.

In this section we derive an explicit equation for the representation function g
such that it satisfies Eq. (16). i.e. 5% Ho) = = 0. We can assume, rather gener-
ically, that g has an integral dependence of ‘H through some kernel K,:

gr,p;H) = [ Ky, p, 7. B, M 7)) dF dp
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or, using phase-space variables,
(20) 9&H) = [ 16, (¢, E H®) d&.

Moreover, according to the preceding discussion, we assume that
(21) 9(& Ho) = 0.

for the unperturbed Hamiltonian Hy. Our variational problem, given by Eq. (16),
equivalent to 6H' = 0, requires the evaluation of the total variation of the
Hamiltonian #’, defined by Eq. (12), which takes the form

) o iz ooy A dp
(k. . . ic—<mp 25
(22) H'(EH) —fexp [’Lg(er, H) —19(&; ”)]H(f)e g @rh)?

where we introduced the shorthands

f+§in
2

The variation of H’ with respect to H at H, is therefore given by

&=

oM Ho) = [[explig(etHo) — ig(e; Ho)|idg(E", 1) — 09, 1]y

ey A8 dp
=y 25
x Ho(S)e @2
. o e g dE dy
+fexp [lg(é+;7'(o) —1g(¢ ;HO)} OH(E) et @nh)?
. - , , irr st dfl dﬂ
B B A=< 2= 7
= [{ilog(e" . 70— 09~ 0]y Ho(&) + 01N feHE< @nh)?’

where (21) is exploited and, recalling (20), the variation of g(éi, H) at H = Hy is

39, )]y = f g(éi o, MO

z=Hp(&)

Thus we can write
, < _ 3 / z 2 ooy AEAE Ay
/ _ _ D _ ﬁ{f 5 }
M = [{il867,D - 9(E D) + 07 C = &) pom@ell e S

where 6 is the Dirac delta and

+ Z :% + %
(23) g(&+, 9 = % (€%,¢,2)

=Ho®'
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In the first part of the expression for O0H'(&, Hp) it is not difficult to identify a
Moyal bracket of g(&*, &) (as a function of ¢) with the unperturbed Hamiltonian
Ho:

R R S RG]

Thus, by using also

féD(E _ f/)e%{ffé’w} % =oPE -0,

we arrive at
(24) oM H) = [{ilH,6).6.8 + 7@ - O JoH@ a&.

In conclusion, the variational problem dH’ = 0 (or equivalently (5‘18;1(‘7{{0)[ f1=0)is
reformulated in terms of the following Green equation for the unknown

(25) i[Ho, g],= =" - &).

2
For an Hamiltonian of the form Hy(r, p) = ;_m + U(r) (and coming back to ex-

plicit phase-space variables), the previous equation takes the explicit form

hp 0 . _ _
(26) g~ i0ulg) = " ~ 19" — )

where g = g(r,p,7,p) and

@U[g](/y-’p,?’ ﬁ) = i f|:U</r + h;//) — U<’V _ kn>:| g(,},,’p/,,)—/,’ ﬁ)ei(p*p’)'? d;,/ dp/ .
2n 2 2

3.2 — A particular case: the free particle.

As a simple example, we apply our procedure to a free particle, where
2

Ho = Zan (i.e. U = 0). Furthermore, we limit ourselves to consider a potential-

like perturbation dH(r,p) = U(r). Since the perturbation does not depend on
the momentum of the particle, it is possible to show that Eq. (26) simplifies into
mp 0

(27) oo q=0"(r—7),
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which admits the solution
Q—Q(Vpa"") —9(7‘—7‘)—'—)/0’

where 0 is the Heaviside step function and y, is the integration constant. Since,
from the previous subsection, g and g are related by

(28) 09 My, = [ 2(E, DHE

then, in the particular case under consideration, we have that the first order
contribution to the g-representation function is

og(r,p; U) :fg(r,p,?)éU(?) dr:f[m

iy =T+ yo} SU® dF .

4. — Connection with the Green gauge-invariant approach.

In this section we illustrate the connection of our theory with some gauge-
invariant approach to the Wigner dynamics, by considering a single particle (in a
three-dimensional space) in the presence of a static magnetic field. The formulae
obtained in the previous sections have a straightforward generalization to the
three dimensional case. In order to avoid confusion, three dimensional variables
and vectors will be indicated in bold letters.

The magnetic field is descrlbed by a vector potential A(r) and, following the
canonical substitution p — p — —A(r), we have that the Hamiltonian of the sys-
tem becomes

~ 1 : e 2
(29) (V) = 5 (—mvx - EA(x)) .
It is not difficult to show that the corresponding Hamiltonian symbol is (%)
1 e 2 1 e 2
—_ w1 _4 _Z — _Z
H(r.p) =W {zm ( A CA(x)) } 5 (p CA(r)) .

It is well known that the vector potential A(r) can be perturbed by adding the
gradient of a function, V,y, without changing the physics of the problem.
However, the formal substitution A(r) — A@r) + V,x(r) modifies the form of the

(®) Tt is enough to notice that the Hamiltonian operator of Eq. (29) is the square of a
sum of p-like and x-like operators, which guarantee the symmetric ordering of the
operators, so that the correspondence between operators and functions becomes trivial.
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equation of motion. A gauge-invariant transformation is a transformation al-
lowing the definition of a new set of unknowns for which also the equation of
motion is unaffected by the presence of the function y. Our method applied to the
the perturbed Hamiltonian

(30) Hirp =5 [p 540 + V)]

where the function V,y plays the role of the perturbation, directly provides a
gauge-invariant formulation of the Wigner dynamics (see Section 3). For sake of
simplicity we shall limit ourselves to the case of a uniform magnetic field B, so

that A = %B AT.

The starting point is Eq. (25). Multiplying both sides by OH'(¢), integrating
over ¢ and using Eq. (28), we obtain an equation for dg:

(31) i[Ho.0g),= —oM.

1 e \2 , e e L .
In our case, Hy = om (p — EA) and oH' = e (p — EA) V,x (which is easily

obtained by expanding (30) with respect to V,y) and then, after a little algebra,
Eq. (31) yields

o=24) e (o~ 0) 1] o= - 2)

% x. Thus, recalling that the perturbed re-

presentation function is g = gy + dg, with gy = 0, we get

which admits the solution dg =

_°
g—ch)(

Now, the perturbed, gauge-invariant, phase-space function f’ is given by (the

three-dimensional version of) Eq. (17) which, for g(r,p) = P X(r) reads as fol-
lows:

rir/+s rr’—s i J 7’ dr/ dpl dS dq
!
r.p) = fecﬁ[( 7)1 (25| i 1) g~ @—p')s]
32) fitr.p for',p") ey
A , i ’ dp/ ds
= | elalrts/2—1r=s/2)l =025 £ (1 _
f fo(r.p") ey
This expression can be clearly understood if we consider the Wigner function fj
for a pure state defined by a wave function w. It is well known that for the gauge
transformation A'(r) = A@r) + V,x(r), the gauge-invariant wave function is
v =y e'a”, It is immediate to verify that the corresponding Wigner function f' is
related to fj exactly by Eq. (32).
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We can now analyze the connections between our methodology and the
standard Wigner-Green gauge theory [14, 15]. The gauge invariant Green
function G in the presence of an external vector potential A(r) is usually defined
in terms of the free Green function G, as follows:

1/2
—iL [ sA(r+ist+ir)d2
(33) Gr.ptoy=[e " Go(r.p',1,)
y dsdp’ drda/

< eir(wfw’)Jr%s(p’fp g
2rh) 2n

By using the general relation between a Wigner function f and a Green function G,
(34) f@.p.0) = [ Gr.p.t.) do,

from (33) we obtain

1/2
—it [ sA(r+ist)di : !
i | sA@r+ist)d is(p_p) dsdp

)  fepn=[e T folrp' el

where, of course, fj denotes the Wigner function corresponding to Gy. After the
gauge “perturbation” A(r) — A@) + V,x(r), the preceding relation, for the new
Wigner function /7, becomes

1/2
—i% A(r47s,8) Aoty (Es) (s _
(36) fr,p.t) :f@ U |:1/f2 s:A(r+is ) A (H522) — (2 fo(r7p’7t)e%s'(1"*1’) ds dp/'
@nh)®

We remark that, since in our theory the unitary transformations are assumed to
be time-independent, it is evident that no time-dependent gauge transformation
(including, for example, the relativistic-invariant ones) can be obtained. In order
to compare the gauge transformation defined by Eq. (36) with the unitary
transformation defined by Eq. (17) we shall restrict the gauge transformation to
a time independent magnetic field. We shall show that, even in this case, the
gauge transformations cannot be recast in the form (17) and, therefore, the class
of unitary transformation is not large enough to include them.

To see this, since in (36) the g-function does not depend on p, we can restrict
the discussion to a @-transformation for which the g-function only depends on r.
In this case Eq. (17) simplifies into

_p dsdp’

(37) 7. = [[ob el Dy pryoir ) T

In order to compare this transformation with the gauge transformation (36), it is
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convenient to look for a g function of the (generic) form

(38) gr) = — %ﬂf) A(y) - dy + %x(r) + b(r)

where b is a real function and I'(r) the straight-line integration path connecting a
generic point O (that may be assumed to be the origin of the spatial axes) with r.
By comparing (37) with (36) we see that we have to impose

/
g(r%)—g(r—%):—%s. }ZA(rnL/ls)di—% fB.nda
-1/2 S@r.s)

anltlrg) =) relrag) o)

where B = V A A is the magnetic field, the integration surface S(r,s) is the
triangle with vertices <O,r +%,r — %) and n is the (suitably oriented) unit
vector normal to the surface S(r, s). It is evident that the transformation (36) can
be recast into the form (37) if and only if

(39) b(r—i—%)—b(r—%):%s&[s)B-nda

for all r,s € R3. This equation, in general, has no solution. In fact when r is
parallel to s the integral vanishes (the surface S@r,s) degenerates on a line) and,
since the equality must hold for any r,s € R?, we conclude that the function b is a
constant independent on B, which makes Eq. (39) impossible to be satisfied for
B # 0. Thus, in spite of the generality of our approach, there are some important
transformations that cannot be expressed by (17). Such “negative” result should
be considered as a useful guideline in view of possible extensions of our form-
alism that include more general transformations, still preserving the advantage
of our approach (in particular, the possibility of deriving a systematic procedure
that automatically guarantees the gauge-invariant formulation of the system).

5. — Conclusions.

In this contribution, a new approach to the perturbation theory in the
quantum phase-space formalism has been proposed. In analogy with the
Schrodinger formalism, the class of unitary operators @ has been exploited in
order to define a class of equivalent quasi-distribution functions (g-representa-
tions). The relationship between the various phase-space representations can be
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then expressed by means of a pseudo-differential operator, defined in terms of
the Moyal product, and the generality of our approach is ensured by a corre-
spondence between the g-representation and the class of unitary transforma-
tions of the original Hilbert space. In particular, our theory has been developed
by focusing on the subclass of g-representations obtained as a first order per-
turbation of the Wigner representation. For these representations, a variational
procedure has been proposed that leads to the simplest possible phase-space
dynamics description for a perturbed Hamiltonian. Finally, the connection of our
approach with some well established gauge-invariant formulation of the Wigner
dynamics in the presence of an external magnetic field has been investigated.
However, as remarked at the end of Sec. 4, our methodology deserves a deeper
investigation in order to include more general transformation, still preserving
the advantages of our original approach. This will be the subject of a future work.
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