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Remarks About Morphisms on an Algebraic Curve

Lucio GUERRA

Abstract. — In a previous paper we described the collection of homological equivalence
relations on a curve of genus > 2 as the set of integral solutions of certain algebraic
equations. In the present paper we improve one argument of the previous paper, and
we study the equations more closely for a curve of genus 2.

Introduction.

A classical topic in the theory of algebraic curves, originating from work of De
Franchis and Severi, is concerned with the rigidity and the finiteness of
morphisms from a given curve to other curves of genus > 2, up to the natural
equivalence, and the problem of finding a reasonable upper bound for this finite
number of maps is still open. We refer to [5] for references to the classical lit-
erature, and to [3] for some update.

This collection of equivalence classes of morphisms on a given curve X is in
some sense bounded above by the collection of homological equivalence relations
of genus > 2 on the curve, which is the locus of integral points of an algebraic
subset in Ho(X x X, C), and is a finite set too. In our previous paper [3] we wrote
explicit equations for this algebraic set, which might suggest some insight about
the set of solutions. In the present paper we do two things.

First, we provide an improvement to the previous paper, replacing the ar-
gument for the equation of H; (X x X) with a more meaningful and more gen-
eral one, see § 2. Two corrections to the paper are given in Remark 1.3. Second,
we want to show that the approach of [3] can be pursued some further. We work
with curves of genus 2. In this case the finiteness theorem above is trivial,
however there is a companion result to the effect that the equivalence classes of
morphisms of a given degree n to curves of genus 1 form a finite set. This set is
bounded in the same way as before, and we think that working with the equations
in this special situation may be a good test. We have two main results.

We prove a characterization of the rank of the symmetric part of the Néron
Severi group NS(X x X) in terms of special period matrices for the curve, see § 5.
We discuss with the help of an example the claim that the problem of solving the
equations may be reduced to the classical problem in Number Theory of re-
presentations of integers by positive definite quadratic forms, see § 6.
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1. — Summary of previous results.

We recall the basic facts and the main results from [3]. We refer to Kani [5]
for precise references to the classical literature.

1.1 — Morphisms as homology classes in the self product.

Let X be a curve of genus g > 2. We mean a nonsingular complex projective
curve. Define F(X) to be the collection of equivalence classes of morphisms
f:X — Y onto curves Y of genus ¢’ > 2, up to isomorphisms ¥ — Y’. This is a
finite set, according to the theorem of De Franchis and Severi.

There is an extension, observed by Tamme. Define F(X) to be the collection
of equivalence classes of morphisms onto curves of genus ¢’ > 1. Define more-
over F,(X) and F,,(X) to be the subcollections consisting of equivalence classes
of morphisms of degree n. Every F,(X) is a finite set.

Associated to a morphism f : X — Y is an effective divisor Z in X x X, de-
fined by f(x) = f(y), that only depends on the equivalence class [f]in F(X). The
main result about this is the rigidity theorem of Kani [5] saying that, taking the
homology class of the divisor, the map

FX) — H:X x X,7)  [f1— [Z]

is still injective. The aim here is to describe the image of this map.

The associated homology classes inherit a number of properties, expressing
the concept of an equivalence relation, and also have the property of being al-
gebraic classes, elements of the Néron Severi group NS(X x X)=H;:(X x X)n
Hs(X x X, 7,), where H 1 is Poincaré dual of the Hodge space H'!. Define F,(X)
to be the collection of equivalence classes of morphisms of degree 7.

DEFINITION — Letn > 1 and g’ > 1 be integers such that n(g’' — 1) < (g — 1).
Define
Vnﬁg’ C H171(X x X)

to be the subset of homology classes z which satisfy:

z 1s symmetric, under the involution (x,y)— (y,x),

z 0z = nz, where o is the composition of correspondences,
z-& =z & =nis the degree of the correspondence,
z2-A=n@ —2g"), where A is the diagonal class.

Such an homology class z may be called a homological equivalence relation,
of degree n, and the integer g’ may be called the virtual genus of z. The set V,, 4
will be described as an algebraic set in the affine space Ho(X x X, C). Define
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moreover
Vi :=UV,y
where the union s taken over all g’ > 2 satisfying the conditions above. Then

V.(Z) =V, NnHyX x X, 7)

will be the locus of integral points of the algebraic set.

The basic facts quoted above say that we have an inclusion
FuX) — Vyu(2).

Then there is a classic argument implying that V,,(Z) is a finite set, see [3]. Thus
we are lead to the problem of describing this possibly larger finite set.

1.2 — Equations for special homology classes.

We introduce coordinates in the homology of X x X. Let & be the fundamental
class in Hz(X, 7), let p be the point in Hy(X, 7), and let yy, ..., y5, be a canonical
basis in H1(X, 7)), with respect to which the intersection product on H,(X, 7) is
represented by the standard symplectic matrix of principal type, that we call D.

Then in Ho(X x X, 7) one has the basis

élizfxp» éZ:ZpXéa yzxy] i?je{]'v"'vzg}v
thus an homology class z € Ho(X x X, 7) is given by a pair
(a1,a2) and A = (a;)

consisting of a vector in 72 and a matrix in Moy 24(7.).
The following properties hold:

e 2-¢& =2z-& = nmeans that a; = az = n,
e then z is symmetric if and only if A is antisymmetric,
e z oz =nz if and only if
(1) ADA = nA,
o z-A=n(2 —2¢)if and only if
(2) tI‘A12 = —ng',

where A is viewed as a 2 x 2 matrix consisting of g x g blocks, and A;2 denotes
the block on the upper right corner.

The condition for homology classes of type (1,1) requires the choice of a
period matrix /7 for the curve. The following holds:
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LEMMA 1.1. — The condition for the 2-cycle z that the Poincaré dual P(z) is of
type (1,1) is that
(3) AT =0.

The proof given in [3], § 5, is just a computation, and only valid for symmetric
homology classes. Here we replace it with a more significant and fully general
one, that will be given in the next section.

We summarize the preceding results. Write A as a block matrix

A:( U W)
~'w v

with U and V antisymmetric. Then the equation ADA = nA is written as
R0 WU - UW =nU -WW +UV =aW
VW — "WV =nV

(we omit block (2,1) by antisymmetry), in which we have the condition

2) tr W= —ng
with ¢ > 2 and n(¢’ — 1) < (g — 1), and the equation ITA'IT = 0 is written as
3" QW —'WQ +QUQ +V =0.

PRrROPOSITION 1.2. — The set V,,(7.), viewed in the space of triplets (U, V, W), is
the locus of integral points of the algebraic subset defined by the equations above.

REMARK 1.3. — Corrections to the previous paper [3]. Formula (3) above
corrects formula (5) of the paper, where the sign of transposition happens to be
shifted to the other side. The statement of Proposition 1.2 above makes precise
the statement of Proposition 6.1 of the paper, where the equations are said to
describe V,,, see also Remark 2.3 later on. These corrections do not affect the rest
of the paper.

2. — Homology classes of type (1,1).

We introduce coordinates in De Rahm cohomology. Let 6 be the dual fun-
damental class in H3(X, 7), and let ¢, ... s gg In H 1(X,7) be the dual basis of a
canonical basis y;,...,75, in H1(X, 7). Then in H?(X x X,7) one has the De
Rahm dual basis

01:=p1(0), 0O2:=p30), pi(p) Aps(p) 1,7 €{1,...,29}.

We use the rough notation ¢;¢;,.
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Then we introduce coordinates in the Hodge groups. If wi, ..., w, is a basis in
H'(X), then in H1(X x X) there is the basis

01, Oz, pi(w) Aps(@)), pil@y) Aps(w), t,7€{1,...,9},

for which we also use the symbols w;®; and @;w;.
The relation of coordinates in the De Rahm and the Hodge groups is as fol-
lows. The inclusion H'°(X) ¢ H(X, C) is described by

Wi = Z%‘j(/)j-
j

Then @; =} q;p;, where overline means complex conjugate. The complex
matrix Y
Il := (q’ﬂ)

of type (g, 2¢) is a period matrix for X (here we adopt the convention for period
matrices that is proposed in the book of Birkenhake and Lange [1], p. 210). The
Riemann relations say that the basis wy, ..., ®, may be chosen so that

n=@Q,1

where @ is symmetric and im(Q) is positive definite. We say that @ is a Siegel
matrix for X.

Then in H(X, C) there is a second basis wy, .. ., Wy, D1, - - . , 0y, obtained from
@1, - -, Pg, Dy means of the matrix

7= (%)

On the other hand we may write
0; = Z?"ijwj + Z?ij@j
J J

for some complex matrix
R =(ry)
of type (2g,9), so that the matrix

R = (R,R)

represents the reversed change of basis.
We now describe H'1(X x X) as a subset of H*(X x X, ). An arbitrary 2-
form is written as

Q=010 + bz + > brpy oy
T
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and is given by the coordinate vector (by, b2) and the coordinate matrix
B := (b))
For simplicity, we confine ourselves to the case of a real form, belonging to
H*(X x X, R).
LeEmMA 2.1. — The condition for the 2-form above to be of type (1,1) is that
4) 'RBR = 0.

ProoF. — The form is of type (1,1) if and only if so is the component
> i Onie @5, 95.- Using the expression of ¢;, in terms of forms w; and @;, we compute

PP = ( Z Thi®; + 77h@i> ( Z Thjwj + %@') = ( Z ThiTkjwiwj)
i j ij
+( Z Thﬁkjco@j) + ( Z 7";11"}%]'@2'60]') + ( Z 7/“'7";0]'@2'@]')
i ij ij
and therefore the form ), . bur¢), @) is written as
> ( > bhmﬂkj) v+ Y ( > bhﬂhﬁkj) Wi 0
ik G Ik

[

3 (Sturin )z + 3 (S bunin)oo
G Rk i hk

and this is of type (1,1) if and only if for every 7,7
Z/’”hibhk/rkj =0 and Z?hlbhkq_ﬂlq = 07
hk hk

which means that ‘RBR = 0 and 'RBR = 0. As B is a real matrix, the first con-
dition implies the second one. O

The condition in the lemma may be expressed in terms of the period matrix.

Recall that R is the inverse of I7. If IT is of the form (Q, 1) then IT = g 1

and henlce an—'= (16 ;;)1> <g g) where C :zliim(Q)fl. Therefore
e L)e
1

Thus ‘RBR = C(1, — Q)B ( —Q) C and the equation ‘RBR = 0 is satisfied if

and only if (1, —Q)B < _%) = 0 or equivalently
1
a, —Q)B<_Q) 0
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as B is a real matrix. If B is written as a block matrix (in the same way as A in the
previous section) then the equation becomes

4 B11 — QB21 — B12Q + QB2Q = 0.

REMARK 2.2. — It is now immediate to prove Lemma 1.1 as a corollary of
Lemma 2.1. Just substitute for B in equation (4) the expression

_ (—Axn Ay
PA) = ( A —An)

that has been computed in [3], § 5, for the Poincaré dual coordinate matrix.

REMARK 2.3. — Itis also clear that V,, is an algebraic set in Ha2(X x X, C). The
condition for a complex 2-cycle z that the Poincaré dual P(z) is of type (1,1) has to
be expressed by means of two equations, arising from ‘RBR = 0 and ‘RBR = 0in
the proof above after substituting B = P(A). The two equations coincide for a real
2-cycle, so one of them is sufficient in order to describe the integral locus V,,(7), as
in the statement of Proposition 1.2.

3. — Symplectic transformations.

The symplectic group Sp,,(7) is the group of matrices B € Mg 2,(7) such

0 I> is the canonical symplectic matrix of

that ‘RDR = D where D = (I 0

principal type. Writing B =" <a g ) the defining condition is equivalent to the
following: 7

tay and !B6 are symmetric, and ‘ad — tyB = I.

Similarly the group Sp,,(Q) is defined. The Siegel space H, is the space of
matrices @ € M, ,(C) such that @ = Q and im(Q) > 0 is positive definite. The
action of szg(Q) on H is written as

Q =@Q+pHHQ+ ).

We refer to [1], ch. 8, for a complete treatment of this matter.
We point out some special symplectic transformations, that will be used in the
following:

(a) @ = Q + B with p symmetric,

b @ =-Q7,
() @ =Qa with a invertible.
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Every symplectic transformation of the Siegel matrix ¢ determines a
transformation of the datum (U, V, W) such that the fundamental equation (3') is
preserved. These induced transformations are given in the various cases by the
following formulas:

@ W =W-Up, U =U, V' =—pW+Ws+BUR+V,
by W=tw, U=V, V' =U,
e W=aWa, U =a'Ulal, V' =taVa.

Note that equation (1’) is not preserved by transformations of type (a), in
general, while it is preserved by transformations of type (b) or (¢). This is an easy
verification. Moreover all these transformations preserve the trace function
tr(W). This is obvious for types (b) and (c), and for type (a) follows from the
orthogonality tr(Uf) = 0 of antysimmetric and symmetric matrices.

4. — Curves of genus g = 2.

We analyse more closely the fundamental equations for curves of genus 2.
First consider equation (1). Write the coordinate matrix as
0 u w11 W2
A —u 0 wan we
—win —wz1 0w

—Wi2 —W22 —V 0

The product ADA is equal to

0 —u(wyy + wee)  —(W + WiaWe1) — UV —wi2(Wi1 + wa2)
u(wir + wae) 0 —wz1 (W11 + Wae) —(worwiz + Why) — UV
0 —v(wr1 + Waz)
v(wrr + We2) 0

and so the equation ADA = nA splits into a system of scalar equations
—u(wi1 + we2) = nu —v(wi1 + wep) = NV
(5) —wi2(W11 + We2) = Nwre —we1 (W11 + Waz) = Ny
—(Why + wizwz) — uv = nawyy  —(Wwarwiz + W) — UV = M.
The two equations in the third row can be read as requiring that

w11, e are roots of the polynomial X2 + nX + (wi2ws; + uv)
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and for this a necessary condition is that the discriminant of the polynomial is a
perfect square, equivalently that

(6) 4(wiwsy + uv) + 2% = n?

for some integer z.

One has ¢’ = 2 if and only if wy; + wee = —2n. In this case it is immediately
seen that the only solution to the equations above is the matrix —nD. In other
words the set V,,2(7) consists of the single element n4.

One has ¢’ = 1 if and only if

(7) W11 + Wee = —N.

In this case in the system of equations above all equations in the first two rows
are satisfied, and both equations in the third row become equal to

(8) W11W22 — W12W21 = UD.

We point out another way of handling the equations above. The two equations in
the third row of (5) in conjunction with equation (7) can now be read as requiring that

9) w1, W are precisely the roots of X2 + nX + (wisws; + uv)

and therefore they are determined, up to order, provided that condition (6) is sa-
tisfied. Note that in this case

W11 — Wo2 = +z.

Next consider equation (3). Write the Siegel matrix as

Q- (fh q )
q Q2
In the equation QW —'WQ + QUQ +V =0 there are three antisymmetric
summands, each determined by the coefficient in place (1,2). The summand

QW —'WQ is given by qiwiz — gewer — q(wn1 — wye), and QUQ is given by
(12 — ¢»)u. So the equation becomes

(10) qrwiz — qewer — q(wn — wee) + (q1q2 — ¢u +v = 0.
The following statement complements Proposition 1.2.
REMARK 4.1. — The set V,, ;1(7) viewed in 8, the space of data (u, v, W), is the

locus of integral points of the algebraic set defined by equations (7), (8), (10) or
equivalently by condition (9) and equation (10).

REMARK 4.2. — For every solution (u,v, W) there is a second solution
(' ,v', W) where

w —w
W' = 22 2) and o =-—u, v = 0.
—W21  Wn
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This is seemingly an extension of the fact that on a curve of genus 2 morphisms to
curves of genus 1 occur in pairs, see e.g. Kuhn [6].

We now give a look at the induced action of the symplectic group Sp,(7) on
data (u,v, W), which is written as

(@) W=W-UB, w=wu, vV=—-biw+ bows + blwy —ws)+ |flu+v;
o) W =W, o =v, v=u
(© W =aWa, o =udet(a)!, v =wvdet(a).

REMARK 4.3. — Two little observations that will be used in the following.

(7) The expression for v’ in (a) implies that: if there is a non-trivial solution with
u = 0, and necessarily W different from wl, then after a suitable symplectic
transformation of type (a), one obtains that there is a solution with v # 0. Then after
another symplectic transformation of type (b) one obtains a solution with « # 0.

(#1) Transformations of type (a) and (c) preserve the condition that » # 0, and
those of type (c) also preserve the condition that v # 0.

5. — Symmetric correspondences.

Let X be a curve of genus 2. We study equation (10) by means of the sym-
plectic transformations described in § 3.

We have seen in § 1 that antisymmetric matrices A of order 4 are coordinates
for the symmetric part of Ho(X x X, 7)/ (&1, &), which is isomorphie to 78, and
that equation (10) defines the symmetriec part of the reduced Néron Severi group
NS(X x X)/ (&, &), that can be identified with the reduced Néron Severi group
of the symmetric self product NS(X - X)/(&; + &), viewed as a subgroup of 7°.
The diagonal A corresponds to the solution W = —I with # = v = 0. Define

r:=rk NS(X - X)/ (& + &).

The rational solutions of (10) represent NS(X - X) ® Q/(&; + &) as a subgroup of
Q° Note that rkz, NS(X - X)/(¢; + &) = dimg NS(X - X) ® Q/(&) + &). Note
moreover that

r=6— rk(ql,qg,q, |Q|7 1>’

where the angle brackets denote the subspace over Q generated in C by the
given elements.

We define two subsets of solutions of (10), two subgroups of the reduced
symmetric Néron Severi group, that will be used in the following proof:

let B be the subset of solutions with v =v =0, and hence qiw2—
qawo1 — q(wy — we) = 0,
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let B’ be the subset of solutions with «# = 0, and hence q1w2 — gows;—
qwir —we2) +v=0.

Note that rk(B) =4 — rk{q1, g2, q) and rk(B’) =5 — rk{q1, g2, ¢, 1) possibly de-
pend on the particular choice of the Siegel matrix Q.

THEOREM 5.1. — The possible values of the rank r are characterized in the
following way.

@) »>2 if and only if the curve admits a Siegel matric @ such that
Q| € (91,42, 9,1),

@) r > 3 if and only if the curve admits a Siegel matrixc such that |Q|,q €
(q1,q2,1), or equivalently a Siegel matrix such that |Q|,1 € (q1, g2, q),

@) r>4 if and only if the curve admits a Siegel matrix such that
|Ql,q,1 € (q1,q2), and in this case one has precisely r = 4.

Proor. — We start with a preliminary remark.

(x) The various conditions on the Siegel matrix which appear in the statement,
such as |Q| € (q1,92,¢,1), and 1 € (q1, q2, @), etc., can be interpreted in terms of
existence of special solutions of equation (10), with u # 0, with . = 0,v # 0, etec.
Moreover, the two conditions considered above are preserved by symplectic
transformations of type (a) and (c), because of Remark 4.3(i1).

(1) If » > 2 then, by Remark 4.3(2), the curve admits a Siegel matrix @ such
that equation (10) has a solution with « # 0, and the converse is also true.
Moreover, given @, there is a solution with « # 0 if and only if |Q| € (¢1, g2, ¢, 1).

(2) Let r > 3. We may assume that |Q| € (¢1,92,¢,1), by point (1). In this
case r = rk(B’) + 1. Because r = 6 — rk(q1, 92, ¢, |Q|,1) = 6 — rk(q1,42,¢,1) and
rk(B') =5 —rk{qi1,q2,q,1). Then rk(B’) > 2, so there is a solution of g;w;e —
q2wa1 — q(w1y — we2) + v = 0 different from the multiples (0, 0,wI).

Furthermore, we may assume that w;; — wes # 0. In fact, it is easy to see that
there is some a € SLy(Z) such that the conjugate matrix a 'Wa satisfies the
required condition, and then this a determines a symplectic transformation of
type (c), which preserves the initial condition |Q| € (g1, ¢2,¢,1) by remark (x).
Hence from the equality above one obtains q € (q1,q2,1).

Next, it is easy to see that there is some symplectic transformation of type (a),
of the form ' = Q + f with f = (2 8
qW)s — GoWy — q' (Wi — Wwhy) + v = 0 one has v’ # 0. Hence, for the new period
matrix, one obtains 1 € (g1, gz, q). Note that the condition |Q| € (q1,42,¢,1) is
preserved, by remark (x). The converse is clear.

(3) Let » > 4. We may assume that |Q|,1 € (¢1, g2, ¢), by point (2). In this case
r =rk(B) +2. Because r=6—rk{(q1,q92,¢,1) =6 —1rk(q1,q2,9) and rk(B) =

) , such that in the transformed equation
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4 —rk{(q1,q2,q). Then rk(B) > 2, so there is a solution of giwis — qawe;—
q(wy1 — wee) = 0 different from multiples (0,0, wI).

Then, using a symplectic transformation of type (c) as in the proof of point (2), we
obtain that w1 — ws2 # 0. Hence from the equation above we have that g € (g1, g2)-
Note that the initial condition |Q|,1 € (q1, g2, q) is preserved, by remark (x).

Assume therefore that |Q|,1,q € (q1,¢2). Then necessarily rk(qi,qs2) =2,
otherwise, if for instance g» € (1) then also 1 € {g;) and hence ¢; € Q, that is
impossible. Because im(Q) is positive definite and im(q;) > 0. It follows that
r=6—1rk(q1,q) =4. |

REMARK 5.2. — The exact values of  can be characterized by adding to the
condition that characterizes » > ¢ (empty condition for ¢ = 1), in which some of the
elements q1, ¢z, q,|Q|,1 are obtained from the others, the requirement that the
remaining elements are linearly independent over Q (automatic for ¢ = 4). This is
easily seen from the proof above.

The previous result leads to the natural question: given a matrix which sa-
tisfies the Siegel conditions, is there any curve for which the given matrix is a
Siegel matrix? Such a matrix represents an Abelian surface endowed with a
principal polarization. It is known that every principally polarized Abelian surface
is isomorphic to a Jacobian or to a product of elliptic curves (see e.g. [1], p. 341),
and it is known that certain products of elliptic curves are Jacobians (see e.g.
Hayashida and Nishi [4]), but a complete answer to the question which products
of elliptic curves are Jacobians seems not to be available in the literature.

6. — Equivalence relations of genus ¢’ = 1.

Let X be a curve of genus 2. We study the set V,, 1(7) by means of equations
(9), (10), see Remark 4.1. For a given curve, in order to write down the equations
explicitely, the knowledge of a Siegel matrix is required (and this may be a
difficult point). Given the Siegel matrix, a method for studying the equations is
outlined in § 4. We apply this in the following.

ExampLE 6.1. — Let X be the nonsingular curve of genus 2 whose affine
plane model is the curve 3> = 25 — 1. It is shown by Kuusalo and Nééténen in [7]
that a Siegel matrix for this curve is

w3 o1
2 2
1 V3
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Using Theorem 5.1 we immediately have that » = 4, and this is seen again in
the following computations. Equation (10) is
i3 1
T(WIZ — We1) +§(W11 — W) —U+v=0
and it follows that
Wiz = Wo1 =1 W, Wi — Wz = 2(u — V).

Condition (9) says that w;;,wse are the roots of the polynomial X? 4+ nX +
(w? 4+ uv), and the necessary condition (6) requires that 4(w? + uv) + 2% = n2 for
some integer z, where necessarily wy; — weg = £ 2. It follows that the ordered
pair wiy, wee is uniquely determined provided that the necessary and sufficient
condition

AP + wv) + 4w — v)? = n?

is satisfied. This requires that » = 2m is even, and then the equation above
becomes

2

u? + o

—uv 4+ u? = m?.
The binary quadratic form u? + v? — v is positive definite, so the equation above
may be studied as

wWE v —uv=p with p=m?—uw® and |w| <m.

Note that u? + v — uv is equivalent to u? + v? + uv, and this is a well known
example in the arithmetic theory of quadratic forms. The number of integral
solutions of the equation u? 4+ v* + uv = p admits the following description, see
Dickson [2], p. 80, ex. 2. It is equal to

6E(p)

where E(p) is the excess of the number of divisors of p of the form 3% + 1 over the
number of divisors of the form 3k + 2. If we write p = 2¥q with ¢ odd, then
E(p) =0if k is odd and E(p) = E(q) if k is even. It may be interesting to un-
derstand whether the proof of this result can be made effective so to produce the
list of solutions.

Now we want an upper bound for the function E(p). This function is not bigger
than the function which gives the total number of divisors of p, and sometimes
they coincide, so we write E(p) < p.

It follows that the total number of solutions is bounded above by
(m? —w?) = 6m?@2m +1) — 12 > w? Now recall the basic formula

1

..... m

ST ow? = %m(m +1@m +1). So the final bound is 6m*@2m + 1) —
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2m(m + 1)@2m + 1) = 2m@2m + 1)(2m — 1), which may also be written as
n(n + 1)(n — 1), which is
o).

The kind of analysis in this example should also be possible in the general
situation. We can prove that, in general, one is lead to the problem of finding
integral solutions of Diophantine equations of the form

fler, ... x0q) = n?

where f is a positive definite rational quadratic form, and » is the rank of the
reduced symmetric Néron Severi group. Clearly the equation above can also
be written in the form f'(xq,...,%_1) = (dn)z, where f’ is an integral quad-
ratic form and d is an integer, and this is a proper Diophantine equation, of
the special form in which a positive integer has to be represented by a given
positive definite quadratic form. We do not develop the proof here. It may be
interesting to investigate what can be obtained about this by applying the
methods of Number Theory.

We end with a result in which the influence of the Néron Severi rank is made
precise.

PROPOSITION 6.2. — If the rank r is small then the set V,,1(Q) is small:

— if r = 1 the set is empty,
— if r = 2 the cardinality of the set is 0 or 2.

ProOF. — Let » = 1. The solutions of (10) are given by data of the form
xl, (0, 0), and none satisfies (9).

Let » = 2. Suppose that there is some solution of (9),(10) independent of
0,0,—1), given by (u,v, W). Then another solution is given by the datum
(u',v',W') defined in Remark 4.2. They are the only solutions.

All rational solutions of (10) are given by data of the form
(yu,yv, xl + yW) with rational x,y. We apply the analysis in § 4. Because of
(9), knowing that the polynomial X2 + nX + (wy2we; +uv) has the roots
w11, Wee, We have to search for those values of x,y for which the coefficients
& + ywy1, € + ywse are the roots of the polynomial X2 + nX + y?(wizwa; + uv).
Because of (6) we must have that 4y?(wi2ws; + uv) + 22 = n? for some integer
2, and then the difference of roots is (w11 — we2) = +2, so the necessary and
sufficient condition is *(4(wi2war + uv) + (wiy — M)zg)z) = n2. We know that
A(wi2ws1 4+ wv) + (w11 — wos)® = n2, hence y2 =1 and the two polynomials
above coincide. This implies that the pair of roots x + ywi1,  + ywse coincides
with the pair wy1, wep. It is easy to see that this is possible if and only if either
y=lLx=0ory=-1,0=—mn. O
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