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Poiseuille Flow and Thermal Transpiration of a Rarefied
Polyatomic Gas Through a Circular Tube
with Applications to Microflows
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To the memory of Carlo Cercignani

Abstract. — As the first step, a rarefied polyatomic gas in a long and straight circular
tube is considered, and the flow caused by a small uniform pressure gradient
(Poisewille flow) and the flow induced by a small uniform temperature gradient along
the tube (thermal transpiration) are tnvestigated, using the ellipsoidal statistical
(ES) model of the Boltzmann equation for a polyatomic gas. It is shown that the
solutions to these problems can be reduced to those based on the Bhatnagar-Gross-
Krook (BGK) model for a monatomic gas. Numerical results of the velocity profiles,
mass-flow rates, etc. for the Nitrogen gas, obtained by exploiting the existing database
based on the BGK model, are shown. As the second step, a rarefied polyatomic gas in a
long circular pipe is considered in the following situation: (i) the pressure and
temperature variations along the pipe can be arbitrary and large; (it) the length scale
of variations is much longer than the radius of the pipe; (ii1) the pipe may consist of
circular tubes with different radii connected one after another. It is shown that, in this
situation, the pressure distribution along the pipe is described by a macroscopic
equation of diffusion type, with the diffusion coefficients consisting of the mass-flow
rates of the Poiseuille flow and thermal transpiration, and an appropriate condition
at the junction where the cross section changes suddenly. Then, the system is applied
to a polyatomic gas flow through a single long pipe caused by a large pressure dif-
ference imposed at both ends and to a Knudsen compressor consisting of many al-
ternately arranged thinner and thicker circular tubes.

1. — Introduction.

The Poiseuille flow and thermal transpiration of a rarefied gas through a long
tube are fundamental and classical problems in rarefied gas dynamics. The
former is a flow driven by a small and uniform pressure gradient imposed along
the tube, and the latter, which is peculiar to a rarefied gas, is a flow caused by a
small and uniform temperature gradient along the tube. Since 1960’s, these flows
have been the subjects of many papers. From 1960’s to 1980’s, the linearized
model Boltzmann equation, in particular, the Bhatnagar-Gross-Krook (BGK)
model [7, 42], was used mainly both for theoretical and numerical analyses (see,
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for example, Refs. [10, 11, 37, 23, 17] for the Poiseuille flow and Refs. [37, 23, 17,
22, 26] for the thermal transpiration). But after around 1990, accurate numerical
analysis based on the linearized Boltzmann equation became possible (see, for
example, Refs. [27] and [31]). The reader is referred to Ref. [30], which contains
an extensive review of the works earlier than this reference. Mention should also
be made of the recent development [31, 29], in particular, the mathematical study
of the thermal transpiration [12].

The importance of these fundamental flows has rapidly been increased in
connection with the recent progress of micro-mechanical systems because the
small characteristic length leads the effect of rarefied gas to manifest itself
even under atmospheric conditions. In practical applications, one encounters
microscale systems with complex geometry, so that the direct application of
kinetic theory, such as numerical simulations using the direct simulation Monte
Carlo (DSMC) method, is computationally expensive and is not an efficient
approach. Therefore, some heuristic macroscopic equations, which are in-
tended to cover the transition regimes with non-small Knudsen numbers, have
been proposed. The accurate numerical results for the Poiseuille flow and
thermal transpiration provide a good standard for the assessment of these
macroscopic equations.

On the other hand, in many microscale applications, gas-flow channels or
pipes are very thin compared with their length. This property enables us to
derive simple macroscopic equations systematically from kinetic theory without
any ambiguity. Such an approach has been taken in some different applications
(see, for example, Ref. [15] for a thin-gap slider bearing and Refs. [13] and [14]
for plasma thrusters). Recently, macroscopic equations of the same type were
constructed for the purpose of analyzing the property of the Knudsen com-
pressor [2, 5], showing its applicability to gas separation [40], and investigating
gas flows in a curved channel [4]. According to Ref. [5], the behavior of a gas in a
thin pipe with an arbitrary but slowly-varying temperature distribution in the
axial direction is described by a diffusion-type equation for any Knudsen num-
ber. The equation contains two functions, which correspond to the mass-flow rate
of the Poiseuille flow and that of the thermal transpiration through the same pipe
regarded as functions of the Knudsen number. Therefore, obtaining accurate
data for the mass-flow rates of the Poiseuille flow and thermal transpiration for
the whole range of the Knudsen number is essential for the application of the
diffusion-type equation. Actually, in Ref. [5], the diffusion-type equation is ap-
plied to obtain the mass-flow rate and pressure distribution for the Knudsen
pump, consisting of alternately arranged narrow and wide two-dimensional (2D)
channels with a saw-tooth temperature distribution. In this application, use has
been made of the database of the mass-flow rates of the Poiseuille flow and
thermal transpiration between two parallel plates, constructed by the modified
Knudsen-number expansion on the basis of the linearized BGK model [33].
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Recently in Ref. [39], the macroscopic system of Ref. [5] was extended to a
single polyatomic gas in the case of 2D channels, using the polyatomic version [1]
of the Ellipsoidal Statistical (ES) model [18, 19] of the Boltzmann equation. In
the present study, we carry out the same extension in the case of circular tubes
and apply the resulting system to the Knudsen compressor consisting of circular
pipes with different radii, as well as to the flow through a long circular tube
driven by a large pressure difference at both ends. Since the extension is es-
sentially the same as in the case of 2D channels, we will just summarize the
result. However, since the Poiseuille flow and thermal transpiration in a circular
tube, the mass-flow rates of which give the two coefficients occurring in the
macroscopic system, are the problems of fundamental importance, we will spend
more space to discuss these flows. In fact, as in the case of 2D channels, it turns
out that the solution of the thermal transpiration through a circular tube based
on the ES model for a polyatomic gas is identical with that based on the BGK
model for a monatomic gas, and that the solution of the Poiseuille flow through a
circular tube based on the ES model for a polyatomic gas is obtained by a simple
conversion formula from that based on the BGK model for a monatomic gas.

The paper is organized as follows. In Sec. 2, we investigate Poiseuille flow and
thermal transpiration of a rarefied polyatomic gas through an infinitely long
straight tube with circular cross section on the basis of the linearized ES model
for a polyatomic gas. After the formulation of the problems and some preliminary
analysis (Secs. 2.1-2.3), we show that the problems can be reduced to the cor-
responding problems for the BGK model for a polyatomic gas (Sec. 2.4). Then,
after some discussions of the properties of the mass-flow and heat-flow rates
(Sec. 2.5), we show some numerical results (Sec. 2.6). In Sec. 3, we consider a
rarefied polyatomic gas in a long circular tube with arbitrary and large tem-
perature variation along the tube wall. The radius of the circular cross section
may change discontinuously if the portion with a constant radius is long enough.
The macroscopic equation of diffusion-type for such a tube, based on the ES
model for a polyatomic gas, is summarized, together with the condition at the
junction where the radius changes discontinuously. In Sec. 4, the macroscopic
system is applied to a gas flow through a long circular pipe caused by a large
pressure difference (Sec. 4.1) and to a Knudsen compressor composed of many
long circular tubes (Sec. 4.2). Finally concluding remarks are given in Sec. 5.

2. — Poiseuille flow and thermal transpiration through a circular tube.

2.1 — Problem, assumptions, and notations.

Let us consider a rarefied polyatomic gas in an infinitely long and
straight circular tube, and let 6 be the number of degrees of freedom of a
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gas molecule. We take the X3 axis (of a rectangular coordinate system X;)
along the tube axis and let the radius of the tube be Rj. A uniform
pressure gradient in the X3 direction is imposed in the gas, and a uniform
temperature gradient in the same direction is imposed along the tube wall.
That is, the pressure p and the temperature of the tube wall T, are ex-
pressed as po(l + aX3/R.) and Ty(1 + fX3/R.), respectively, where R, is a
reference length (one may naturally let R, = Ry, but we do not do so for
later convenience). The fact that p is uniform in the cross section will be
found later. We investigate the steady flow of the gas induced in the tube
under the following assumptions.

(i) The behavior of the gas is described by the ES model [18, 19] of the
Boltzmann equation for a polyatomic gas [1].

(ii)) The gas molecules undergo diffuse reflection on the tube wall.

(iii) The imposed pressure gradient a and temperature gradient f are so
small that the equation and boundary condition can be linearized around an
equilibrium state at rest.

Before presenting the basic equations, we summarize other notations used in
Sec. 2 (see also Appendix A). The symbol py, = po/R T\ denotes the density of the
gas at X3 = 0, R the gas constant per unit mass (the Boltzmann constant divided
by the mass of a molecule), /) the mean free path of the gas molecules in the
equilibrium state at rest at density p, and temperature T (thus pressure py), and
Kn ={y/R, the Knudsen number. Further, x; = X;/R., RTy)Y 2@- is the mo-
lecular velocity, RToE the energy related to the internal degree of freedom,
A(sé"i/ 271(27ZRT0)73/ Z(RTO)*l exp (— C? — &E)py(1 + ¢) the molecular velocity dis-
tribution function, 45 the dimensionless constant defined by Eq. (48), py(1 + w)
the density of the gas, To(1 + 7) the temperature, To(1 + 1) the temperature
related to the translational energy, To(1 + 7iyt) the temperature related to
energy of the internal degree of freedom, py(1 + P) the pressure, (ZRTO)I/ 2u; the
flow velocity, po(d;; + P;j;) the stress tensor, and pg(ZRT())l/ 2Qi the heat-flow
vector. The quantities |¢|, ||, |7|, |, [Tint|, |P|, [%i], |P], and |Q;| are assumed to
be small. We introduce the cylindrical coordinate system (r, 0, x3) in the
dimensionless x; space and denote by a; and b; the unit vector in the » direction
and that in the 6 direction, respectively. Then, we denote (. = (;a;, {y = (;b;,
Ur = Wi0i, Ug = Uibi, Qr = Qiai, Qo = Qibi, Prr = Pyaa;, Pog = Pijbibj, Py =
Py, = Pjja;bj, Pry = Ps, = Pa;, Py = P3y = Pigb;. In addition, (= ()" =
C+2+ C%)l/z, and E(, &) = n3245exp(— % — €). The summation conven-

3
tion (e.g., Gai =Y CMi) is used throughout the paper. We assume that the
i=1

flow field is axisymmetric, i.e., ¢ in the cylindrical coordinate system does not
depend on 0.
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2.2 — Basic equations.

The linearized version of the ES model reads (see Appendix A for the original
form of the model)

5¢ Gog Lo 9o 2 1
(1) Cr 7, o, r 5(:(9 C3 s vaKn (¢, — 9,
with
, 3 5
(2a) ¢y = o+ 20u; + (C - 2> (A = mre + 7l + (5 - 2) Trel
+ 1 = VPG — (@ + ),
@b) w = f f £ 1B,
0
20) w; = f f GEPISRAEE,
0
(2d) Ter :g f FEPTGRAEDP, — w,
0
(2e) Tint :% f EPYRAEIP. — w,
0
@f) _ 3Ttr37—:5571nt :
(Zg) Tyel = HT + 1- W)Tinta
(2h) Py = [[ 2uye temdgds,
0

where d3( = d{d{,d{s = d{,d{ydls, and v and 5 are parameters to adjust the
Prandtl number. The Knudsen number Kn is expressed as

2 @RTo)" 1y
3 Kn=—"(@1- Akl G o]
®3) n ﬁ( v+ ) R
in terms of v, 7, and the viscosity u, corresponding to the temperature T [see
Appendix A, Eq. (564a)]. In Eqgs. (2b)-(2h) and in what follows, the domain of the
integration with respect to {; is its whole space, unless the contrary is stated.
The diffuse-reflection condition on the tube wall is written as

(@) ¢=2va[ [ L& ¢Rasd; + (42 —2+¢&- g) ps,
(>0 0
* (r=Ro/R., {,<0),
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where Ty(1 + fag) is the temperature of the tube wall.
The linearized equation of state and the heat-flow vector are expressed as

(5a) P=w+r,
o0 . 5+5
L (72 0/2—1 3y .
(5b) Qi = fof GG + O gBAEd’ — =

In addition, if we denote by pO(ZRTo)l/ 2nREM the (dimensional) mass-flow rate
(per unit time) through the tube, we have

Ry/R.
(6) M=2 f ugrdr.
0

2.3 — Similarity solutions.

Let us introduce {, and 0; that express {, and {, as
(7) ¢ =, cos 0, {y = {,sinby,
(see Fig. 1) and transform the molecular velocity variables from ({,, {y, {3) to

(&, 0, (3). Note that ¢, = (& + ()" = (§ + 3)"* and 0 < {, <00, —n<0; < 7,
and —oo < {3 <oo. Then, we seek the solution in the following form:

(8) ¢= [a+ﬁ(c§+¢§+5—52+5)]x3

+Gladp(r, &) 10c], Gy E) + BDr(r, &y, 10:], &, E).

T2
RII,"'Rac
—

0 }Rm’ﬁ- T

Fig. 1. — Coordinate system.
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Actually, substitution of Eq. (8) into Egs. (1) and (4) shows the consistency of Eq.
(8) and leads to the following equation and boundary condition for @, where
J = P or T: The equation is

o, ¢, : oDy
(9) ngOS OZW__ 0 8—9(
2 1
:ﬁKn[ Dy + 2uy +2(1 — n)v{,cos 0.11;] — 1,
(0<r<Ry/R., 0<{,<00, 0<0; <m, —oco<3<o0, 0<E<00),
where
540
(102) Ip=1, Ir=C+d&+e-"1°,
(10b) w=2[ [ [ [ e a,Ededc,dods,
-0 0 0
(10¢) =4[ [ [ [ Edeosoe> oyBagac,do.dts,
-0 0 0 0
(10d) B & =AmPexp(-C— - 0),

and the boundary condition is
(11) &, =0,
(r=Ro/R., 0<{,< o0, n/2<0; <m, —o00<{3<00,0<E<00).

In Egs. (9)-(11), the range of 0; has been reduced to 0 < §; < = by the use of the
fact that @; is an even function of 0;.

The macroscopic quantities corresponding to Eq. (8) are obtained from Eqgs.
(2b)-(2h), (5a), and (5b) as follows.
(12a)  wo=(—puws,  P=oaxs,
(12b) Up = Ug = 0, ug = aup + pury,
(12¢) oy = Tint = T = Tyel = 23,
(12d) Py =Py=Psz=ax3, Py=Pp=0,  Pg=uallp+plr,
(lze) Q’V‘ = Qﬁ = Oa Q3 = aQP +ﬁQTa

where u; and I1; are given in Eqgs. (10b) and (10¢), and Q; by

T o0

(13) Q=2 f f f f LG (C,z, +3 +5—52L5) P @ EAEL, A0 ALs.
-0 0 0 0
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That is, Eq. (8) indicates a flow in the axial direction with a uniform pressure and
temperature gradients in the same direction. Note that the density, tempera-
ture, and pressure are independent of r. The solution ®@p corresponds to the
Poiseuille flow, and @7 to the thermal transpiration. Correspondingly, the di-
mensionless mass-flow rate [Eq. (6)] is expressed as

(14a) M = aMp + M7,
Ro/R.
(14b) M;=2 f urdr.

0

If we multiply Eq. (9) by ¢ [,535‘5/ 271K and integrate it with respect to &, oy Ory
and (3 over the domain 0 <&<oo, 0<{, <00, 0<O; <7, and —oo<{3<o0, we
have

15) dity My _ { -1 (=P,

dr r 0 J=T1.
Since I7; should be finite at » = 0, it is obtained as
(16) IIp=—- Iy =0.

Equation (16) simplifies Eq. (9) further.

2.4 — Further transformation and reduction to the BGK model.

The system, Eqs. (9) [with Eq. (16)] and (11), can be simplified further by
multiplying by 2/v/7) 4627105 exp (— £ — {3) and integrating with respect to £
from 0 to oo and {3 from —oo to co. The resulting system is as follows: The
equation is

oy, . 0w,
(A7) {,cos 0O; o —?smﬁg a0
2 1 1 -
:ﬁﬁ ¥+ 2uy[Ps]+ 2 lfﬁ C/,COS 011y — 1y,
(0 <r<Ro/R., 0<{,<00, 0<0;<n),
where
1 T o0
(182) wtv) == [ [ ¢¥rexo(=2dg,aon,
0 0
(18b) Mp=-3,  Ir=0,

(18¢) Ip=1, I;=0-1,
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and the boundary condition is
(19) Y;=0 (r=Ry/R,, 0 <{, <00, n/2<0; < ).
Here, ¥ is defined by

2 oo 0 -
(20) Vo= £ Of E212¢, exp (— € — (2)deds.

Once the solution ¥; (and thus u;) of Eqs. (17)-(19) is obtained, one can re-
construct the original @; by solving Eq. (9), which reduces to a partial differ-
ential equation for @;, under the boundary condition (11). Therefore, any mac-
roscopic quantity, such as @y in Eq. (13), can be obtained. For convenience of
discussion below, we rewrite the mass-flow rates M; [Eq. (14)] in the following

form:
Ro/R.

21) My, =2 f wg ¥ rdr.
0

Here, we note that Eqs. (17)-(19) are of the same form as the corresponding
equations and boundary conditions for the cylindrical Poiseuille flow and thermal
transpiration based on the ES model for a monatomic gas [6]. The difference
between monatomic and polyatomic gases arises only in the different values of
Pr. Furthermore, Eqs. (17)-(19) with J = T, which do not contain Pr, are the
same as the corresponding equation and boundary condition for the thermal
transpiration based on the BGK model. As for the cylindrical Poiseuille flow,
although Eqs. (17)-(19) with J = P are different from the corresponding equa-
tion and boundary condition based on the BGK model, we can reduce the solution
of the former to that of the latter by a simple conversion, as in the case of the

, 1 1 1
(22) Yp=¥Yp— (1 - ﬁ)

plane Poiseuille flow. Let us put
11 2 _ (B’
V7 Kn R.) |

Then, it follows from Eqs. (17)-(19) with J = P that ¥, satisfies

Ny L . W 21
(23a)  (,cos 0; oy 5D Hga—gg = /7kn

@3b)  W,=0 (r=Ry/R,, n/2<0; <),

which are identical with the corresponding equation and boundary condition for
the cylindrical Poiseuille flow based on the BGK model. To summarize these
facts, we obtain the following relations for the solutions, flow velocities, and
mass-flow rates:
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_gpex_ 1L 1Y (Re)
(24a) Yp =¥ Jikn (1 Pr) [72 (R)

2
@) uplwp] = uplwB] - 1L (1 1 > [1”2 - <RO)

)

2y7Kn\" Pr R.) |
(24c) ur[¥r] = ur[PHK],
B Beky 1 1 1\ (Ro\*
(24d) Mp[¥pl = Mpl¥p" 1+ mﬁ (1 - ﬁ) (E) )
(24e) Mo[¥r] = Mr[#56K],

where 5K and PECK are the solutions corresponding to ¥p and ¥y for the

BGK model. As mentioned in Sec. 1, the database of up[#59K], uy[WEEK],
M p[QPEGK], and MT[Y’]%GK], the original version of which was built by Sone
and Itakura [33], has been constructed by Sone, Itakura, and Handa. From
this, one can obtain an accurate values of these quantities instantaneously
for an arbitrary Knudsen number. The database is available from the pre-
sent authors (the software package can be downloaded from the webpage
http://www.mfd.me.kyoto-u.ac.jp/Sone/database-e.html). Therefore, we do not
need to carry out new computations to obtain up, uyp, Mp, and My for the ES
model for a polyatomic gas. It should be noted that the conversion formula
for the mass-flow rate of the Poiseuille flow between the ES model for a
monatomic gas and the BGK model, corresponding to Eq. (24d), is given in
Ref. [8].

2.5 — Mass-flow and heat-flow rates.

If we denote by M the total mass-flow rate in the X3 direction per unit time,
then it follows from Egs. (6) and (14) that

R. dp ar

R
_ 1/2 p2 . : 0l w
(25) M =npy@RTo)2R? {Mp(Kn, Ro/R) - g+ My(Kn: Ro/R.) g et
where
Ry/R.
(26) M;(Kn; Ro/R.) =2 f wyrdr,  (J =P, T).

0

Here, the fact that M; depends on Kn and Ry/R. is shown explicitly as argu-
ments.
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Now we take the radius of the circular tube Ry as the reference length R, and
denote the corresponding Kn by Kny, i.e., Kn = (Ry/R.) Knyg. Then Eq. (25)
becomes

() dp Ro dT

_ 1/2 p2
(27 M = npy2RTo) "Ry | Mp(Kng; 1) — o dX3+MT(K 0; 1) - To dXs |’

Since Eqs. (25) and (27) express the same quantity, we have the following rela-
tion:

(28) M;(Kn; Ry/R.) = (Ro/R.)*M;(Kny; 1).

Similarly, from the solution @; (or @;), we can compute the heat-flow rate
through the tube. Let H be the total heat-flow rate in the X3 direction per unit
time. Then we have

R. d R, dT,,
(29) H = npo@RTo)/2R? [HP(Kn Ro/R.) d)? + Hy(Kn: Ro/R.) 7 2.
where
Ry/R.
(30) HyKn; Ro/R)=2 [ Qrdr, (=P, D),

(=}

and it satisfies the following relation:

(31) H;(Xn; Ry/R.) = (Ry/R.)’H;(Kny; 1).

2.6 — Numerical results.

In this Sec. 2.6, we show the profiles of the velocity and heat flow and mass-
flow rates for the Poiseuille flow and thermal transpiration obtained with the
help of Eq. (24). The basic equation (1) contains the set of parameters (v, #, J)
to characterize the polyatomic gas under consideration. In place of this set, we
may also use another set (Pr, 1/, 6) because of relations (51c), (51d), and
(52). Here, we consider the nitrogen gas (Ng; d = 2), for which experimental
data for Pr and u,/u are available (Pr = 0.718 [25] and 1, /u = 0.731 [28]). We
set the values of v and # in such a way that the resulting Pr and y,/u are close
to the above experimental values, that is, v = —0.50 and # = 0.46, which lead to
Pr =0.787 and 1, /u = 0.722. We also set R, = Ry and assume A, in Eq. (47) to
be constant.
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Fig. 2. — Profiles of the flow velocities for the Poiseuille flow and thermal transpiration
through a circular tube. (a) Dimensionless flow velocity up for the Poiseuille flow. (b)

0.2

0.4

0.6 0.8
r/ Ry

(a)

0.4

(b)

Dimensionless flow velocity ur for the thermal transpiration.

Figures 2(a) and 2(b) show the velocity profile for the Poiseuille flow up
and that for the thermal transpiration uy for various values of Kn [cf. Eq.
(12b)]. Figures 3(a) and 3(b) show the corresponding profiles of the heat-
flow vectors Qp and Qr [cf. Eq. (12e)]. Tables 1 and 2 show the mass-flow
rates Mp and My versus Kn, respectively. In Table 1, the result for a
monatomic gas (Pr=2/3) is also shown for comparison (My in Table 2
does not depend on the value of Pr and is the same as that for the BGK

model).

L 1 4
0.5

01 ey
00501 06 0% 002 04 06 08 1
r/Rq r/Ro
(a) (b)
Fig. 3. — Profiles of the heat-flow vectors for the Poiseuille flow and thermal

transpiration through a circular tube. (a) Dimensionless heat-flow vector Qp for
the Poiseuille flow. (b) Dimensionless heat-flow vector Qr for the thermal tran-

spiration.
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TABLE 1. — Dimensionless mass-flow rate Mp for the Poiseuille flow.

Kn —Mplp,_s3 —Mplpy_187
102 0.2167(2)" 0.1843(2)
2 x 1072 0.1109(2) 0.9474(1)
3% 1072 0.7567(1) 0.6489(1)
4 %1072 0.5807(1) 0.4998(1)
6 x 102 0.4048(1) 0.3509(1)
8 x 1072 0.3170(1) 0.2766(1)
101 0.2645(1) 0.2322(1)
2% 107! 0.1604(1) 0.1442(1)
3x10°! 0.1263(1) 0.1155(1)
4x%x107! 0.1096(1) 0.1015(1)
6 x 10! 0.9336(0) 0.8797
8x 107! 0.8558(0) 0.8154

1 0.8112 0.7788

5 0.7037 0.6972
101 0.7068 0.7035
102 0.7377 0.7373
103 0.7496 0.7495
10* 0.7519 0.7519

* Read as 0.2167 x 102.

TABLE 2. — Dimensionless mass-flow rate M for the thermal transpiration.

Kn My

102 0.3364( — 2)*
2 x 1072 0.6665( — 2)
3 x 1072 0.9903( — 2)
4 x10°2 0.1308(—1)
6 x 1072 0.1923(—1)
8 x 1072 0.2514(—1)
101 0.3079(—1)
2% 101 0.5558( — 1)
3 x 1071 0.7555(— 1)
4 %101 0.9197(—1)
6x 101 0.1176

8 x 1071 0.1370

1 0.1524

5 0.2579

10! 0.2934

102 0.3573

103 0.3730

104 0.3757

* Read as 0.3364 x 10~2.
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3. — Diffusion-type system.

In this section, we consider a rarefied polyatomic gas in a straight pipe
composed of long circular tubes connected longitudinally. The radius of each tube
is different each other, as shown in Fig. 4. Therefore, the cross section of the pipe
changes suddenly at the junctions of the tubes. We assume the following:

(i) The behavior of the gas is described by the ES model for a polyatomic gas.

(ii)) The gas molecules undergo diffuse reflection on the pipe wall (including
the walls at the junctions).

(iii) The length of each circular tube is much longer than its diameter.

(iv) The temperature of the pipe wall is uniform at each cross section (and at
each junction). The distribution of the wall temperature along the pipe axis is
arbitrary but continuous (its derivative may be discontinuous at the junctions),
and its variation may be large. However, the length scale of its variation is much

longer than the diameters of the tubes.
!‘)If -l|

Fig. 4. — Schematic of the straight pipe.

In this situation, one can derive, by a systematic asymptotic analysis of the
kinetic system, a macroscopic system consisting of a diffusion-type equation in
each tube and a connection condition at each junction that describes the (slow)
time evolution of the distribution of the pressure (or density) of the gas along the
pipe axis. In Ref. [5], such a system was derived for a single and monatomic gas
for tubes with arbitrary (not necessarily circular) cross sections on the basis of
the Boltzmann equation and a general form of the boundary condition. Here, we
repeat the same analysis for the ES model for a polyatomic gas with the diffuse
reflection condition and for circular tubes. Since analysis is basically the same as
that in Refs. [40] and [5], we only summarize the result.

We assume that the axis of the pipe is set along the Xj axis. Let ¢ be the time
variable, T,,(X3) the temperature of the pipe wall, 7' the temperature of the gas, p
the density of the gas, p = RpT the pressure of the gas, and M is the mass-flow
rate across the pipe in the X3 direction per unit time. Let L., denote the reference
length in the axial direction (a typical length of the tubes, the length scale of
variation of the temperature, etc.), R, ( < L,) the reference length in the radial
direction (a typical radius of the tubes), T, the reference temperature, p, the
reference density, p. = Rp,T. the reference pressure, I, the reference mean
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free path of the gas molecules defined as [, = (2/ \/ﬁ)(ZRT*)l/ Z/AC(T*)p* (see
Appendix A), and K, = L. /R, the reference Knudsen number. Furthermore, we
introduce the following dimensionless quantities:

(32a) t=t[L?/@RT)V*R.], z=X3/L,
®32b)  Tw=Tu/T., p=p/p., T=T/T., p=p/p.(=pD)
(32¢) M = M/np,@RT)VR?.

The quantities p, T, p, and M are expanded in terms of a small parameter
e=R,/L, as

(33a) P =P+ PwmE+ s
(33b) T="To+Toe+- -,
(33¢) p=Do +PwE+--,
33d) M=Maue+-,

and p ), Ty, Py, and My, are found to be the functions of ¢ and z (i.e., they do not
depend on the radial coordinate). In addition, T(O)(t 2) = w(z) holds, so that
Pyt 2) = poyE DTw(@).

Let us consider the ith tube and denote Py and M) there by p 7%) and M! 1)
respectively. Let R! and R = R /R, be the dimensional and dimensionless radii
of the ith tube, respectively. Then, p(O) is governed, through M(1>’ by the fol-
lowing equation:

Oploy T OMpy

34a = =0,
(84a) ot (R Oz

Bl [ e OB dinT,
(34b) M%D—W M})(Kl) % +M1(KZ) = |
where

. KT
(35) K'=——
Ac(Tw)p%o)

and we have assumed that A.(T) in Eq. (47) can be written as
(36) AT = A(T.T) = A(T)AD).

(If A, = const x T™, then A — T, ) Here, M}J(K’) and M (Kl) correspond to
the dimensionless mass-flow rate of the Poiseuille flow and that of the thermal
transpiration through an infinitely long circular tube with radius R?. More pre-
cisely, they are related to Mp(Kn; Ry/R.) and Mr(Kn; Ry/R.) in Sec. 2.5 [cf.
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Eqgs. (26) and (28)] as
(37) (K = M;(K'; R = R)’M(K'/R'; 1) (J =P, T).

At the junction of the ith tube with the neighboring (i + 1)th tube, the fol-
lowing connection condition has to be satisfied:

(38) Ploy =P My =My

Equations (34) and (38) are to be supplemented by an appropriate initial
condition and end conditions (see Sec. 4.2). Once the solution of this system is
found, the dimensional pressure p’ and the dimensional mass-flow rate M’ in the
ith tube are given, respectively, by [cf. Eqgs. (32) and (33)]

(39a) P =Py + 0],
(39Db) M = np, @RT.)*RE M} + O()].

4. — Applications of diffusion-type system.

In this section, we apply the diffusion-type equation with the connection
condition summarized in Sec. 3 to two problems. As in Sec. 2.6, we consider the
nitrogen gas and let v=—0.50 and » = 0.46, which lead to Pr = 0.787 and
/1= 0.722. We also assume A, in Eq. (47) to be constant (thus Ac =1).

4.1 — Flow caused by a large pressure difference.

We first consider a single long circular tube of radius Ry and length L kept at
a uniform temperature 7T and set in the interval 0 < X3 < L. Let both ends of
the tube be open, and the pressure at X3 = 0 and that at X3 = L be kept at py and
p1, respectively. We investigate the steady flow of the gas through the tube.

Let us take pg, Ty, Ry, and L as the reference quantities p., T, R., and L.,
respectively. Then, T, = 1, and K, is the Knudsen number based on R, py, and
To. In addition, we omit the superscript ¢ in Eqgs. (34), (85), (37), and (39). Then,
the end conditions become

(40) poy=1 @t z2=0),  po =pi/po (at z=1).

We solve Eq. (34) with end conditions (40) and an appropriate initial condition,
e.g., P = lat t = 0 for 0 <z <1, and obtain the steady flow as the long-time limit
of the solution. In the final steady state, since 9p)/dt =0 holds, we have
My = My = const., and the mass-flow rate M is given by [cf. Eq. (39b)]

(41) M = 7p@RTo)Y2RE [Mye + O(2)],
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where p, =po/RTo and ¢ = Ry/L. Since the numerical solution method is
straightforward, we show only the result of analysis.

20 L) L L Ll 1-8

1072 107! # 10" 10! 1077 10° g 10
(a) (b)

Fig. 5. — Reduced mass-flow rate G [= (3y/n/4)M/] vs K, for N, gas in the case of
p1/po = 1072, (2) 0.005 < K, < 20, (b) magnified figure for 0.1 < K, < 20. The solid line
indicates the numerical result (Pr =0.787 and u,/u = 0.722), and the black square
indicates the experimental result taken from Ref. [24].

Figure 5 shows the reduced mass-flow rate G versus K. for p;/py = 1072.
Here, G = M/ Mgy = Bv/a/DI1 — (p1/po)] "My ~ (3\/n/4)M [with the term of
O(e%) neglected in Eq. (41)], and My is the mass-flow rate for the free-molecular
flow, i.e.,, Mpy = (4y/7/3)R3[(po — p1)/LI2/RTp)"2. In the figure, the solid line
indicates the numerical result for Ny gas (Pr = 0.787 and /¢ = 0.722), and the
black square indicates the experimental result taken from Ref. [24], where the
experiment of the same problem is carried out with the nitrogen gas, using a
bundle of huge number of tiny circular tubes, under the condition that p; /py ~ 0
and ¢ = 1/2727. Figure 5(a) shows the results for 0.005 < K, < 20 and Fig. 5(b) is
the magnified figure for 0.1 < K, < 20. The pressure ratio p;/po in the present
example might be too small to apply the diffusion-type system with confidence.
Nevertheless, the numerical and experimental results show good agreement on
the whole, except for the difference of 10% to 15% in the range 0.5 < K, <8.

In Fig. 5, the experimental data are plotted after a suitable conversion of the
Knudsen number, which is explained in the following. In Ref. [24], the mean free
path [y is defined by Iy = kTy/ \/§nd2p0 (with k£ the Boltzmann constant), as-
suming that an Ny molecule is a hard sphere with effective diameter d. Therefore,
it is expressed in terms of the viscosity y, at temperature 7y and pressure py as
lo = 2/ vm) e/ 7)@RT0)? /po where 7, = 1.270042 [32]. On the other hand,
from Eqs. (51c) and (54a), our Iy is given by ly = 2/vD(ue/Pr)@RT)? /po. If
we assume that the viscosity y, is a common quantity and eliminate it from the
two expressions for l;, we obtain a conversion formula for [, between our nu-
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merical result and experimental data in Ref. [24]. That is, in terms of the Knudsen
number, we have K, = (y;/Pr) Kn; = 1.613777 Kn;, where Kn; is the Knudsen
number (at temperature Ty and pressure p;) in Ref. [24]. For instance, the
measured value for Kn; = 1 is plotted at K, = 1.613777 in Fig. 5.

4.2 — Knudsen compressor.

The Knudsen compressor [20, 21]is a non-mechanical device that produces a one-
way gas flow with a pumping effect using the imbalance of the thermal transpiration
caused by periodic temperature distribution and periodic structure of the device. It
has been attracting attention as a microscale flow controller (e.g., Refs. [36, 41, 34,
35, 16]) and gas separator (e.g., Ref. [40]) without any moving parts, and its variants
(e.g., Refs. [38] and [3]) have been proposed. A typical Knudsen pump is a long pipe
with a periodic structure consisting of alternately arranged narrow and wide pipes.
The temperature of the pipe is also periodic with the same period as the structure,
such as a saw-tooth distribution increasing in the narrow segments and decreasing
in the wide segments. The flow and its pumping effect have been studied numerically
as well as experimentally. In practical applications, however, a large number of
segments should be used, so that the estimate of the properties and performance of
the compressor in various steady and unsteady situations by the DSMC computa-
tion or by experiment is a formidable task. Therefore, the simple macroscopic sys-
tem summarized in Sec. 3 is useful for this purpose.

:I"‘!“

oo i
Ty

Fig. 6. — Knudsen compressor consisting of circular tubes.

Let us consider the system shown in Fig. 6, that is, a pipe composed of al-
ternately arranged m narrow circular tubes (radius Ry and length al) and m
wide circular tubes [radius R; and length (1 —a)L], set in the interval
0 < X3 < mL. The temperature T,,(X3) of the pipe wall has a saw-tooth shape as
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shown in the figure, i.e.,

To, at Xg =nlL and mL,
(42) T, = { n=0,1,2,..,m—1),

T, at Xs3 = (a +n)L,
and T,,(X3) is a piecewise linear function of X3 joining T and 7. We assume that
the assumptions (i)—(iii) of Sec. 3 are satisfied, so that (iv) there is also fulfilled.
We consider the following two situations (F'ig. 6):

(A) The pipe is closed at X3 = mL, and the pressure at the open end X3 = 0is
kept at py.

(B) Both ends are open, and the pressure at X3 = 0 and that at X5 = mL are
kept at py and p1, respectively.

We take py, Ty, Ry, and L as the reference quantities p., T, R., and L., re-
spectively. Therefore, To2)=1atz=n (n= 0,1,2, .., m—1) and m, and
Tw(z) =1T,/Tyatz = a + n, and K, is the Knudsen number of the inlet condition.
In addition, the end conditions become

(43a) Poy=1 (at 2=0), My =0 (at z=m) in Case (A),
(43b) Poy=1 (at 2=0), P =pi/po (at z=m) in Case (B).

We solve Eq. (34) with end conditions (43) and the initial condition
(44) Poy=1, att=0, for 0<z<lI,

and obtain the steady solution as the long-time limit of the unsteady solution. In
the final steady state, MED = 01n case (A), and Mfl) = M; = const. in case (B). In
the latter case, the mass-flow rate M is given by [cf. Eq. (39b)]

(45) M = npy@RTo)V?RE [Mye + O],
where p, = po/RT and ¢ = Ry /L.
20
16} 5
K. =10 1/
12} /
1= {’
1 o !/I 5
=
gl 01
A
[0 L L L L UTS L L L L 1

z/m

(b)

Fig. 7. — Steady pressure distribution along the pipe in Case (A) for R /Ry = 2, a = 0.5,
T,/T, = 1.5, and m =100 (N, gas: Pr=0.787 and y,/u = 0.722). (a) Various K,, (b)
Average pressure distribution for N, gas and monatomic gas (Pr = 2/3). In (b), the solid
lines indicate the results for N, gas, and the dashed lines those for a monatomic gas.
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40

m = 1000
30

10

z/m

Fig. 8. — Steady pressure distribution along the pipe in Case (A) for K, = 1, T} /T, = 1.5,
a = 0.5, and R;/Ry, = 2. Various m for the N, gas and monatomic gas. The solid lines
indicate the results for the N, gas, and the dashed lines those for the monatomic gas.

Some numerical results for the steady pressure distribution along the pipe,
i.e., p/po versus z, in case (A) are shown in Figs. 7 and 8 for Ny gas (Pr = 0.787
and g,/ = 0.722). Figure 7 shows p/po versus z for m = 100 in the case of
Ri/Ry=2,a=05,and T1/Ty = 1.5: Fig. 7(a) shows the effect of different K.,
and Fig. 7(b) the comparison between N2 gas and a monatomic gas (Pr = 2/3) for
K, =0.1, 1, and 10. In the latter figure, we show the average pressure p over
each segment, rather than the pressure p itself, to make the difference clearer. A
relatively high pressure rise at the closed end can be obtained for intermediate
values of the entrance Knudsen number [Fig. 7(a)]. The pressure distribution for
large numbers of the segments (i.e., large m) is shown in Fig. 8 for B, /Ry = 2,
a=05,T/Ty =15, and K, = 1. In the case of m = 1000, the pressure at the
closed end for Ny gas becomes about 40 times the pressure at the open end.

1.5
| 01
K, =1 1 T
s K.=1
g
s S
e
& 10
0.95 .
0.1 10
1
L L L L L {}‘9 1 L L
0 300 ;. 600 0 0.25 05 ; 0.75 1

{ : f

(a) (b)

Fig. 9. — Time evolution of the pressure p; at the clo§ed end (X5 = mL) in Case (A) for
m =10,T1/Ty =15, a=0.5,and Ry/Ry =2.(a) 0 <t <600, (b) 0 <t <1.
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An example of the manner of approach of the gas to the final steady state in
Case (A) is shown in Fig. 9 for Ny gas. More precisely, the time evolution of the
pressure p; at the closed end (z = m or X3 = mL) versus t is plotted for m = 10
in the case of R1/Ry =2, a = 0.5, and T /Ty = 1.5. Figure 9(a) shows the global
behavior (0 < ¢ < 600), and Fig. 9(b) the short-time behavior (0 < ¢ < 1). The
approach is slower for intermediate and large Knudsen numbers (K. = 1 and 10).

Finally, we show in Table 3 the steady mass-flow rate My [Eq. (45)] in case (B)
for different m and K, in the case of B1 /Ry =2,a =0.5,T1/Ty = 1.5, p1/po = 2,
and K, = 1. The results for Ng (Pr = 0.787 and y,/u = 0.722) as well as for a
monatomic gas (Pr = 2/3) are shown in the table. For small Knudsen numbers
(K, =0.1), the flow from the high-pressure end to the low-pressure end dom-
inates (i.e., My is negative) even for m = 200. However, for intermediate and
large Knudsen numbers (K, =1 and 10), the flow induced by the wall-tem-
perature distribution overcomes the pressure-driven flow (i.e., My is positive).

TABLE 3. — Steady mass-flow rates My versus the number of the units m in Case (B).

Mf |Pr:2/3 Mf |Pr:0.’787
m K,=10 K. =1 K, =01 K, =10 K. =1 K. =01
10 —-8.080(—2)" —7.037(—2) —4.451(—1) -8.161(—2) —6.667(—2) —3.875(—1)

50 1.096(—2)  3.382(—2) —7.268(—2) 9.971(-3) 3.279(—2) —6.127(—2)
100 1.935(—2) 4.286(—2) —-2.612(-2) 1.851(—2) 4.133(—2) —-2.049(-2)
200 2127(—2) 4.439(—2) -—2.842(—3) 2.055(—2) 4.275(—2) —1.082(—4)

* Read as —8.080 x 102

5. — Concluding remarks.

In the present study, we considered two fundamental and classical problems
of rarefied gas dynamics, Poiseuille flow and thermal transpiration through a
circular tube for a polyatomic gas. Our basic equation is the linearized version of
the ES model of the Boltzmann equation for a polyatomic gas. But, we showed
that the solution of the thermal transpiration through a circular tube based on
the ES model for a polyatomic gas is identical with that based on the BGK model
for a monatomic gas, and that the solution of the Poiseuille flow through a cir-
cular tube based on the ES model for a polyatomic gas is obtained by a simple
conversion formula from that based on the BGK model for a monatomic gas.
Therefore, we were able to obtain the profiles of the flow velocity and heat flow as
well as the mass-flow rate for the present problem, exploiting the existing da-
tabase for the BGK model for a monatomic gas (Sec. 2).
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On the other hand, we derived a macroscopic equation of diffusion type and
the connection conditions that describe the pressure distribution in a pipe con-
sisting of many thin circular tubes with different radii connected one after an-
other. The resulting macroscopic system is summarized in Sec. 3. With the da-
tabase for the mass-flow rates mentioned above, the macroscopic system became
applicable to practical problems of microscale gas flows when the pipe consists of
circular tubes and the behavior of the gas is described by the ES model for a
polyatomic gas.

Finally, we applied the macroscopie system to a gas flow through a single long
circular tube caused by a large pressure difference imposed at both ends
(Sec. 4.1) and to a Knudsen compressor consisting of many alternately arranged
thinner and thicker circular tubes (Sec. 4.2). With this procedure, we were able
to obtain the pressure distribution along the pipe and the mass-flow rate through
the pipe in the two problems easily.

It should be stressed that the direct numerical analysis of such problems,
either by the DSMC method or by finite-difference methods based on the
model Boltzmann equations, is a formidable task. Therefore, the present ap-
proach, using the diffusion-type system plus the database for the Poiseuille-
flow and thermal-transpiration mass-flow rates, provides a useful and powerful
tool. The applicability of the diffusion-type system can be extended easily just
by constructing the corresponding database for the tubes with different cross
sections.
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decades. This work was supported by the grant-in-aid for scientific research
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Appendix A ES model of the Boltzmann equation.

In this appendix, we summarize the ES model of the Boltzmann equation for a
polyatomic gas. Let us consider a gas consisting of molecules with internal de-
gree of freedom J. The number of the molecules with position in d*X around X,
velocity in d*¢ around &, and energy related to the internal degree of freedom in
d€ around £ at time ¢ is written as

(46) % f(t, X, & E)PXAPEdE,

where f is the velocity and energy distribution function of the gas molecules, and
m is the mass of a molecule. The ES model for a polyatomic gas can be written in
the following form [1] (see the last paragraph of this appendix for the difference
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in notations between Ref. [1] and the present paper):

of . of
(47a) I gy — A1 -,
/)Aég(s/z_l
47b = _
) ) @r 2| T |VA(R T )
1, . £
X eXp(*i E—-v)- T '(5*0)*m)7
(47¢) T = (1~ p)|( = VRTuld +v6)| + yRTId,
_ 1 r t o .13
@7d) o= Of - v)- € —vyiEde,
(47e) o= f f fdEdde,
0
1 P
(47f) = [ Of &fdEd3e,
1 rf -
(47g) To=g oz || G- vlpigde,
0
(47h) Ting = 5/% [] Eragae,
0
(470 T— S—Tt;):iﬂm ,
(47.]) Trel = ”T + (1 - ”)Tinb

Here, p is the mass density of the gas, v; is the flow velocity, T is the tempera-
ture, Ty is the temperature related to the translational energy, Ty is the
temperature related to the energy of the internal degree of freedom, and R is the
specific gas constant (the Boltzmann constant divided by the mass of a molecule);
ve[—1/2,1)and n € (0,1] are the parameters to adjust the Prandtl number and
the bulk viscosity to the gas under consideration [see Eqs. (51¢) and (51d)]; A.(T)
is a function of 7' such that A.(T)p is the collision frequency of the gas molecules,
and 4, is a dimensionless constant defined by

(48) Ayt = f 92 1g=5(s.

0
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In addition, 7 and @ are 3 x 3 symmetric matrices, Id is the 3 x 3 identity
matrix, |7| and 7 ~1 are the determinant and the inverse matrix of 7, respec-
tively, and the symbol ! indicates the transpose operation. In what follows, for an
arbitrary matrix A, its (7, 7) component, determinant, inverse matrix, and
transposed matrix are denoted by A;;, |A |,A’1, and 'A, respectively. In the above
equations, d3¢ = dédéadés, and the domain of integration with respect to &; is
the whole space of ;. It should be noted that the pressure p and the stress tensor
pij are given by

(49a) p=pRT,

(49D) pi =05 = [[ &~ vi& — v fad’e.
0

The vanishing right-hand side of Eq. (47a) is equivalent to the fact that f is a
local equilibrium distribution foq [11:

_ pAs Fo/2-1 CG-w? €
(50 fa = arnp PRy © o0 (~~5r ~77)

It is also known [1] that Eq. (47) leads to the viscosity u, the thermal conductivity
x, the Prandtl number Pr, and the bulk viscosity s, in the following form:

(51a) ﬂ:ﬁ%’
(51b) ’C:y% %’

(1e) Pr:ﬁ%:ﬁ’
(51d) ﬂb:%(g_y)%’

with y the ratio of the specific heats given by

_0+5b

Equation (47) contains the set of parameters (v, 7, 6) characterizing the gas
under consideration. In place of this set, we may use another set (Pr, 1/, 9)
because of relations (51¢), (51d), and (52).

The molecular mean free path [y in an equilibrium state at rest at tempera-
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ture Ty and density p, is defined as

2 (2RT)V?

. bR AT,

in terms of the mean molecular speed (2/ \/ﬁ)(ZRTO)l/ 2 and the collision fre-
quency A.(To)p, in the equilibrium state. Therefore, the viscosity 1, the thermal
conductivity r, and the bulk viscosity z, corresponding to the equilibrium state
are expressed (in terms of ly) as

v 1 Do

(6a) K= T v v @RI b
VT 7y Rpo
_ 1/ o

(54¢) Hoo =7, (3 y) Pr’

The diffuse-reflection condition [8, 9, 32], adapted to the present polyatomic
case, on the boundary is expressed as

&g £

i
2RT, RT,

A ~
(552) f Puws £o/2-1 exp(f

— n>0
(ZﬂRTw)g/Z(RTw)(S/Z )7 (é n > )7

(55b) pw:—(Rz—;w)l/z i fo & - nfdéd’e,

én<0 0

where T, is the temperature of the boundary, and n is the unit normal vector of
the boundary pointed toward the gas.

In Ref. [1], the energy &, which is denoted by ¢ there, is assumed to be ex-
pressed as € = I?/9 in terms of a variable I, and I is used as an independent
variable. More specifically, the distribution function in Ref. [1], which we denote
by f(t, X, &, 1) here, is defined in such a way that

(56) % ft,X, & Dd*Xd3édl,

indicates the number of the molecules with position in d*X around X, velocity in
d3¢ aroun_d &, and the variable I in dI around I at time t. Therefore, the relation
between f and the present f is as follows:

(57) ft,X,88) = (6/2821F(t, X, &, 7).
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In addition, 4; in Ref. [1], which we denote by As here, is related to As in
Eq. (48) as

(58) A7 =@2/0)Us)
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