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Full Regularity for Convex Integral Functionals with p(x)
Growth in Low Dimensions

JENS HABERMANN

Abstract. — For QCc R",n>2, and N >1 we consider vector valued minimizers
u € WPOQ, RY) of a uniformly convex integral functional of the type

loc

Flu, Q] := f Fl, D) da,
Q

where f is a Carathéorody function satisfying p(x) growth conditions with respect to
the second variable. We show that if the dimension n is small enough, dependent on
the structure conditions of the functional, there holds

Dru e CH(Q) for k € {0,...,m —1},

loc

for some f, also depending on the structural data, provided that the nonlinearity
exponent p is uniformly continuous with modulus of continuity w satisfying

1
lim sup w(p) log (7> =0.
plo p

1. — Introduction.

The manuseript on hand is concerned with regularity results for vector valued
minimizers u € Wy.” Y@, RY), N >1 of convex integral functionals of order
m > 1. More precisely we consider integral functionals of the type

(1.1) Fu) = f fe, D™ ) dec,
Q

on a bounded open set Q C R”,n > 2. In this context, f denotes a convex in-
tegrand function, satisfying non standard p(x) growth conditions (see 2.4). The
aim of this paper is to show, that under an optimal condition on the modulus of
continuity of the exponent function p, provided that the dimension # is small
enough, the derivative D*u is locally Holder continuous everywhere on Q, with
exponent that depends on the global lower bound of the exponent function p.
Problems with p(x) growth became of increasing interest within the end of the
nineties, basically for two reasons: On one hand, they are interesting from the
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mathematical point of view, since they represent a borderline case between
standard p growth conditions with constant p and so-called p — q growth con-
ditions, originally introduced by Marcellini [21]. On the other hand, a number of
applications in mathematical physics, as for example the modeling of electro-
rheological fluids introduced by Ruzi¢ka [23] or image-processing models in-
troduced by Chen, Levine and Rao [6], involve equations and energy-functionals
with structures of p(x) growth type. In a first step, convexity of the integrand, as
(2.4), provides the existence of a unique local minimizer (to a given boundary
data) in the generalized Sobolev space W}.." (@, RY), the space of all measurable
maps % : 2 — RY, whose distributional derivatives D*u for any mulitindex a of
order |a| < m belong to the generalized Lebesgue space

LPOQ,RY) = {g Q- RY: f|g|f°<x) de< + oo, for all ch}.
K

Properties of the generalized spaces LPV(Q), W"P")(Q) and their local versions
are interesting by themselves and have been intensively studied by a variety of
authors. Just to mention some of them at this point, we refer the reader for
example to [20, 22, 11, 12, 23, 9].

Investigations in regularity theory for functionals and equations with p(x)
growth started with the paper of Zhikov [24], showing that in the case of the
Dirichlet p(x) energy functional

Fa = [ |Dup® da,
Q

higher integrability of the local minimizer can be achieved, provided that the
exponent function p : Q — (1, 4+00) is “logarithmic Holder continuous”, i.e. that
there holds

1
(1.2) Ip@@) — p(y)| < , foralla,y € Q with v —y| <.

c
—log |z —y
Furthermore, Zhikov showed that the failure of (1.2) causes the loss of hardly
any type of higher regularity. Starting from the point of higher integrability,
localization and freezing techniques allow to prove higher regularity, such as C%*
or C1“ regularity in the scalar case (N = 1), provided that the modulus of con-
tinuity of the exponent function satisfies stronger assumptions than (1.2), so for
example (2.6) to gain Holder continuity of the minimizer u. This was proved in
2001 by Acerbi & Mingione [1]. To achive analogue results for the derivative Du,
counter examples show that one has to assume Hoélder continuity of p itself (see
[1] for the regularity proof). There have been a large amount of generalizations of
the results in [1] to the situation of more general integrands (see for example
[13]) or functionals involving derivatives of higher order, as done in [18].
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In 2001, Acerbi & Mingione [1] proved C%* regularity for scalar functionals
with p(x) growth, under the continuity condition (2.6) which is slightely stronger
than (1.2). Condition (2.6) appears in a large amount of regularity proofs and turns
out to be sufficient to prove that local minimizers « are in fact locally Holder
continuous to any Hoélder exponent a € (0, 1) (see also [14] for Hélder continuity in
case of one sided obstacle problems). On the other hand, the existence of one
(small) Holder continuity exponent a € (0,1) can be shown under the weaker
condition (1.2), which was done in [16]. As Zhikov [24] showed, (1.2) is optimal in
the sense that it suffices to prove higher integrability of local minimizers, whereas
hardly any type of regularity — and especially higher integrability in the sense of
Lemma 5.1 — fails if (1.2) is violated. In the case that the exponent function p itself
is Holder continuous, even the gradient Du of minimizers can be shown to be
Holder continuous (see [7] for the Dirichlet p(x) integral and [1] for more general
functionals). More recently, gradient estimates of Calderon-Zygmund type for
solutions of nonlinear elliptic systems with p(x) growth structure were proved
under condition (2.6) (see [4] for general equations and the p(x) Laplacean sys-
tem; [19] for more general elliptic systems with p(x) growth).

However, in the case of vector valued minimization problems (N > 1) or
systems of PDEs, classical counter examples show that (local) C*“ or C1¢ reg-
ularity on whole @ in general cannot hold. Instead, one may attain only partial
regularity, i.e. regularity on an open subset 2y C Q of full Lebesgue measure.
For functionals with p(x) growth structure, partial regularity was first proved in
[2]. For the generalization to higher order functionals we refer the reader to [18].

Nevertheless, in the situation that the dimension % is small enough with re-
spect to the structure data, it is possible to prove full regularity even in the
vectorial case, a fact which was first shown by Campanato [5] for nonlinear el-
liptic systems with constant p growth. The result proved in this paper is the
analogue to Campanato’s result — in the context of minimizers of integral
functionals instead of solutions of systems — for functionals with nonstandard
p(x) growth structure.

2. — Notations and Setting.

We consider local minimizers u € Wl’g‘c’l(!), RRY) of the higher order functional

2.3) Flu, Q] = f f(@, D"u)dz,
Q
where f: Q x RV — R with V := (n +Z B 1) denotes a Carathéodory func-

tion, C? with respect to the second variable. Denoting by p : 2 — (1, +00) a
continuous exponent function, we impose the following nonstandard growth,
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convexity and continuity conditions on the integrand f:

L (14 P) " < f@ ) < L(1+1F) 7
@ pl)—2

L‘1<1+|z|2) %72|/1|2§(]22(x,z)/1,/1) gL(1+\z|2) TR,

) (%)

F@,2) = f(@0,2)] < Lol —ao) | (1+[2F) "+ (14 F) |

1+ 10g (1+1%)]

(2.4)

for all x,x0€Q, 2,1 ¢ RY , with a constant L. >1 and with a function
w : [0,00) — [0,00) that is continuous, non decreasing, and satisfies w(0) = 0.
Condition (2.4); describes a non-degenerate nonstandard growth condition,
whereas condition (2.4); on the second derivative of f expresses the convexity of
the integrand, adopted with respect to the growth condition (2.4);. (2.4)3 re-
presents uniform continuity of the integrand with respect to the space variable «,
which is expressed in terms of the modulus of continuity w. Certainly we impose
the same continuity assumption also on the exponent function p, i.e.

Ip(x) — p(y)| < w(jx —yl),

for all x,y € Q. Without loss of generality we assume o to be concave with
w(p) <1 for all p > 0. Note here that since w is concave and hence sublinear we
shall very often use

wltr) <tw(), or+s) <o)+ awls),

forall»,s > 0 and ¢ > 1. Additionally, since our results are local in nature, we will
assume for the whole paper that

(2.5) 1<y, <p@) < po< 4 00,
for all x € Q. We adapt the following notion of a local minimizer of the functional

(2.3):

DEFINITION 2.1. — u € W"XQ) is called a local minimizer of the functional

loc

F, if |D"™uP® € L (@) and
Flu,spt ¢l < Flu + ¢,spt @],
for any ¢ € Wi (Q, RY) with |D"¢'™ e LL (Q) and spt $ cQ.

loc

Our aim is to prove the following

THEOREM 2.1. — Let u € W;5' (2, RY) be a local minimizer of the functional

F, satisfying the structure conditions (2.4), let p : 2 — [1,00) be an exponent
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Sfunction which satisfies (2.5) and whose modulus of continuity fulfills

(2.6) lim sup w(p) log (1) =0.
pl0 p

Then there exists ¢ > 0 such that if
(2.7 n<(m—k)y, +2+e,
then for the derivative of w of order k € {0, ..., m — 1} there holds

Dkuecg;f(g)wdthﬂmk%zjrg), ifn>0m—k—1)y, +2+e,

Dru € C(Q) for any f € (0, 1), ifn<@m—k—1py +2+e

REMARK 2.2. — Note at this point, that in dimension n = 2, (2.7) is satisfied for
anym > 1and 0 < k < m — 1, furthermore for all choices of m and k we end up in
the second case, which means that D¥u € %t () for any f € (0,1).

loc

3. — Preliminaries.
3.1 — Function Spaces.

By means of functional analysis it is easy to prove that the non standard
growth structure of the integral functionals considered in this paper imply the
existence of weak local minimizers in generalized Sobolev spaces. Let us give the
definitions of these spaces in the sequel.

DEFINITION 3.1 (Generalized Lebesgue and Sobolev spaces). — Let
p:Q2— 1,4+00) be a measurable function. The generalized Lebesque space
LPO(Q) is defined as the set

(3.8) LPOQ) = {f e LY(Q): f |f @) de< + oo}.
Q

(@)
- dx < 1},

the space (LPY(Q); || - ||p(‘)) becomes a Banach space, which is separable, if and
only if the exponent function p is bounded. For m € IN, the generalized Sobolev
space W"PO(Q) is defined as

(3.10) W™PO(Q) := {f € L’(Q): D € LP(Q,R) for all a with |a| < m}.

Endowed with the norm

(3.9) I o) = ||f||p(~) := inf {’1 >0: f}f(jc)
Q
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Defining the norm

(3.11) 1 o = 1 lnupey = D 1D Il

la|<m

the space (Wm‘r”(‘)(Q); [ - ||m’p<,)> also becomes a Banach space.

The desired Hoélder continuity is shown by proving a quantitative control of
the oscillations of the minimizer u respectively its derivatives. The spaces of
functions whose oscillation on a ball B, measured in an appropriate L” sense is
controlled by a power of the radius p are the well known Morrey and Campanato
spaces. We recall the definitions of these spaces and state a well established
theorem by Campanato, which links the control of oscillations to the classical
Hoélder continuity.

DEFINITION 3.2. — (Morrey and Campanato spaces) Let Q C R" be a bounded
domain and p > 1 be constant. For u € [0,n] the Morrey space LP*(Q,RY) is
defined as

L@, RY) = {u e /@, RN ullue <oo},

where

1/p
|2l ppucy = |SUpp™* f |’M(90)pdx] )

720 Baepne

The local Morrey space Li(Q, RN is the space of all functions w with

w € LPH(Q | RY) for all QcQ. For uc (n,n+pl the Campanato space
LPHQ,RY) is defined as

i@ RN = {u e @ RY) ;- [ulyg <00},

with the Campanato norm
1/p

[l = |supp™ [ @) — g, ol do|
770 Baepne

1
where Wpe, pra == F wude:=—5————— [ wdx denotes the mean
o B(@o.p)nQ |B(x0,p) N 2| gy e

value of u over the set B(xg, p) N Q

Analoguously to the definition of local Morrey spaces we also have the local

. . N
variant of Campanato spaces L7%(Q2,R™).
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THEOREM 3.1. — Let 2 be a bounded open Lipschitz domain, and let
n<l<n+p. Then the space LPH(Q) is isomorphic to C** with a :},;n‘
Furthermore, if .. > n + p, the space LPH(Q) imbeds into C%¢ for any a € (0,1).

3.2 — Technical Lemma.

Within the paper we shall widely use the so-called V-function whose defini-
tion and elementary properties will be given now. For given k € IN and constant
p > 1 we define the function V,, : R¥ — R¥ as

p—2

(3.12) V@) = (1 + \z|2) 2.

The following properties of V), are elementary and will be used at many stages of
the proofs.

LEMMA 3.3 (Properties of V). — Let p >1 and let V=V, : R* — R* be as
in (3.12). Then for any z,5 € R there holds
(1) |V(tz)| < max{t,t?2}|V(2)|, for any t > 0;

@ [Ve+nl < c(VEl+Vo);

V() - V)

®) ¢z —nl <
A+ 2 + [gH02/

1 < clz—n.

Moreover for any z € RF we have

. 1 . . )
fre2): —smin{kl 2[P*} < |V(2)| < min{|z], [2["/*},

@
ifp>2: max{fz|, [2["*} < [V(2)| < vZmax{Jz], |2/},
G FPeD):  VEO-VI<dVe—nl,  foranyye R
ifp>2: V(@) = V| <c@DVE—nl, for|g <M
® ifpe(1,2): V(i —n| <c@DV() -V, for|n <M
ifp>2: Viz—n)| <c|V()— V), for any n € R

with ¢c(M),c = ctk,p) >0 and c(M) — 0o if M — oo. If 1<y; <p <y, all the
constants c(k,p) may be replaced by a single constant ¢ = c(k, y;, y5).

Finally we state a well known iteration lemma, which can for example be
found in [17]. It will be useful for our purposes to deduce the final excess decay
estimate.
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LEMMA 3.4. — Let @ : [0,00) — [0, 00) be a non-decreasing, positive function
and assume that there exists a number t € (0,1) and a radius p, > 0 such that

for every p<p,
®(1p) < P D(p) + By’

with 0< f<d. Then for every a<p < p, there holds

)

8
(3.13) ®(0) < ¢ [(%) &(p) + Bo®

where ¢ is a constant depending only on t,0 and f. Moreover, in the case that
B > 9, inequality (3.13) holds with é — ¢ instead of f§ for an arbitrary small e > 0.

4. — Reference estimate.

The proof of Theorem 2.1 will be done by comparison of the original minimizer
u to the minimizer of a suitable “frozen” problem with constant growth exponent.
We will take use of the following well known regularity result by Campanato (see
[5], Theorem 1.VI.) about regularity of solutions of elliptic systems with constant
p growth in low dimensions.

THEOREM 4.1. — Let w € W™#(Q, RY), p > 1, be a solution of the system

(4.14) f (AD™w),D"¢)dx =0 Ve CX(Q,RY),
Q
where A satisfies the structure conditions

A@| < L(1+ |z\2)‘;,
(4.15)

p=2
]

(D.A2A = v(1+ |2F) T 1P,

forany z, 1 € RV, with 0<v <1< L. Additionally assume in the case 1 <p<2
that

4
2< —_—.
7n<2_p

Then there exists v > 1 such that for all BRC Q and for all 0<p < R there holds

(4.16) f (1+ |Dmu;|2)%0mu;|2 de < c(]%)”“ f (1+ |me|2>%|me\2 dz,

P Bg

with ¢ = c(n, N,m,p,L/v) and uy =2 +n1 — 1/7).
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REMARK 4.1. — A closer look to the proof of this Theorem in [5] shows that in
the case of p € [y, y5] the appearing constants may be replaced by constants that
depend only on y;, y, instead of p.

5. — Proof of Theorem 2.1.

First let us remark that the fact that the integrand f(x, z) is of class C? with
respect to the second variable enables us to use the corresponding Euler-Lagrange
equation for our purposes. The strategy is to establish an appropriate comparison
estimate to the minimizer of a “frozen” problem, which is due to the C? structure of
the integrand the solution to the corresponding Euler-Lagrange system. Exploiting
Campanato’s estimates for elliptic systems in low dimensions provides a suitable
control of the oszillations of this solution on shrinking balls. Finally, by our com-
parison estimate, this control carries over to the minimizer of the original problem.

5.1 — General assumptions.

Let us first remark that assumption (2.6) certainly allows us to assume
without loss of generality that for all p € (0, 1] there holds

(5.17) w(p)log % <L,

where L is the constant in the growth condition (2.4);.

5.2 — Higher integrability.

A first consequence of the minimizing property, combined with the structure
conditions is the following higher integrability result, whose proof in the situa-
tion of first order functionals goes back to Zhikov [24] and for the higher order
case can be found in [18].

LEMMA 5.1. — Let O C Q be open and v € W0, RY) a local minimizer of
the functional

W ff(ac, D"™w) dx,
0

where f : O x RV - R satisfies the growth and continuity assumptions (2.4).
Furthermore assume that

(5.18) f D" U’ dx < M <o,
0
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and the modulus of continuity o satisfies (5.17). Then there exist
0,¢ =0,c(n,y1,v9, L, M,m) >0 and a radius py = py(n, y;,o(-)), such that for
every ball B,cO with p < p, there holds

™
(5.19) { f | D[P+ dac] <c

B/?/z

][ D" uP™ die 11| .
Bﬁ

A second a priori higher integrability result needed for the proof of the
regularity theorem is an up-to-the-boundary result for the minimizer of a “fro-

zen” functional. For a proof in the first order case we refer the reader to [8]. The
higher order case — also in a more general setting case — is proved in [18].

LEMMA 5.2. — Let Q C R" be an open set, p constant with 1<y; < p <y, <o,
BrcQandg: RY = R be a continuous function, satisfying the growth con-
dition

L7+ 2P < lg@)] < LA+ 2,

forallz € RV, with L > 1. For given h € W™4(Bg) with q > p let v be the unique
solution of the minimization problem

min{ fg(me) de, weh+ Wz)”’p(BR)}.
Br

Then there exists & = &m, yy, yo, L, m) € (0,7), with m = g_ 1, and constants

¢1,Co, depending only on n,yy,vs, L,m, such that there holds

I+e
][|Dmv|”(1+é) de| <c; J[ |D" | dx + ¢z
BR BR

T+
][ ‘Dmh]|p(1+7h) doe )
Bg

5.3 — Localizing 1.

Since our results are local, having in mind the a priori higher integrability
(5.19) from Lemma 5.1 we can assume that

(5.20) f D" PP g < oo,
Q

where 0 is the higher integrability exponent from Lemma 5.1. Without loss of
generality we will assume that the exponent 6 is small enough to satisfy

(5.21) 0<d6 <4y, — 1),
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where y; > 1 denotes the global bound from (2.5). Let p, > 0 be a radius such
that

0
< Z
o(8py) < 1

and let Oc 2 be an open set whose diameter does not exceed p, from Lemma 5.1.
We set

(5.22) Pm = max{p) : x € B, }.

Now we consider balls B(x.,4p) = B4,CB,, ;4 and define

(5.23) P2 = max p(x), P1 := min p(x).
4p B4ﬁ

Since p2 — p1 < w(8p) < 8w(p) and by (5.21) there holds

(524)  p(1+0/4) <p@)1+0/4+ @) < pl@)1+9)  inBy,

(5.25) Pl +5/4) < pe)1 + 5) in B,

Note that by the property (5.17) of the modulus of continuity w there holds for
any 0<p<8p,<1

(5.26) P < exp(nl) = e(n,L),  p T < c(n, L).

A direct consequence of higher integrability results in Lemma 5.1 and Lemma
5.2 and the localizing is the following pe-energy bound:

(5.27) f D"l daz < e(M),

B,

where ¢ = c¢(M) is a constant depending on the structure parameters of the
functional and on the bound M for the p(x) energy on the set O (see (5.18)). The
proof of the ps-energy bound for u is simple, combining higher integrability
(5.19), localization (5.24) and (5.26):

f|Dmu‘Z)2 dx < pn (1 + |Dmu‘p(9€)(1+w(8ﬂ))) da
B, B,

1+w(8p)
< pn{ ]f a1+ |Dmu|p(x))dx}

ng

1+w(8p)
< p—mu(Sp) [ f(l + |Dmu|P(x)) dﬁﬁ]
BZ/)

< e(n, L)(p" + M) < c(n, L, M).
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5.4 — Freezing.

Let B(xc,4p) = B4, be a ball as described above. We consider the function
g(z) := f(xy,2) and the Dirichlet problem

(5.28) min{ f gD"w)dw : w € u+ Wy"(B,, ]RN)},
B,

P

where x €§4,, is a point with p(xy) = p2 = maxp(x), and let v eu+
%634/7

Wy"*(B,, RRY) be the unique solution. Note first, that due to the freezing in
the frozen functional has ps growth structure, i.e. satisfies the conditions

(529) (14 RR) s g0 < L(1+ F)

P2 pe—2

-2
L7 (14 ) 1P < (D@ ) < L(1+ 1) TP,

for any 2,4 € RV , with L, > 1 out of (2.4). Furthermore we note that the growth
conditions (5.29); of the frozen functional together with the minimizing property
of v immediately imply the following ps-energy bound for v:

(5.30) f D" de < L2 f (A + D™l di < (M),
B, B,

where the constant ¢ also depends on the p(x)-energy bound M for the original
minimizer u.

STEP 1 (Reference system, energy estimate). — Since the integrand g is of
class C?, defining A := D.g(-) = D.f(xo, -), the function v is a solution of the
corresponding Euler system

(5.31) f (AD™),D"¢)da =0, for all g € W (B, RY),
B,

which satisfies the following structure conditions:
(5.32) AR)| <L + |22,
(5.33) (DAL ) =LA + [P 12,

for all z,1 ¢ RY. Therefore Theorem 4.1 provides ¢ > 0 (note that we set

= g (1 — %) with 7 of Theorem 4.1), such that if
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{2§n< 4 in the case 1<py <2,
2—p2

n > 2 arbitrary  in the case ps > 2,
there holds
Ho
(5.34) [V do < c<") [0 ol do,
Ba p Bﬂ

for any 0 <o < p, with u, = 2 + 2¢, and with a constant ¢ = c¢(n, N, y;, y5, L, m).

STEP 2 (Comparison). — Between the solution v of the frozen problem and the
solution u of the original one, we have the following comparison estimate:

(5:35) I:= [+ D"+ D" |\ D" — D"l da
B,

< ca(p)log (%)f(l + | D™ ulP?) dx + cap)p”,
B3,

with a constant ¢ = c¢(n, yq, 9, L, M, m).

REMARK 5.3. — By Lemma 3.3 the above mentioned comparison estimate di-
rectly gives

1
(5.36) f{sz D"u) -V, (Dmv)|2 dx < caxp) log (—)[(1 + |D"ulP?) di + caxp)p”,
Bp p By,
which in the case p2 > 2 by Lemma 3.3 (6); and (4); immediately provides
1
(5.37) f D" — D"l dze < caxp)log </—)> f (A + [D™ul?) dzx + calp)p”,
B/, BZ/;

with constants ¢ depending on n, L, y;, v, M, m.

Proor oF STEP 2. — First we show that

1< f [f o, D"u) — f (o, D"™0)] d.
B

p

Recalling ¢g(z) = f(x, 2), the convexity condition (5.29) and differentiability of ¢
provide

f [g(D™u) — g(D™v)] dac
B

4

- f (Dg(D"™), D"™u — D"y [ = 0]
B,
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1
n f f (1 — O(DPgAD"u + (1 — HD")(D"u — D"v), D"u — D"v) dt dx
B, 0

1
> L’lf f (1= O + [tD"u + (1 = Do) |D™u — D"of dt de
B, 0

> o [ D+ DR D — Dol da
B,

Therefore we have

1< e[ [f@o, D"u) — fao, D" ) da
B,

< cf [f (o, D" u) — f(x, D™ u)] da + cf [f (e, D" u) — f(x, D"™v)] da

B/7 BP

te f [f @, D"™v) — f (@, D"v)] dut

B,
=L +1y+1s,

with the obvious labeling of I; to I3. The minimizing property of « implies I» < 0.
I, is estimated, using the continuity condition (2.4)s, finally arguing in an analog
way to [4] (see the comparison estimate and the L log L-estimate there):

I <c¢ f (e — 2o + D™ u)E + A + [D"uPH)A + log (1 + |D™u|?) dw
B,

< co(8p) f A+ [D"uP)2A + log (1 + |D™uf?) d
B,

< calp) f D" u|™ log |D™u|" da + ccop)p"
B,n{|D"u|>e}

< calp)p" J[ (D"l log (e + 11D ul |5, ) de
B,
|Dmu|l72

| dx + cap)p”
(|| D™ au|* 218,

+ calp) f D" log |e +
B,

=1+ s+ 3.

Higher integrability (5.19) in combination with the localization (5.24) and (5.26)
and finally the bound (5.18) for the p(x) energy allows to estimate /12 as follows:
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1

:%‘
o
][ |Dmu|p2(1+4) da
B

P

Ly < cap)p"

- 1

< calp)p™ + caXp)p" ][ |Dmu|P(x)(l+z+w(ﬂ>) dac]
B,

)
1+ 4+uf</7)

< cap)p” + cap)p” ][ |D"ul? @ dx 41
L Bz

P
14§

o)

144
f |Dmu‘p(x) dﬂ’/‘]

By,

)
0
144

< calp)p” + calp)p"p

f ‘Dmulp(x) doe
Bs,

148
f D" P dac]

< calp)p” + calp)p” { ]f 1+ |D"u dae
BZ//

sz

< colpp” +cokp) - M- [ (1+ |D"up) da,
Bs,

with ¢ = e, L, y1, v, L, M, m, 6).
We treat I1, using estimates for the L log L-norm of |D™u|", which can for
example be found in [4]:

I; < caxp)log

p e 4 p " f D" P2 das f D"l das
B, B,

< cw(p)] |D"u|P* dic - log
B

P

e+ f D" P dm}
B

1
+ caXp) log (-) f D"l dis
P B,

J

< e(&)olp) [1 + f D"y P2 dx} f \D™ o dae

B, B,

1 m,, |P2
+ calp)log (p)f|D ul’ dx

B,

< (M, n,0) [a)(p) + w(p)log (%)} f A + |D™u|) de.
B/’



536 JENS HABERMANN

. . .\ .\ 1
Taking all these estimates together and additionally exploiting that log — > 1,
we end up with P

1 ,
I < caxp)log <;>f(1 + |D"u|P?) dx + caxXp)p”,
Bgﬂ

where, recalling the dependencies of 6 in Lemma (5.1), the constant ¢ depends on
n, L, y;, 79, m and M.

To estimate I3 we proceed in exactly the same way as for the estimate of
I;. Doing the same splitting into terms I3; to I33 as we did with I1; to I3, we
use higher integrability up to the boundary for » (Lemma 5.2 with

0 s
q= p(l + 1) b =u € WP+ to estimate the term I3, (note that & € (0,0) is
the higher integrability exponent given by Lemma 5.2):

1

J[lev|p2(1+§) doc !
B

»

I3 < cap)p”

< cap)p” f | D" [P dx + cap)p”
B,

148
) )
’ |Dmu|p2(1+4) dac]

B,

< cw(p)p”f (A + [D"ulP?) dx + caxp)p”
B

P

:%
s
f |Dmu|]?2(1+4) dx
B

P

< colpyp" + cMp) [ (L + |D"uf)d,
B

4

with ¢ = c¢(n, L, y;, 79, m, M). Note that from the second to the third line we also
made use of the pe energy estimate (5.30).

I3 is estimated in an analog way to I, additionally using (5.30) for passing
over from the ps energy of v to the energy of u. Alltogether, again remarking

1
that log ; > 1, we end up with

1
Is < colp)log <;) f (A + D™l dis + calp)p”,
ng

with ¢ depending on %, L, y;, yo, M, m.
Combining the estimates for I; to I3, we end up with the desired comparison
estimate (5.35).
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5.5 — Fxcess decay estimate.

We distinguish the cases 1 <p2 <2 and pz > 2. In the case p2 > 2 we estimate
by Lemma 3.3 (4)

[ do < [1v,,@" 0 do
B, B,

<2[ |V, ") dw+2[|V,,0"w) - V,,, 0" de
B, B,

=[Ry]+ [C1].

The comparison estimate (5.36) provides

(011 < cotplog () [ -+ ID"upydo + cop.
By,

with ¢ = c¢(n, L, y;, 79, M, m). On the other hand the reference estimate (5.34)
gives

o Ho .
[Ry] < c(;) Bf Vo (D"0)[* da,

with x4, defined at the end of Theorem 4.1 and with ¢ = c¢(n, N, y;, y5, L, m). This,
in combination with (5.36) and Lemma 3.3 (4), leads to

[B1] < C(%) :

Ho
<e (;) Bf V(D" dee

1
+ ca(p)log (;) f (1 + |D"™u|?) da + caxp)p”
32/7

f ’sz (Dmu)]2 dx + f \Vm D"u) — V), (D’”v)]2 dx
B, B,

Ho
<o|(2) ototog ()] [+ pmapde+ et

BZp
with ¢ = ¢(n, N, L, y;, 5, M, m). In the case that 1 <pz <2 we estimate similary,
observing in a first step that by Lemma 3.3 (4) we have that
f ID"u|? daz < 0" + f Vo (D" 0)|* .
B, B,

From this point on we proceed the estimate exactly as in the case ps > 2,
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noting that again by Lemma 3.3 (4), we may finally pass over from the V),
function to the L2 norm. Additionally exploiting that w(p) < 1, we therefore end
up for any pe > 1 with the estimate

Ho
(5.38) é[ (1 + D" d < ¢ [(;) Falp)log (;) Lf (1 + |D"ul?) dz + co”,

2p

with a constant that depends on n, N, L, y;, y5, m, M.
We define the excess functional

D(r) = Dy, 1) == r**‘lf A+ | D™ ulP?) dac + r" 1,
B-‘CO,T

with 14 := 2+ ¢ and where ¢ denotes the exponent of the reference estimate
(5.34). For the convenience of the reader we recall also the definition of
Lo = 2 + 2¢. and note that by their definitions the quantities satisfy

€ (0,n/2), pye@2+mn), u €@2,2+n/2).

We remark that ¢ provided by Theorem 4.1 is typically very small. Therefore it is
no restriction to assume that ¢ < 1/2. Exploiting (5.38) we deduce

a\" 1
Do) < g H [U" + c<;> +cw(p)log </—)>] f (A + |D"™u|*) d + "+

32/7
n—py
<2 (G> p”*/ll
U

Ho—1q —H
p Kf> + (f> w(p)log <1> ] o f (1 + |D™u) de.
P P P B,

Noting that n — u; > py — p; and py — 1 = € we conclude

(6)+(5) " eonee(})

with ¢ = ¢(n, N, L, y;, y2, M, m).
For given a € (0,/2) we define t = t(n, N, L, y;, 75, m, M) so small that

o)< ¢ D(2p),

. 1

g 2a

T < =1
— 3¢

Such a choice is possible since & — 2a > 0. Now fixing p, = py(n, N, L, y;, s,
M,m,w(-)) > 0 so small that

N 2,
w(p)log (/—)) < 512“*2“, for all  p < py,
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which is possible due to (2.6), we end up with
D(zp) < T D(2p),

for all p < p,. At this stage, Lemma 3.4 with the choices 0 = 2a, B = 0 provides

~\ 204—¢&
(5.39) B(p) < (/’i)) B (p),

for any p<p < p, and with & > 0.

5.6 — Finishing the proof.

Now fix py = po(n,N,L,y1,v5,m,M,w(-) so small that all the smallness
conditions imposed are satisfied and let 0 < p < p, be arbitrary. Then, taking & > 0
small enough and recalling the definitions of the excess functional @ and the
quantity u;, the decay estimate (5.39) provides

f(l 4 |Dmu|pz) de < Cpﬂ]pZa—é < C/)2+2€,
B,

with ¢ = &€, a) > 0 and a constant ¢ = ¢(n, N, L, 1, 5, m, M).
Now let k € {0,...,m —1} and P, be a polynomial on B, of order m —1
whose coefficients are chosen in such a way that there holds

Jfo(u—Pp)dx:o, for £=0,...,m—1.
B

p

We refer the reader to [10] for existence, uniqueness, further properties and
explicit representation formulas of such polynomials.
By Poincaré’s inequality we obtain for any k € {0,...,m — 1}:

f|Dku . DkP/,|p2 da S cppg(mfk)f |Dmu‘pz da S Cppg(mfk)JrZJrZs'
B, B,
From [10] we also infer that (D’“P,,)Bp = (Dku)Bp, which allows to conclude that
2,(m—k)p2 &
Dku e [P (m—k)pz+2+2, (Bp)
Now recalling Lemma 3.1, we have:

Dhu e C¥4(B,) with f=m — b — =22 if  f—m —f -2

DFy e CO*ﬁ(B/,) for all § € (0,1), if  (m—Fk)ps+2+2>n+ p;.

Therefore we conclude the desired statement by a standard covering argument,
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noting that
n— 2+ 2¢)

71 O

—k

. ( n— 2+ 28))
mn (m—-k———=) =m
11<P2<72

P2
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