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Density and Tangential Properties of the Graph
of Holder Functions

LOREDANA BIACINO

Abstract. — In this paper the circular densities (with respect to the Hausdorff or packing
measure) of graphs of Holder continuous functions are studied. They are related to
the local behaviour of the functions making use of some geometric properties.

1. — Introduction, prerequisites, notations.

The Hausdorff dimension of a bounded set E' is defined in terms of the k-
dimensional measure of E, denoted by H*(E) and given by:

HME) = lims_oinf {Z;|E;|" . E C E;,|E;| <}

where |E;| denotes the diameter of £; and the infimum is over all (countable)
o—covers {E;} of K (see Falconer [10], [11]). It is given by:

(1) H—dimE =inf {k > 0: H'(E) = 0}.

A subset £ C R" is said an s-set, s > 0, if 0 <H?*(E) < + oco. There are other
classes of covers that define measures leading to Hausdorff dimension: for ex-
ample the class of spherical balls or the class of dyadic cubes. Moreover other
definitions are in widespread use. Among them it is worth mentioning the upper
and lower box dimensions, defined in the following way. Let Ns(&) be the
smallest number of sets of diameter at most J which cover E. Then the following
numbers:

. ) log Ns(E)

(2) d'LW’LBE = Z'Lm(;ﬁogT;a
—— . — logNsE)

(3) dimp E = lims_g g

are called respectively the lower and upper box dimensions of E and, if they
agree, their common value is the box dimension of K.

In order to find the box dimensions (2) or (3) it is possible to take Ns(E) to be
the number of mesh cubes of side 6 meeting ¥, a -mesh cube being a cube of the
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form: [m19, (my + 1)d] x ... x [my,0, (m,, + 1)d], where my, ..., m, are integers.
By definitions (1), (2) and (3) it follows: H — dim E < dimp E < dimgE for every
E C R". -

To avoid the difficulties arising from the fact that the box dimension is not a
measure, consider: P§(E) = sup{2|B;|" : {B;} collection of disjoint balls of radii
at most ¢ with centers in E}; it is not difficult to see that lim;_oP5(E) = Pj(E) is
not a measure, but:

Pi(E) = inf{XP{(E;) : E C| JE;},

defines a measure on R", known as the s-dimensional packing measure. Then
the packing dimension is defined as usual by:

dim, E = sup{s > 0: P°(F) = oo} =inf{s > 0: P’(K) = 0}.

C. Tricot in [19] proved that dim,E coincides with the modified upper box di-
mension of E, that is with the number:

dimyp E = inf { supdimp B; : B C E;}.

Let E C R" be an s—set, P € R" and let B,.(P) denote the closed ball of centre
P and radius 7, so that |B,.(P)| = 2r. The circular upper and lower densities of
the set £ at P are defined respectively in the following way:

D¥E,P) = lim,—.o @r)"HE [ | B:(P))
DX(E. P) = Lim,_, @) "H*(E( | B/(P))

If they are equal then the common value is called density of £ at P and is denoted
by D*(E, P). Of course it is possible to define the upper and lower densities
correspondingly to every given measure y on R" in the following way:

O (u, P) = lim, o 2r)"*u(B,(P)); O(u, P) = lim, o (27) " 1u(BA(P)).

If they agree, their common value, denoted by @°(u, P), is the density of E at P
with respect to . In particular in the sequel the packing measure will be con-
sidered, restricted to a given set E, P“[E(F) = PS(E N F) for every F' C R"; the
densities corresponding to it will be denoted by the symbols @*S(P“[E,P) and
@i(PTE, P). More about these topic can be found also in [10], [11], [13], [15], [16],
[17]. In this paper sets of R? that are graphs of a-Hélder continuous functions are
investigated and their local density behaviour with respect to the Hausdorff or
packing measure, making use of some properties of their geometric configura-
tions, is studied.

In order to enunciate the main result observe that in this paper the fol-
lowing notation for a continuous function f : [a,b] — R, a > 0 and ¢ € [a, b] will
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be used:
ort - lf@) — £ = a & 0<lim, P HO < i, D ZEO < o
ordy_.[f(x) — f(c)] > a (resp.<a)
&
limx%w =0 (resp. limy_., M = 400);
|x — ¢ le — c|*
ordyo[f@) — F(©)] > a & 0 = lim, l(jf)_ { © 7 ch ,
ordy_[f(x) —flO]l <a & 0<lzmx%% < lim,_. M =400

Obviously < is not an order relation.

Let f:[a,b] — R be an a-Holder continuous function, let P = (x,,f(x,)),
%, € la, bl, and let L be the Holder coefficient of f. Some results of this paper
involve the rectangular neighborhoods 7',.(P) of P defined by:

T (P) =A@, y): 2o —7r < <o+ 7|y —flxy)| < Lr*},

with » > 0 such that [x, — 7,2, + 7] C [a, b]. For a rather similar approach see
[18]. The following theorem holds (Theorem 3.1):

Iford, ., | f(x) — f(,)] < L then the upper Hausdorff density of the gmph
G of f at the point P = (xo,f (aco)) 1s finite and if ordy,_y, | f () — f(xo)] < — the

Hausdorff density exists and s zero. If f is uniformly essentially a—Holder
continuous 1m a sense that will be specified in the sequel then if

1 . . . .
Ty, | (@) — f(2o)| > 5 the lower packing density of G at P is positive and

i ordy_, | fx) — flx,)| > ﬁ the packing density at P is infinite.
As a consequence, the subset of G constituted by the points (x,,f(x,)) such

that ord, ., | f(x) — f(x,)]| <5— has zero H?~“-measure.

2. — Rectangular density at a point of the graph of an «-Hé6lder continuous
function.

In the sequel it will be useful to have lower and upper estimates or relations
for the Hausdorff or packing measure of general subsets of R". These are
furnished by the following theorem whose proof is an immediate consequence of
well known facts (see for example [11]):
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THEOREM 2.1. — If E is a subset of R", then, for every s > 0, it is:
4) H(E) < lim;_o NsE)0y/n)’,
where Ns(E) 1s the number of 5-mesh cubes that intersect E; moreover:
(5) lims_oN5(E)S® < 2°Py(B); inf{Licy lims—o Ns(E)S"  E C UE;} < 2°PX(E)

where the in f is taken over all covers (E;);cn of E.

ProoF. — The proof of (4) is obvious. In order to prove the first of (5), let N5(&)
be the largest number of disjoint balls of radius ¢ centred in £ and let By, ...,B N,
be disjoint balls of radii ¢ centred in E. If & € E then x must be within distance o of
one of the B;, otherwise the ball of centre x and radius ¢ could be added to the
previous system forming a larger collection of disjoint balls. Then the N5(¥) balls,
concentric to the previous ones and with radius 20 constitute a cover of E. This
implies Ny;(E) < N5(E). Obviously N, (’;(E)(Zé)s < P3(E), whence:

Nys(E)(40)° < £°Ny(E)S" < 2°Py(E).

Passing to the limit for 6 — 0, we obtain the first of (5). Now let (£;);cy be a cover
of £ and let the E; be covered by d-meshes: since the first of (5) holds for every £;,
passing to the sum it gives:

Zilims_g Ns(E)O® < 255, Py (E)).

This inequality holds for every cover (¥;);cn of E, therefore, passing to the g.l.b.,
we obtain the second inequality in (5). |

By (4) it follows that if G is the graph of an a-Hélder continuous function
f :[a,b] — R, then H>“(G) < L(\/Z)Z_“(b — a), where L is the Holder coefficient
of f. In order to prove an analogous inequality with respect to the packing
measure, a definition is needed.

An g-Hélder continuous function f : [a, b] — R is called uniformly essentially
a-Holder continuous i [a, b] if there exist / > 0, a decreasing infinitesimal se-
quence of positive numbers (d,,),<n and an increasing sequence of sets £, where
By ={ag,...,a0 }, vy =a,a] =b, 6y = —a] ,j=1,...,1, such that for
every x € K, it is:

aOn, [, ) > A0,

where w(d,f,x) = sup{|f@&) —f@&")|, |x —«'| <0, |x — x"|<J}. A similar condi-
tion can be found in [12], (see for example Theorem 3.1). Let f : [a,b] — R be
continuous; then, if G =Gla, bl ={(x,y) : x € [a, 0],y =f(x)} it is H —dim G >1
(see [10], Lemma 3.2); in general the Hausdorff dimension of an a-Holder con-
tinuous function is less or equal to 2 — a (see [11], Corollary 11.2), but if f is uni-
formly essentially a-Holder continuous in [a, b], or in a subinterval of [a, b], the box
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dimension of the graph of f is 2 — a (see [9], Theorem 2.1). However the previous
condition is not necessary: this fact and other relations between the dimension of
the graph of a continuous function f and the local or global behaviour of f are
established in [&8].

THEOREM 2.2. — Let G be the graph of a uniformly essentially a-Hdlder
continuous function then there exists a constant C > 0 such that

Cb —a) < PPYG).

ProoF. — Since f is uniformly essentially a-Hélder continuous, there exist
A > 0, a decreasing infinitesimal sequence of positive numbers (d,),cy and an
increasing sequence of sets (&,),cn, Where E, = {x, ... ,oc;’n}, Ty = a,x; = b,
Op = a — 90]7{1,]' =1,...,1y, such that for every « € £, it is:

@ (O, [, ) > 152

Let F Cla,b], F closed and consider a cover of G made of 30, -meshes.
Correspondingly F'is covered by intervals of length 36,,. Since in the third middle
part of each of these intervals there is a point belonging to £}, the oscillation of f
m(F)

3a ’
where m(F) denotes the Lebesgue measure of F. Let Gp = {(x,y) € R?:
x € F,y = f(x)}; it follows:

in each interval is not less than Ad;, and therefore it is: N. 3,;“(Gp)(35n)2*“ > ]

lims_o Ns(Gp)o** >

im(F)
3¢

Let H be a closed subset of R? and let F' C R be the projection of H N G onto the
x-axis: then F is a closed set, H NG = Gy and therefore, by the previous in-
equality, it is:

Am(F")
3¢ :
Now let (E;)i € I be a cover of G made of closed subsets of R%. Then, by the
previous inequality and by the first of (5), there exists ¢ > 0 such that:
m(F;)
3(1

lims_o Ns(H N G)o** >

PEYE;NG) > ¢ lims_oNsE; N G)&* " > ¢l

where F; is the projection of E;NG on the x-axis, as before. Since
PEH@) = inf{ZPE“E;NG): G CUE;,E; closed} (see [16], 5.10) and
2m(F';) > b — a, considering first the sum with respect to ¢ in the previous in-
equality and then considering the g.l.b. with respect to all possible closed covers,
the theorem is proven. O

In order to establish some results about the circular density of the graph G of
an q-Holder continuous function f:[a,b] — R at a point P = (x,,f(x,)),



498 LOREDANA BIACINO

(x, € Ja, bl), consider the set:
T,(P) =A@, y) : o —7r <x <, + 7|y —fla,)] < Lr*}

where r > 0is such that [x, — r, %, + 7] C [a, b] and L is the Holder coefficient of
f. By Theorem 2.1 and Theorem 2.2 the proof of the following theorem is im-
mediate:

THEOREM 2.3. — Let f :[a,b] — R be an a-Hélder continuous function,
O<a<l, x, € la,bl, P = (x,,f(x,)) and let G be the graph of f. Then,

i) for every r € Rt such that [x, — r, %, + v] C [a, b, it is:
(6) H*GNT(P) <cr

where ¢ > 0 is a constant, depending only on a and f.
ii) if f is uniformly essentially a-Holder continuous in [x, — p, %, + p] C
[a, b], then there exists a positive constant C > 0 such that for every r € 10, p[:

(7 PG NT.(P) > Cr.

REMARK. — It is noteworthy that Theorem 2.3 ii) holds in particular for the
functions introduced by Besicovitch and Ursell in [5] in the following way:

f(ﬁﬁ) = 2 penyp(byi)
where we assume, for sake of simplicity, that b, = d", with d e N, d > 2,
a,=d™ 0<d<1 and ¢ is defined setting ¢(x) =2x if 0<x<1/2
o) = p( — x) = p(x + 1) elsewhere. Besicovitch and Ursell in [5] prove that the
so defined f is 6-Holder continuous. Besides it is possible to prove (see [9]) that

there exist 2 > 0 and ¢t € N such that, if x = %, k=0,1,....d" Y and h = ZdLm
then, for every m > n +t it is:
|f( + ) — f()] > 2k

therefore f is uniformly essentially J-Holder continuous.

We conclude this section with the following theorem that is another con-
sequence of Theorem 2.1:

THEOREM 2.4. — Let f:[a,b] = R be a uniformly essentially a-Hélder
continuous function, 0<a<1, let B be a subset of [a,b], A= {(x,f(x)):
x € By =f()} and assume that P2%(A) = 0. Then it is m(B) =0, with m
Lebesgue measure.

ProOF. — Since f is uniformly essentially a-Ho6lder continuous, there exist
A > 0, a decreasing infinitesimal sequence of positive numbers (,,),cy and an
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increasing sequence of sets E,, where E, = {x, ,x?ﬂ}, Xy =a,2;, =b, oy =
af —wy,j=1,..., 1, such that, for every x € B, it is: w(d,.f, ) > Ad,. Since
P?~%(A) = 0for every ¢ > 0 there exists a sequence of Borel sets (A;)jen such that
A CUA; and ZjP%*a(Aj)<s. Let B = {x : (x,f(%)) € A;}: then for every cover
(ITL-] ) of B; constituted by 3J,,-meshes, consider in the third middle part of 1 { apoint
x € E,. It is possible to obtain a cover of A; constituted by 34,-meshes. To cal-
A"
34|11
vertical whose edge is 36, are needed. Then A; is covered at least by X

culate the number N3; consider that, for every IZ , at least squares in
AL
34|17
squares with edge 39,, and therefore, by the first inequality in (5) of Theorem 2.1:

_ s
ProAy) > 22, o x; L

— I P > 37022 jan(B)).
2 3a|15‘ | 7,| J

Since UB; 2 B, summing the terms on the left and on the right of this inequality, it
follows that 3722 m(B) < 37°2* 2)Xm(Bj)<e, and, since ¢ is arbitrary,
m(B) = 0. g

3. — Circular density at a point of the graph of a uniformly essentially
a-Holder continuous function.

It is well known (see for example Lemma 3.5 of [10]) that every rectifiable
curve is a reqular 1-set, that is at almost every point of it the circular Hausdorff
density exists and equals 1. On the contrary every s-set in R? with 1<s<2 is
rregular (see for example Corollary 4.10 of [10]), that is at almost H*-every point
of it the circular density either fails to exist or is different from 1. In this Section
it will be proved that if an s-set in R? with 1<s<2 is the graph of an a-Holder
continuous function then the behaviour of the lower and upper circular densities
at a point P = (x,,f(x,)) are strictly related to the behaviour of

| f(x) — f ()] and Tim | f(x) — f (o)

lim - -
| — a,)[7

el —axg 1

o — ao|7e

This will be clear in the following theorem; before recall that the lower and
upper square densities with respect to the packing measure are defined in a
similar fashion to the circular ones, referring to the system of the squares
Q-(P) with centre P and edges of width 2» parallel to the coordinate axes
instead that to the system of the balls B,(P). As it is easily seen, for our
purpose it is equivalent to consider the circular densities or the square ones.
In a similar way square densities will be considered with respect to the
Hausdorff measure.
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THEOREM 3.1. — Let f :[a,b] — R be an a-Hélder continuous function,
O<a<l, x, € Ja,bl, P = (x,,f(x,)), and let:

1
(8) 07y, | f () — f20)] < 9
then
) D**“G,P)=0.
If 0rdy—u| f() — f(@0)| < 51 then in general we have that:
(10) D* (G, P)<oco.
If f s uniformly essentially a-Hdélder continuous and if ovdy_.., | f(x) — f(x,)| >
5 4 it 1s:
(11) (P, P) = + o,
while, if ord,_., | f(x) — f(x,)] > 5 it is:
(12) &% (P, P) > (;

In particular if f is uniformly essentially a-Hélder continuous and if

Oy | f(20) — f200)| = ﬁ then both (10) and (12) hold.

PrOOF. — Itis not restrictive to assume [a, b] = [ — 1,1], %, = 0, f(x,) = 0 and
therefore P = (0,0). By (8) for every M > 0 there exists ¢ > 0 such that if
o . 1
0<|x|<ditis|flx)] > M|x[z. A 2ea
Let 0 <#<d be such that «* = (M) <r.The value x* is the abscissa of the
intersection point in the first quadrant of tlhe right line whose equation is y = r
and the curve whose equation is |y| = M|x[>= . If x > x* the corresponding points

of G do not lie in @,(0) and therefore G N Q,(0) C G N T,-(0). By Theorem 2.3 i),
there exists C > 0 such that:

H> (G N Q,0) < H*GNTn0) _ C

@22 = 22" = )2
whence:
000 0
since M can be arbitrarily large, (9) is proved.
If ord,_o| f(®)] < 5’ then there exists m > 0 such that m<lim,,_ |f;’2|
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and therefore there exists J > 0 such that if 0 <|x| < then it is | f(x)| > m\ac|z+
2—a

Let 0 <7< be such that «* = (%) <7 :thenitis: GNQ,.0) C GnNT,(0) for

such values of » and therefore, by Theorem 2.3 i) there exists C' > 0 such that

H>Gn Q-0) _

(2 ,},,)2 a <C

whenee (10) follows. 1
If f is uniformly essentially a-Holder continuous and if ord, .| f(x)] > 54’

2
|f(90)| = 0 and therefore, for every ¢ > 0 there exists 6 > 0 such that
x© 2 a 2-a
if 0 <|o| <d it is | f(@)| <&lx[77. Let 0 <7< be such that * = (g) <73 wx s the

then: lim,,_o——

abscissa of the intersection point in the first quadrant of the right line of equation
y = r and the curve whose equation is |y| = F|9€|9 <. Therefore, for enough small 7,
G N Q,(0) contains G N T, x (0) and, by Theorem 2.3 ii), there exists a constant
C > 0 such that

PEHGNQ0) _ PPYGNT-0) _ C
> .
(27_)27(1 - (27_)27(1 — 82—(1

Since ¢ can be arbitrarily small, by this inequality we obtain (11).

Finally, if ordy_|f(x)| > La’ then there exists M >0 such that
i, @)

x—0

= <M and therefore there exists 0 > 0 such that if 0 < |x| <J thenitis
x 2 a

2—a
| f () <M|x\ﬁ. Let 0 <7< be such that «* = (1%) <. For such values of »
G N Q,(0) contains G N T, * (0), and therefore, by Theorem 2.3 ii), there exists
C > 0 such that
P*4(G N Q,(0)

> C,
2r? "

whence the inequality (12) follows. O

If f : [a,b] — R is an a-Hélder continuous function then lims_o NG5 <
+ 0o and therefore, by Theorem 2.1, it is H>~*(G) < + oo and, by Theorem 6.2 of
[16], 272+ < D2-4(@G, P) < 1 for H>~* almost all P of G. Thus, by Theorem 3.1, the
following holds:

COROLLARY 3.2. — Let f : [a,b] — R be an a-Holder continuous function, and

1
let 0<a<1; then the points (x,,f(x,)) such that ordy,_..,|f (@) — f(x,)] < _—
constitute a subset of G of zero H> “-measure. — ¢
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Recall that in [14] J. M. Marstrand defined the upper and lower angular
densities of plane s-sets, analogously to the spherical ones, by:

D3(E, P, 0, ) = lim,_o (2r)""H*(E N S,(P,0,9)
and
D(E,P,0,¢9) = lim,_,2r) "H(E N S,(P, 0, ).
In this case the ball B,.(P) has been replaced by the spherical sector of radius 7:
Sy(P,0,p) = B.(P)NS(P,0,9)

where S(P, 0, p) is the closed one-way infinite cone with vertex P and axis in
direction 0 consisting of those points @ for which the vector PQ) makes an angle of
at most ¢ with the axis. An s—set E is called by Marstrand to have a weak tangent

n direction 0 at P if D*(E, P) > 0 and for every ¢ € 0, g[ it is
lim, v *H(E N B.(P)— S (P,0,¢p) — S,(P,—0,9) =0

the weak tangent at P being the line through P which lies in the direction . If the
last equality holds with lim,_, instead of lim,_,, then, according with the ori-
ginal definition by Besicovitch (see [2]), the s—set E is said to possess a tangent
in direction 6. Then for a set whose Hausdorff dimension is fractional the tangent
at a point (in the sense of [2] or [13]) is defined only if the lower density at the
point is different from zero. Now, by Theorem 3.1, for the points P = (x,,f(x,))
such that ord, .., |f(x) — f(xo)| = a or such that ord,_.,,|f(x) — f(xo)| > a but

less than the lower density with respect to the Hausdorff measure is zero,

1
2—a
hence the problem of the existence of the tangent cannot be posed at all; on the
other hand, for these points, the proof of Theorem 3.1 implies the existence of a

vertical tangent in an obvious way.

REFERENCES

[1] A. S. BESICOVITCH, On the fundamental geometrical properties of linearly measur-
able plane sets of points, Math. Annalen, 98 (1927) 422-65.

[2] A. S. BESICOVITCH, On the fundamental geometrical properties of linearly measur-
able plane sets of points(11), Math. Annalen, 115 (1938) 296-329.

[3] A. S. BESICOVITCH, On the fundamental geometrical properties of linearly measur-
able plane sets of points (I11), Math. Annalen, 116 (1939) 349-57.

[4] A. S. BESICOVITCH, On tangents to general sets of points, Fundamenta Mathemati-
cae, 22 (1934) 49-53.

[56] A. S. BesicoviTcH - H. D. URSELL, Sets of fractional dimensions (V): on dimen-
stonal numbers of some continuous curves, Journal London Math. Soc., 12 (1937)
18-25.



DENSITY AND TANGENTIAL PROPERTIES OF THE GRAPH OF HOLDER FUNCTIONS 503

[6] A.S.BESICOVITCH, On the existence of tangents to rectifiable curves, Journal London
Math. Soc., 19 (1945) 205-207.
[7] L. BiaciNo, Derivatives of fractional order of continuous functions, Ricerche Mat.,
LIII (2004) 231-254.
[8] L. BraciNo, Hausdorff dimension of the diagram of a-Hdlder continuous functions,
Ricerche Mat., LIV (2005) 229-243.
[9] L. Biacino, A note on the box dimension of the graph of a continuous function,
submitted for publication.
[10] K. J. FALCONER, The geometry of fractal sets, Cambridge University Press, 1985.
[11] K. J. FALCONER, Fractal Geometry, Mathematical Foundations and Applications,
John Wiley and Sons Ltd., New-York, 1990.
[12] Y. HEURTEAUX, Weierstrass functions with random phases, Trans. Am. Math. Soc.,
355, n. 8 (2003) 3065-3077.
[13] M. A. MARTIN - P. MATTILA, Hausdorff measures, Holder continuous maps and self
similar fractals, Math. Proe. Cambridge Philos. Soc., 114 (1993) 37-42.
[14] J. M. MARSTRAND, Some fundamental geometrical properties of plane sets of
fractional dimensions, Proceedings London Math. Soc., 4 (1954) 257-302.
[15] J. M. MARSTRAND, Circular density of plane sets, Journal London Math. Soc., 30
(1954) 238-46.
[16] P. MATTILA, Geometry of Sets and Measures in Euclidean Spaces, Cambridge
University Press, 1995.
[17] D. PrE1ss, Geometry of measures in R" : Distribution, rectifiability, and densities,
Annals of Mathematics, 125 (1987) 537-643.
[18] F. PrzyTYCKI - M. URBANSKI, On the Hausdovff dimension of some fractal sets,
Studia Math., 93 (1989) 155-186.
[19] C. Tricort, Two definitions of fractional dimension, Math. Proc. Cambridge Philos.
Soc., 91 (1982) 57-74.

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”,
Via Cinzia, Monte Sant’Angelo, 80126 Napoli
E-mail: loredana.biacino2@unina.it

Received March 19, 2010 and in revised form June 11, 2010



