BOLLETTINO
UNIONE MATEMATICA ITALIANA

TuoMmo Kuusi, GIUSEPPE MINGIONE

Endpoint and Intermediate Potential Estimates
for Nonlinear Equations

Bollettino dell’Unione Matematica Italiana, Serie 9, Vol. 4 (2011), n.1,
p. 149-157.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2011_9_4_1_149_0>

L’utilizzo e la stampa di questo documento digitale é consentito liberamente per mo-
tivi di ricerca e studio. Non ¢é consentito I’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim. eu/


http://www.bdim.eu/item?id=BUMI_2011_9_4_1_149_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2011.



Bollettino U. M. 1.
9) IV (2011), 149-157

Endpoint and Intermediate Potential Estimates
for Nonlinear Equations

Tuomo KuusI - GIUSEPPE MINGIONE

Abstract. — We describe a few results obtained in [10], concerning the possibility of es-
timating solutions of quasilinear elliptic equations via nonlinear potentials.

1. — Introduction.

Let us consider the Poisson equation —Awu = x in R", and let us take here
n > 3, with 1 being an integrable function. The well-known representation for-
mula via fundamental solutions

1 f du&)
wn =2)|Bif J w2

(1.1) u(x) =

allows to establish many of the basic properties of the solution » and of its
gradient Du, as for instance integrability in various functions spaces, via the
analysis of related Riesz potentials. Indeed, let us define for a general Radon
measure u the Riesz potential I Z‘ as (here we omit the usual renormalizing con-
stant)

1@ = [ O pen

n—pf "’
]Rn |x - f|
Then the following formulae hold:
(1.2) lu@)| < cm)z(u@)  and  [Du@)] < cm)I;(|u])(x).

Although the possibility to estimate pointwise solutions by means of potentials
seems to be linked to the specific structure of the Poisson equation, in recent
years it has been shown that similar pointwise estimates still hold when dealing
with possibly degenerate quasilinear equations. We shall consider quasilinear
equations in divergence form of the type

(1.3) —diva(x, Du) = u
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under the assumptions

(1.4) { jat, )] + [9ate, 2)|(2 + 57" < L(laf* + 5P~
. V(|z|2 + 82)(19*2)/2|/'{|2 S <aa(x’ z)/,{, /1> ’

wherep > 2 — 1/nand 0 <v < L <oo. These are supposed to hold whenever x € Q
and z, 2 € R"; the symbol da denotes the gradient of a( - ) with respect to the gra-
dient variable z. Finally, 1 always denotes a Radon measure which we for simplicity
think to be defined on the whole space R". The main model here is of course given by
the p-Laplacean equation with coefficients —div(y(x)| Du|’ “2Du) = . However, the
full significance of the results presented here appears in the nonlinear situation
already when p = 2.

By now classical theorems from nonlinear potential theory allow for pointwise
estimates of solutions to (1.3) in terms of the (truncated) Wolff potential
W;}’p(ac,R) defined by

£ 1/(p=1)
. . u|B, 0)) do
(15) Wi (@ R) = Of <g—ﬁp> =, p>0.

Needless to say B(x, o) C R" denotes the open ball centered at x, with radius .
Wolff potentials reduce to the standard (truncated) Riesz potentials when p = 2

[ 1(B@, o) do

" _JH —
(16) W/}/Z,Z(x’R) - I/}(xaR) - Qn,[g Q )

0

p>0,

with the first equality being true for nonnegative measures. In fact, a funda-
mental fact due to Kilpeldinen & Maly [7] — later deduced by different ap-
proaches by Trudinger & Wang in [17, 18] — is the estimate

(1.7) u@)| < WY (@, R) +c ]f (Ju| + Rs)dé,
B(x,R)

valid whenever B(x, R) C Q, with x being a Lebesgue point of u. Later on, this
result has been upgraded to the gradient level in [4, 15], where the authors
proved the estimate

(1.8) Du(@)| < W, (e.R)+c ]f (|Du| + s)dé .
B(x,R)

Estimates (1.7) and (1.8) are the nonlinear counterparts of the linear esti-
mates (1.2). The results we are presenting here — an excerpt from [10] — go
beyond estimates (1.7)-(1.8) presenting a unified approach to the regularity
of possibly degenerate quasilinear equations and, in particular, yielding
oscillation estimates.
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2. — Full scale and endpoint estimates.

In this note, for the sake of simplicity, we shall consider the slightly simpler
case given by equations with splitting coefficients of the type

(2.1) — div (p(@)a(Du)) = u

while we refer to [10] for the more general results concerning operators of the
type (1.3). The vector field a: R” — R” will satisfy assumptions (1.4) (obviously
restated for the case when a(-) has no x-dependence) while y: Q2 — R is a
bounded measurable function such that v < y(x) < L for a.e. x € Q. We shall
denote by a(-) the “integral modulus of continuity” of y( - ):

(2.2) w(R) = sup () — (), | dic,

B,CQ,0<R B,

where (y)p, denotes the integral average of y( - ) over B, (as usual B, denotes a
ball with radius 0 > 0). Now, to start with, consider again the Poisson equation
—Au = u, (we take n > 3 and u € L (R") satisfying |u(x)| < clef*™" asympto-
tically as |x| — oo; such a condition is satisfied for instance when x has compact

support). The formula (1.1) also gives
(2.3) () — u@)| < ello-o(JuD@) + L2-a( D@ — y|*

whenever x,y € R" and a € [0,1]. We can therefore read (2.3) as an inter-
mediate relation between the two ones in (1.2), which is moreover endpoint in the
sense that it allows — up to additional constants — to go back to the two estimates
in (1.2) when a — 0 and a — 1. The additional feature of an estimate as (2.3) is
clearly that it enables to catch oscillation information on the solutions by
prescribing the regularity of potentials, ultimately allowing to get regularity
properties of continuity in various function spaces.

The main aim of [10] is to show that something similar happens in the qua-
silinear case and that estimates (1.7) and (1.8) are particular instances of more
general estimates, exactly as it happens in the linear case by (2.3), allowing to get
mtermediate pointwise estimates of fractional derivatives via potentials. There
are actually several ways to express the concept of fractional differentiability. It
might appear at the beginning vague to extend pointwise estimates (1.7)-(1.8) to
fractional derivatives, as these are obviously non-local objects. We shall here use
a notion of fractional differentiability introduced by DeVore & Sharpley [3] that
allows to describe fractional derivatives reducing the non-locality of the defini-
tion to a minimal status, i.e. using two points only.

DEFINITION 1. — Let a € (0,1], ¢ > 1, and let 2 C R" be a bounded open
subset. A measurable function v, finite a.e. in Q, belongs to the Calderon space
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C(Q) if and only if there exists a nonnegative function m € L(Q) such that
(2.4) [v(@) — v(y)| < [m(x) +my)]lje —y|*
holds for almost every couple (x,y) € Q x Q.

Such spaces are closely related to the usual fractional Sobolev spaces W%?
(see [3]). Of course there could be more than one function m( - ) working in (2.4).
For this reason in their original paper DeVore & Sharpley fix m(-) to be the
sharp fractional maximal operator of order a of v, i.e. m = Mjf(v), (see [10]).
Indeed, notice that it follows from the definitions that the validity of (2.4) for
some m € LY is equivalent to have M7 (v) € L? whenever ¢ > 1. The main thing
we are here interested in is the fact that (2.4) allows to identify m(-) as “a
fractional derivative of order a” for v.

It is important to note here that while (1.7) holds true when the dependence
on x — alx, -) is just measurable, estimate (1.8) necessitates more regularity from
the mapping «+— a(x,-). Indeed, (1.8) implies the gradient boundedness for
regular enough measures, for which plain continuity of coefficients is known to
be insufficient, while for instance Dini continuity suffices. For this reason, when
considering (2.1), intermediate moduli of continuity of « — y(x) will appear in the
next statements according to the kind of estimates considered.

DEFINITION 2. — With (- ) defined in (2.2), the function y( - ) will be called
VMO-regular if w(r) — 0 when r — 0.

In this note we shall formulate our results in the form of a priori estimates for
more regular (C°, C') solutions. The case of general solutions (very weak solu-
tions) can be dealt with by well established approximation methods and integral a
priori estimates. We refer for instance for [2, 4] for a description.

2.1 — The case p > 2.

Here, in order to strengthen the exposition, we shall confine ourselves to
treat the case p > 2. The first result we present upgrades estimate (1.7) to low
order fractional derivatives, and actually holds in the case p <2 as well. In fact,
our aim here is also to demonstrate a sharp connection between classical
DeGiorgi’s theory and nonlinear potential estimates. Indeed, when considering
solutions to homogeneous equations as diva(x, Dw) = 0, with measurable de-
pendence on &, DeGiorgi’s theory provides the existence of a universal Holder
continuity exponent a,, € (0,1), depending only on n,p, v, L, such that

25)  welhr@, @ - w@)| < o f (w|+ Rs)de- <%w>

loc
Bg
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where the last inequality holds whenever x,y € Bg/s and Br C . The exponent
an, can be thought as the maximal Holder reqularity exponent associated to the
vector field a( - ), and is actually universal in that it is even independent of a( -)
and depends only on %, p, v, L. It then holds

THEOREM 2.1 (DeGiorgi’s theory via potentials). — Let u € C%(Q) N W'P(Q)
be a weak solution to the equation (2.1) with measurable coefficients y( - ), and
let (1.4) hold with p > 2 —1/n. Let Br C Q be such that x,y € Bps, then

lu(x) —uy)| <c {Wlllfa(pfl)/p-,p

+ CBJ[(I% + Rs)d¢ - ('x 1_3 y')

holds uniformly in a € [0, al, for every a < a,,, where the constant ¢ depends only
n,p,v,L and a.

@, R)+ Wi, 1y, 0Bl =y

(2.6)

In general, counterexamples show that a,, — 0 when L/v — oo, and this
prevents estimate (2.6) to hold in general for the full range a € [0,1) when in
presence of measurable coefficients. Let us remark that the restriction to the
case 2 — 1/n<p is motivated by the fact that this is the range in solutions to
measure data problems belong to the Sobolev space W1, and we can talk about
the usual gradient. In this respect the lower bound p > 2 — 1/n is optimal as
showed by the (so called nonlinear fundamental) solution |ac|% (here n # p for
simplicity) to the equation —A,u = c(n,p)d, where J is the Dirac measure
charging the origin.

In order to prove estimates for higher order fractional derivatives we shall
need more regularity on coefficients.

THEOREM 2.2 (Fractional nonlinear potential bound). — Let u € C1(Q) be a
weak solution to (2.1), under the assumptions (1.4) with p > 2 — 1/n. For every
a <1 there exists a positive number 6 = d(n,p, v, L, a) such that if

2.7 lin(l) w(r) <9,
then the pointwise estimate (2.6) holds uniformly in a € [0,al, for a constant

¢ =cn,p,v,L,o(),a, diam (2)), as soon as x,y € Bgz. In particular, if y(-) is
VMO-regular then (2.6) holds whenever a <1.

Estimate (2.6) fails for the case a = 1, already when considering continuous
coefficients. Instead, a form of Dini continuity must be assumed as follows:
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THEOREM 2.3 (Full interpolation estimate). — Let u € C'(Q) be a weak solu-
tion to (2.1) under the assumptions (1.4) with p > 2, and assume also that

(2.8) f [w(o)P/? do <00 Y r<oo.
0 o

Then (2.6) holds uniformly a € [0,1], whenever Br C Q is a ball such that
x,y € Brys, where ¢ = c¢(n,p,v, L, (), diam(€)).

REMARK 2.1 (Endpoint/Interpolation nature of the estimates). — A main fea-
ture in the previous theorem is the endpoint nature of estimate (2.8), that holds
uniformly up to including the borderline cases (1.7)-(1.8) (up to additive con-
stants) when this is allowed by the regularity of y( -).

We finally move towards the maximal regularity of the operator in (2.1).
When considering the homogeneous equation diva(Dv) =0, a version of
DeGiorgi’s theory is again available — see [11] for a beautiful presentation —
ultimately leading to the existence of a universal maximal reqularity exponent
ay € (0,1), depending only on 7,p, v and L such that whenever x,y € Bg4,

(29) Dve C&g"”(g, R"™), |[Dv(x) — Du(y)| < cf(|Dv| +s)dé- (@) )
Bg

holds for any local solution v. Accordingly, we have

THEOREM 2.4 (Gradient fractional bound). — Let u € CH{(Q) be a weak solution
to (2.1), under the assumptions (1.4) with p > 2, and assume that for a<ay it
holds that

. 2/p
(2.10) S = sup f [w(é’;] L
"

1% 4%

Then the pointwise estimate

|Du(x) — Du(y)| <c |:Wﬂ (1+u)(p—1)p(xa R) + W¥7(1+a)(l>,1)p(y, R):| le —y|”
. e,

171>

+ ch (|Du| + s)dé - ('”%')

holds uniformly in a € [0,al, whenever x,y € Q and Br C Q is a ball such
that x,y € B4, for a constant ¢ depending only on n,p,v,L,o(-),a,S and
diam(Q).

(2.11)
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3. — Further main results from [10].

31 -Thecase2 —1/n<p <2

While Theorems 2.1 and 2.2 still apply to the case 2 — 1/n<p < 2, estimates
leading to assertions on the gradient show up in a different form. More precisely,
instead of Wolff potentials, Riesz potentials come into the play again, exactly as
in the linear case. This fact has been already observed in [5], where the following
estimate has been proved:

®1) |Du(x)| < ¢ [1‘1”‘(90, R)} 1/(p-1)

+c f (|Du| + s)dé&,
B(x,R)

whenever B(x,R) C Q, provided 2 — 1/n<p<2. We refer to [10] for oscillation
estimates in the subquadratic case and to [5, 6] for estimates using linear po-
tentials.

3.2 — Maximal estimates.

A few preliminary lemmas useful in the proofs of some of the nonlinear po-
tentials estimates in Section 2.1 are concerned with the pointwise estimates of a
certain fractional maximal operators. For instance in [10] we prove that if the
coefficient function y( - ) is VMO-regular then the estimate

(32) My opDW@ < c[My oy 1,0G0@)]" " +eR f (Dul +5)de
Br
holds whenever B(x,R) C 2 and a<1. Here we recall that, for f € [0,n], the

fractional maximal operator is defined via

Myr(f)@) = sup * f If|ae

0<r<R BGer)

o 1B@ )

in the case f is a measure.
o<r<r  |B@,7)]

Estimate (3.2) can also be used to derive a non-endpoint (i.e. no stability of the
constants when a — 0 or a — 1) and alternative form of estimate (2.6).

3.3 — Some consequences and applications.

The first application we present is about local regularity in fractional Sobolev
spaces, and, in particular, in Holder spaces. We recall that a function v € LY(A)
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belongs to the Nikolskii space N*9(A) for a € [0,1] and g > 1 iff

dr<oo,

v(x + he) — v(x)|?
(3.3) [v]] ;.4 := SUp sup [t h)”q @)
" le|=1 |h|#0 A, | |

where A C R" is an open subset and 4;, C A denotes the subset of A consisting of
all point having distance to the boundary larger than |k|. Estimates in such
spaces reveal to be crucial in several contexts; we mention, amongst those re-
lated to the present setting, recent applications to estimates of singular sets of
vectorial problems ([8, 9, 12]) and to the differentiability properties of very weak
solutions ([13, 14]). We observe that N»> = (%4, so that estimates in this class of
spaces imply those in Holder spaces, and therefore nonlinear Schauder esti-
mates.

By using for instance Theorem 2.3 we see that under the assumptions con-
sidered there we have, up to a standard covering argument, that the estimate

c
(4 Wagpns < Wi ap 1/l Ry + g [ (ul + Re)da
Br

holds with a constant ¢ depending only on 7, p, v, L. The previous estimate tells us
that in order to look for fractional differentiability one can confine himself to
require the needed integrability properties of the potential. In turn, via (3.6)
below, this immediately yields the necessary integrability assumptions on .
Indeed, let us recall that the Wolff potential is dominated by the so called Havin-
Mazya potential, that is the composition of standard Riesz potentials appearing
on the right hand side of the next inequality

35 We@.R) < I Iu)"" @, pp<n. R>0.
In turn, the last inequality implies for instance bounds in Lebesgue spaces:
(3.6) HWﬁ,pHL%@ <l Brp<mn,

in any open subset Q C R"; similar bounds are actually available in several other
rearrangement invariant functions spaces.

For further applications we again refer the reader to [10] while for recent
developments and an overview on the problems treated here we quote the recent
survey [16].
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