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Nonlinear Elliptic Systems with Measure Data
in Low Dimension

FRANCESCO LEONETTI - PIER VINCENZO PETRICCA

Abstract. — In this paper we prove existence of solutions to some elliptic systems with
measure on the right hand side, in dimension two and three.

1. — Introduction.

We consider the Dirichlet problem
(1.1) —div(A(x, Du(x))) = u in Q

(1.2) u=0 on 0Q

where u : Q ¢ R" — R¥, A is an elliptic operator and u is a measure on R”
with values into RY ; thus (1.1) is a system of N elliptic equations. When
N =1 (1.1) is one single equation and existence of distributional solutions
u: 2 C R" — R has been deeply studied starting from [3]; see also [5], [4]
and the survey [2]; uniqueness is a delicate matter: see [17], [1], [10] and the
introduction of [6]; nice regularity results are contained in [15] and [16],
whose introductions and references contain additional information for the
interested reader. Existence of solutions is obtained by a truncation argu-
ment; this shows why the vectorial case N > 2 is difficult and only few
contributions are available; in [9] and [7] the authors deal with p-laplace
operator A(x,¢) = |é|”72£; more general systems are considered in [8]: they
assume that

N =n
(1.3) 0<> ) Afw,O(Ud - a x a)d);

a=1 i=1

for every a € RY with |a| <1;in [18] the author assumes the componentwise
sign condition

(14) 0<> Af@, O
i=1
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foreverya € {1,...,N}. When N = 2 then (1.3) implies (1.4): it is enough to take
first @ = (1,0), then @ = (0,1). In our paper we consider the componentwise
coercivity

(1.5) Ve - M < A, O
=1

for every a € {1,..., N}, for some constants v € (0, +00) and M € [0, + oo). This
condition is satisfied in the following example: take n = N = 2, ¢y € (0, 4+ co) and
h(t) = /1 + (t — to); we set f(&) = |&[* + h(det (&) where ¢ is any 2 x 2 matrix
with real entries and det (¢) its determinant; we consider

of

(1.6) Af(x, &) = R

(©) = 2&} + k' (det (£)Cof{(&);

then (1.5) is verified with v = 2 and M = ty; moreover, neither (1.4) nor (1.3) are
satisfied. In this paper we prove existence of distributional solutions to (1.1), (1.2)
under the componentwise coercivity (1.5); our proof needs to restrict ourselves to
dimension two and three; moreover, our theorem can deal with measures con-
centrated on compact sets with zero Lebesgue measure; precise assumptions and
result are in the next section; the proof appears in section 3.

2. — Assumptions and results.

Let Q be a bounded open subset of R”, % > 2. Let A : Q x RY*" _ RN*" he a
Caratheodory function, that is, A(x, &) is measurable with respect to « and con-
tinuous with respect to & where N > 2. For suitable constants v € (0, +o00) and
M € [0,+00), we assume componentwise coercivity: for every y € {1,...,N} it
results that

(2.1) WEP-M < Alw,OE
=1
for almost every x € @, for any ¢ € RV*", where &', ..., &Y are the N rows of the

N x n matrix £. We assume linear growth for A with respect to &: for a suitable
constant ¢; € (0, +00) we have

(22) |AC, O < eal1 + [£]]

for almost every « € 2, for any & € R¥*" We assume monotonicity for A with
respect to &: for a suitable constant ¢z € (0, +00) we have

(2.3) calé — 2 < (A, O — Aw,2); & — 2)
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for almost every x € @, for any &,z € RV ™. Let u be a finite Radon measure on
R" with values in RY; moreover, we assume that

(24) supp [u| C Q
and
(2.5) L"(supp |u)) =0

where £"(E) is the n dimensional Lebesgue measure of the set £ C R". Let us
consider ¢ such that

2n
2.6 = A
(2.6) n+2 <g= n—1
2n n
We remark that, for n > 2, we have 1 < P and 1 < 2; thus q € (1, 2); note
2
that " < for n <4; thus we are dealing only with low dimension: n = 2
n+2 mn-—1

or n = 3. In this paper we prove existence of weak solution to system (1.1) with
zero Dirichlet boundary condition (1.2); more precisely, we prove the following

THEOREM 2.1. — Under the previous assumptions (2.1), (2.2), (2.3), (2.4), (2.5),
(2.6), there exists a weak solution u = (u!,...,uN) e Wé‘q(.Q; RY) of the system
(1.1), that 1s,

N n
[ 33 4l Du@ypw@ac' @

Q y=1 i=1

2.7) N

_ f Y w@du) Yo e CR@;RY).
Q

=1

A model measure u for the previous theorem can be obtained by means of
=, ... 1N) with @# = H¥ | Ky where 0 < sg<n, H' is the ¢-dimensional
Hausdorff measure in R" and Ky C Q2 is a compact set with H¥ (Ks) < + oc.

REMARK 2.1. — We taken = N =2, ty € (0, +00) and

(2.8) ht) = \/ 1+ (t — t0)%;

we set

(2.9) f(&) = |EF + h(det (&)
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where & 1is any 2 x 2 matrix with real entries and det (&) its determinant:

& & & -4
(2.10) &= Cof (&) =
& & & &
2
(2.11) deté =" &iCof (&)
J=1

for every a € {1,2}, so that

0

(2.12) 5

(det &) = Cof?(&)

for every i,a € {1,2}. Then

(2.13) gg (&) = 26 1 1 (det ()Cof? ()
we set
(2.14) AE) = 260 + 1 (det (H)Cof* ()

then (2.1) is verified with v = 2 and M = ty, (2.2) is satified with c¢; = 3, (2.3) is
verified with ce = 1. We claim that neither (1.4) nor (1.3) are satisfied. Indeed,
fory =1, we choose

2.15 N ith &> 0
(2.15) =10 1 with & >
and we get
2
(2.16) N ANOE =el2e+ W ()]
i=1
Since
(2.17) lim [2 + /()] = —h_ g

:

1+

it turns out that

2
(2.18) D AN <0

i=1
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for suitable small ¢ > 0; thus (1.4) does not hold true. When N = 2, (1.3) implies
(1.4): this shows that (1.3) does not hold true as well. The present example is
obtained by slightly modifing the one given in [12]; see also examples 2.4 and 2.5
in [13].

3. — Proof of Theorem 2.1.

Let {c) }1c be a decreasing sequence of positive numbers converging to zero.
We mollify our measure x and we obtain functions h; = u* p,, € C*(R"; RY)
weakly* converging to u, with

(3.1) supp hy, C (supp |u));, = {x € Q : dist(x, supp |u|) < ¢} C Q
and

(3.2) el 1y < |l(R™) < + oo

We use Leray-Lions surjectivity result [14] in order to find u; € WS’Z(Q; RY )
such that

N n
f Z Af (e, Dui(x))Djv*(x)d L" (x)
(3.3) Q ﬁ;ﬁl
= f > v @hi@dl @) Yo € Wet(@; RY).
Q

a=1

Now we want to get a priori estimates for u;: we use a componentwise truncation
argument, see [11] and [9], that allows us to use level sets as in [3]. For
j€{0,1,2,...} we set

0 0<s<yg
) s—j j<s<j+1
T® =11 s>j+1
-T(—s) s<0.

Note that |T(s)| < 1. We fix y € {1,...,N} and we take v = (v,...,v") with
v* =0 for a#y and v’ = T(u}), where uj is the y-th component of u; =
(u}c, .. ,ukN). Then v’ € Wé’z([)) with Dv” = 1p, Du’ where 1g(x) = 1if ¥ € £ and
1g(x) = 0 if x ¢ E'; moreover, ‘

Bjp={xeQ:j< |u@)|<j+1}.

We use such a v as a test function in (3.3): on the left hand side we use the
componentwise coercivity (2.1), on the right hand side we keep in mind the in-
equality |T(s)| < 1 together with the L' bound (3.2) and we get



142 FRANCESCO LEONETTI - PIER VINCENZO PETRICCA
(3.4) f (v D () > — M)dL" ()
B;‘k
< S Ale, Du(e)Di ()AL @)

By =1

-[ S A, Due)D )AL )

Q =1

N =n
=[ 33" Al DunDa @aL! @)

o a=1 i=1

N
> v @hi@)d L @)

a=1

ol

Tl @) L ()

O

<Ml < ll(R™)

then

(3.5)

Vv
Bjk

Holder inequality, estimate (3.5), assumption ¢<n/(n — 1) in (2.6) and Sobolev
embedding are used as in [3] in order to ensure the existence of constants
c3, ¢4 € (0, 400), depending only on n, q, v, M, L"(Q), |u|(R") such that, for every
ke Nand any y € {1,...,N}, it results

(3.6) f |7 < e
Q

and

(3.7) [1Du < ca.
Q

Assumption (2.2) and estimate (3.7) guarantee that

(3.8) f |AGe, Dug())|%dee < (€12)1(L™(Q) + NY2Ney)
Q

for every k € N. Weak compactness allows us to get existence of u € Wé 2(Q; RY)
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and ¢ € L9(Q; RYN*™) such that, up to a subsequence,

(3.9) w, —u  weakly in Wy 9(Q; RY),
(3.10) Az, Du(x)) — o(x)  weakly in LI(Q; RY)
and

(3.11) w, — w strongly in LY(Q,RY) Vi<q*.

We want to prove pointwise convergence of Duy, following [9]. We fix ky € N and
a ball Br with B C Q\ supp || and B N (supp |u|)., = 0 for every k > ko. We
consider 7 : R” — R such that y € C*(R") with 0 < # <1 in R", # = 0 outside
Bg, 1 =1 on Bp2; moreover, |Dy| < ¢5/R in R". In (3.3) we use the test function
v = 1P uy; since supp by, C (supp| U)), then B N supp by, = ) and we have

N n N N
(312) [ 33 At DuoDoPug) = [ S wiug = [ w0
Q a=1 i=1 Q a=1 Bp =1
then
n

N N
(3.13) S ST Al DupiPDyuf = — f 3N Ak, Dup2nDinys.

By =1 i=1 a=1 i=1

n

On the left hand side we use componentwise coercivity (2.1), on the right hand
side we use linear growth (2.2); we recall properties of # and we get the following
Caccioppoli estimate

(3.14) [ 1w < Z(MN 2MN D gy + (Cl% (1+ )) f g 2.
Br2
We recall the assumption 2n/(n + 2) <q in the left hand side of (2.6) and we get
(3.15) 2<q
then we can use Holder inequality and estimate (3.6) in order to get
N 2/q 1-@2/¢)
(3.16) f|uk\ —me 2 gZ(IMq*) <f1)
=1 B, =1 \ Bg Bg
< Nie)/" (" Bp)) ™"

thus (3.14) gives us

(3.17) f IDug? < ¢
Bgys
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for a suitable constant ¢ € (0, +00) that does not depend on k. For k' > k, we
take the corresponding solutions u; and u; of (3.3): we use the test function
v = 1P(uy, — uy), where 5 is now a cut-off function between Brj2 and Bpy:
neC*R"),0<n<1inR", n=1onBgu,n=0outside Bg and |Dy| < c7/R
in R"; we recall monotonicity assumption (2.3), linear growth (2.2) and we get

(3.18) sz |Duy, — Dukr‘z < Cgf | Dy, — Dukr‘zﬂz
Brys B2

< f (A(x, Duy) — Ae, Dugy); Duy, — Dug P

Bg)2

— [ (A, Du) — A, D) DG — )
Bg)2

— f (A, Duy) — A, Dug); (wy, — wg)2nDi)

Bgj»
N
f Z ug — ul P —f Zh — ug
Brjy *=1 Brjp 4=

- f (A, Duy) — A, Dug); (wy, — wi)2nDip)
Bgjs

= —f<A(f)C,Duk) — A(x, Duy); (uy, — g )2nDn)
Bgye

< f 2¢1(1 + [ Dy | 4 [Duge o — wir|2n| Dy
Bgye

12 12
< ( f(4C1)2(1 + |Duy| + |D%k/|)2) ( f [ _uk’|Z|D77|2)

Bry» Bry»

1/2 1/2
12¢1¢
< };7( f (1+|Duk|2+|Duk,|2)) ( f ukuk/|2)

Bgr)s Bpjo

1/2
120 c
< Rl 7 (£7Z(B R/2 )+266> ( f |Mk — %k’|2) .

Bre

Since (3.15) holds true, we can use (3.11) with ¢ = 2; the strong convergence of u;
in L2(Q) and the previous estimate guarantee the strong convergence of Du;, in
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L*(Bp /4) 80 that, up to a further subsequence,

(3.19) Duy(x) — Du(x) for almost every x € Bp.

We cover Q\ supp |u| and the previous convergence holds true in Q\ supp |u|.
Let us recall that

L (supp |u)) = 0,
thus
(3.20) Duy, — Du  almost everywhere in Q.

We keep in mind that z — A(zx, 2) is continuous, thus
(3.21) A(x, Dug(x)) — A(x, Du(x)) for almost every x € Q.

Weak convergence (3.10) and pointwise convergence (3.21) allow us to write
(3.22) o(x) = A(x, Du(x)).

Then we can pass to the limit, as k¥ — + oo, into (3.3) and we get that u satisfies
(2.7). This ends the proof. O
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