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The Existence and Multiplicity of Heteroclinic and Homoclinic
Orbits for a Class of Singular Hamiltonian Systems in R?

JOANNA JANCZEWSKA

Abstract. — In this work we consider a class of planar second order Hamiltonian sys-
tems: ¢+ VV(q) =0, where a potential V has a singularity at a point & € R2:
V(g) — —oo, as q — & and the unique global maximum 0 € R that is achieved at two
distinct points a,b € R*\{¢}. For a class of potentials that satisfy a strong force
condition introduced by W. B. Gordon [Trans. Amer. Math. Soc. 20} (1975)], via
mainimization of action integrals, we establish the existence of at least two solutions
which wind around & and join {a,b} to {a,b}. One of them, @, is a heteroclinic orbit
joiming a to b. The second s either homoclinic or heteroclinic possessing a rotation
number (a winding number) different from Q.

1. — Introduction.

In this work we will be concerned with the existence and multiplicity of
heteroclinic and homoclinic orbits for a class of autonomous second order
Hamiltonian systems in R?,

(1.1) ¢+ VV(Q =0,
where a potential V satisfies the following conditions:

(V1) there exists ¢ € R? such that V € C1(R%\ {¢}, R),
(V) lim V(@) = — oo,

(V3) there is a neighbourhood N of the point & and there is a function
U € CYW\{¢&}, R) such that |U(x)| — oo, as ¢ — ¢ and |VU(x)|2 < —V(x) for all
x e N\{c},

(Vy) V(x) <0 and there are two distinct points a,b € RZ\{é} such that
V(x) = 0 if and only if « € {a, b},

(V5) there is a negative constant V such that lim sup V(x) < V.

|| =00

In the literature, (V3) is known as a strong force condition introduced by
Gordon (see [9]). Here and subsequently, |- |: R" — [0, c0) is the norm in R"
induced by the standard inner product.
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A solution ¢: R — IRZ of (1.1) is said to be homoclinic if q( — 00) = a = q(oco) or
q( — 00) = b = g(o0), where
o o) = i gt
We call a solution ¢: R — IR? of (1.1) heteroclinic if q(— o0) = a and g(c0) = b or

conversely.
Let E be given by

E= {q € WiZ(R, RY): [ |(1(t)|2dt<oo}.
It is known that % is the Hilbert space under the norm:

gl = [ la®Pdt +1gOF.

We will consider the families of paths that omit ¢ defined as follows:
A={qeFE:qt)# ¢ for allt € R},
I'={geA:q(—o0)=a A g(co) = b},
Y={qgeAq(—o0)=0b A g(c0) =a},
Qq = {q € 4:q(—00) = a = q(c0)},
Qy = {gq € A:q(— 00) = b = q(00)}.

Let’s introduce the polar coordinate system in R? with the pole ¢ and the polar
axis
l={reR:x=¢+t-Ca, t >0},
where polar angles are measured counterclockwise from the axis.
In this polar coordinate system one has q(t) = () cos p(t), 7(t) sin ¢(?)) for all

q € A. There is no uniqueness of a function ¢(t). If ¢(¢) is continuous then we can
assume that #(f) and ¢(t) are continuous, too.

DEFINITION 1.1. — For each q € A such that q( £ o0) € R®\{&} we can de-
termine the rotation number rot(q) (the winding number) as follows:

2n
where [s] denotes the integral part of s € R.

This definition is independent of the choice of a function ¢(t).
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Set
1 .
R = §mln{\b —al,|b={¢|, |a— £}

From now on, B,.(x) stands for an open ball in IR? of radius » > 0, centered at a
point x € RZ.

REMARK 1.1. — Let0<e < R. Assumethat ¢ € I" and thereis T € R such that
q(T) € B,(b). Then, by rot(q\(fw,T]) and Tot(q|[T’m>) we mean the rotation numbers
of appropriate paths in /" and €y, resp., that arise from ¢|_ ., ry and ¢|7 ), resp.,
by connecting q(T') to b by a line segment.

It is justified by elementary homotopy arguments that

rot(q) = rot(q| (_Km) + rot(q|[T7x)).
Moreover, if ¢([T', o)) C B,(b) then
rot(q) = 7'0t(q|(7007T]).

We can also introduce similar notation for ¢ in Y, Q, or Q.

REMARK 1.2. — If q1,¢2 € I" and there are t;,%; € R and 0<¢ < R such that
q1(( = 00,t1]) U q2(( = 00, 1]) C Bi(a), q1([tz, 00)) U g2([ft2, 00)) C B.(b) and q:1(t) =
q2(t) for all t € [t1,t2] then rot(q1) = rot(gz).

Analogous observations take place for g1, g2 belonging to one of the sets: Y, Q,
and Q.

To exam rotation numbers of homoclinic and heteroclinic solutions of (1.1) we
introduce the sets:

I~ ={qerot(q)<0}, It ={qeIrot(g) >0},
Q' ={q € Qurotq) >n}, Q" ={q e Q:rot(q) < —n}
and
Q= {qeQurotq) >n}, Q" ={q e Q:rotq) < —n},

where n € N. For q € 4, set

o]

1
(1.2) 9= [ (§|q<t>2—v<q<t>>)dt.

Let
vt =inf{l(q):q € I'*},
wf" =inf{l(¢):q € Qlf”}
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and
wp”" =inf{I(g):q € Q;"},

where n € IN. From now on, we will assume that
y~ <ot

This involves no loss of generality.

Let us remark that if ¢ is a member of one of the sets: I'*, I', QF", Q,, Qi Q,
then q -+ sy is a member of the same set for s € R small enough and
v € Cr(R, R?). Moreover, if q is a minimizer of I on one of these families then

L+ w0 =0= [ @.50) ~ (V). pOit

and consequently, q is a weak solution of (1.1). Analysis similar to that in the
proof of Proposition 3.18 in [13] shows that ¢ is a classical solution of (1.1).

The goal of this paper is to exam the existence of solutions of the Hamiltonian
system (1.1) that are not homotopic in R?\ {¢} rel the endpoints. More precisely,
we are going to prove the following theorems.

THEOREM 1.3. — Assume that V: R2\{f} — R satisfies conditions (V1) — (V5)
and y~ < y*. Then there exists Q € I'" such that Q is a classical solution of the
Hamiltonian system (1.1) and Q(t) — 0, as t — + oc.

THEOREM 1.4. — Assume that V: RZ\{f} — R satisfies conditions (V1) — (V5)
and y~ < y*. Then one of the following theses holds.

(1) Thereis Q € I' such that Q is a classical solution of (1.1) and Q(t) — 0,
ast — +oo.
(11) There is Q € Q, such that Q is a classical solution of (1.1) with
rot(Q) > 0 and Q(t) — 0, ast — o0
(112) Thereis Q € I'” such that Q is a classical solution of (1.1), Q(t) — 0, as
t — £ oo and

yt=1Q) +

where n = —rot(Q). Moreover, the Hamiltonian system (1.1) possesses either a
classical solution p € Q such that rot(p) > 0 and p(t) — 0, ast— +oo ora
classical solution Qo € I'~ such that rot(Qo) <rot(Q) and Qy(t) — 0, ast — =+ cc.

In the case where y~ > y* we get the analogous theorems. Summarizing.

CONCLUSION 1.5. — Under the assumptions (V1) — (Vs), the Hamiltonian
system (1.1) possesses at least two solutions which wind around & and join {a,b}
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to {a,b}. One of them is a heteroclinic orbit joining a to b. The second is either
heteroclinic with a rotation number different from the first or homoclinic.

There are some works on periodic, homoclinic and heteroclinic solutions for
Hamiltonian systems with singularities. We refer the reader to: [1-6, 9, 10, 14, 15,
18] and the references given there. For a treatment of the existence of other
types of solutions we refer to: [7, 8, 16, 17].

We are motivated by [14] of P. H. Rabinowitz. He studied the existence of
homoclinie (to 0) solutions for a family of singular Hamiltonian systems which are
periodically forced:

q+Vyt,q9=0,

where V e CY(R x (Rz\{f}), R) (£#0) is T-periodic with respect to t.
Moreover, for each t € R, V(t,-) satisfies (V3), (V3) and (V5) uniformly in £,
V(t,x) <0 and V(t,x) =0 iff © = 0. Under these assumptions, he proved the
existence of two homoclinic orbits ¢*:R — R*\{¢} such that the rotation
number of ¢* is positive and negative, respectively. In the same work he also
treated a more general situation in which V has strong force singularities at
&1, ..., & In this case he established the existence of at least k geometrically
distinct solutions homoclinie to 0.

Finally, I would like to mention the paper [4] of M. J. Borges. She considered
the Hamiltonian system (1.1) with the potential V possessing a global maximum
at 0 and strong force singularities at two points: &;, &. Using variational methods
she found homoclinie solutions winding around each singularity and around both
singularities, periodic solutions and heteroclinic solutions joining 0 to periodic
solutions.

Our paper is organized as follows. In Section 2 we discuss some properties of
the action integral /. In Section 3 we prove Theorem 1.3. Section 4 provides a
detailed proof of Theorem 1.4.

The problem is studied by variational methods. We look for connecting orbits by
minimizing I on suitable classes of maps ¢: R — R?\ {£}. Although some ideas are
from [14], there are many new tricks involved in this work (see Lemmas 4.1-4.6).

2. — Some properties of the action integral.

In this section we present some properties of the action functional I given by
(1.2). We will use them in our studies.
Define

M= {x e R*: V() =0} = {a,b},
a, = inf{—V(@): x¢ B,(M)},
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where 0 <¢ < R and B, (M) = B.(a) U B,(b). By (V»), (V) and (V) it follows that
a, > 0.

k
LeEmMMA 2.1. — Suppose that q € A and q(t)¢ B.(M) for each t € | [7;,s:],

where [1;,si1 N [1;,8]1 =0 for i # j. Then i=1
k

(2.1) 1) > v/2a, Y |q(si) — q(ri)].
i1

The proof of Lemma 2.1 is the same as that of Lemma 3.6 in [13] or Lemma 2.1
in [12].

LEMMA 2.2. — If ¢ € A and I(q) <oo then q € L¥(R, R?).

LEMMA 2.3. — If q € A and 1(q) <oo then q( + oo) € M.

We can easily prove these two lemmas by the use of Lemma 2.1. For more
details we refer the reader to [13] (see Remark 3.10 and Proposition 3.11) and
[12] (see Corollary 2.2 and Lemma 2.4).

PROPOSITION 2.4. — If {qn },,cn Us @ sequence that belongs to one of the families:
I, Y, Q,0rQyand {1(gn)},,cn s @ bounded sequence in R, then {gy, },, .\ possesses
a subsequence that converges weakly in E and strongly in L5 (R, R?).

Proor. — Assume that {q., },,c C I'. Itis sufficient to show that {g,. },,c IS 2
bounded sequence in E. By assumption, there is M > 0 such that for all m € N,

0<I(gnm) <M.
From this and (1.2) we get
172 < 2.

Moreover, from Lemma 2.2 it follows that ¢, € L>(R, R?) for all m € N.

Fix 0<e¢ < R. Then for each m € N there are t,,t, € R such that
qn(tm) € 0B,(@), g (?) € B.(a) for all t <7, @i (tn) € OB,(b) and ¢,,(t) € B,(b) for
all ¢ > t,,. Finally, for qm\[%tm] there is s,, € [T, ] such that

@ (sm)| = pax g @®)|.
Applying Lemma 2.1 we conclude that the sequence {g,,(sy)},,cx is bounded.
Hence {g},,cx is bounded in L¥(R, R?).

In consequence, {qm },,cn is bounded in E. By the reflexivity of £ there is
Q) € E such that going to a subsequence q,,, — @ in £, which implies that q,, — @
in LS, (R, R?).

In the rest of cases, the proof is similar. O



THE EXISTENCE AND MULTIPLICITY OF HETEROCLINIC AND HOMOCLINIC ETC. 477

LEMMA 2.5. — If g € A and q(t) € N for all t € [o, 1] then

; b
U@ < |Ulg(o))| + ( i —V(q(t»dt) ( i |q(t>2dt>

The proof of this lemma can be found in [14] (see (2.21), p. 271). It is based on
the strong force condition (V3).

Applying the above inequality and (1.2), for ¢ € A such that ¢(t) € N for all
t € lo, ] we get

1
2

|U(qw)| < |U(g(0))] + v2I(q).

PROPOSITION 2.6. — Let {gn},,en C 4 be a sequence such that {1(gm)},,ex 18
bounded. Then there is v > 0 such that q,,(t) N B.(&) = O forallt € R and m € .

Proor. — By Lemma 2.3, q,,( £ o0) € M for each m € N.

On the contrary, suppose that there exists a sequence {g(1,,,)},,c Such that
gm(t,,) — & as m — oco. Fix 0<d < R such that B;(¢) C N. There is my € N
such that for m > my, |gm(1,,) — | <d. For each m > my there exists 6, <u,,
such that q,,(g,,,) € 0B5(&) and q,,,(t) € B5(&) for all ¢ € (o4, i,,). Then

As {U(gm(om)) }en and {I(gm)},,cx are bounded, we get {U(qn(u,)}ex 18
bounded, too. On the other hand, by (V3), we receive |U(qm(,,))| — oo, as
m — 00, a contradiction. O

Facr 2.7. - If ¢ R — R" is a continuous function such that ¢ € L% (R, R")
then for each t € R,

1

t+3 2
@l < V2| [ (g6 +la@[ds
t—1

2

This inequality was proved for example in [11] (see Fact 2.8).

ProposITION 2.8. — If Q € A 1s a homoclinic or heteroclinic orbit of the
Hamiltonian system (1.1) then

Qi) — 0, as t — £ oo.

Proor. — From Fact 2.7 we get

t+1 t+3

QP <2 [ 1Qeids+2 [ Qe
t-1 t—3
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for each t € R. As Q(?) satisfies the Hamiltonian system (1.1) we have

t+l t+2

Ok <2f Q)| ds+2f IVV(@Q(s))[2ds.

M»—-

Let n > 0. By (Vy), there is L; > 0 such that if |s| > L; then |VV(Q(S))| < —.
Since @ € A C E, there is Ly > 0 such that if |{| > Lo then

t+1
Neon2 n
f QPds<".

t—

Dol

1
Set L =max{Li,Ls}. If |t| >L t3 then |Q(t)|*<#. Hence Q(t)— 0, as
t — £ o0. O

3. — Proof of Theorem 1.3.
Let {qu},,en € I'™ be a sequence such that
lim I(gn) =7
m—o0
From Proposition 2.4 it follows that there is @ € £ such that going to a sub-

sequence if necessary q,, — Q in £ and ¢,, — Q in L° (R, R?). By Proposition 2.6
we conclude that @ € 4.

loc

REMARK 3.1. — For all Ty, Ts € R such that T, < T a functional given by

E>q— f ( g —V(q(t)))dt

is weakly lower semi-continuous.
Hence for each [ € I\,

! !
J (5100 - V@ )ar <timint [ (516 OF - Vg0 )at
; Snyggo nglwz) =y
Letting [ — oo we receive
IQ <y .
By Lemma 2.3, Q( & oo) € M. We will show that Q( — oo) = a and Q(c0) = b. Fix
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0<e¢ < R. Since q,,( — oc0) = a, there is 7, € R such that g¢,,(z,,) € 0B.(a) and
qn(t) € By(a) for all t<1,,.

REMARK 3.2. —If ge A4 then for each 0 € R, Og=q(-—0)€ A4 and
1(q) = I(6q). Moreover, if g(t) = g( — t) then I(¢) = I(g).

Therefore, without loss of generality, we can assume that z,, = 0 for each
m € N. In consequence,

|qm(t) - a‘ <e¢
for all m € N and ¢ < 0, and so
QW) —a| <e

for allt < 0. As Q(t) € B.(a) for all t < 0 and Q( — c0) € M, we get Q( — ) = a.
Suppose, contrary to our claim, that Q(co) = a. Let 0 > 0 be sufficiently small
such that 40 <& and

26% + max{—V(@): |x — a| < 20} < Z, [2a;.

There is t5 > 0 such that Q(ts) € 0Bs(a) and Q(t) € Bs(a) for all t > t5. Since
gm(ts) — Q(s), there exists my € IN such that for all m > my,

|(Im(t5) - Q(t())| <.
From this,

|gm(ts) — a| <20

for all m > mq. Take s} € [0,t,] such that g,,(t)¢ Bs(a) for all ¢ € [0,s}'] and
QWL(SQZ) € 8B§(a)
Then

s

o = [ (510nOF = Viau®)at-+ [ (lanOF - Viguy )t
0 ts

A /20% + f (% |QWz(t)|2 - V(QW(t))) dt7
ts

by Lemma 2.1. Define

>

DO| ™

aif t<ts—1,
Q@) =< E —ts + Dagnts) + ts —Da if t € [ts —1,¢51,
gn@®) if > 15,
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where m > my. By the above, we have Q,, € I" and

ts

1Qw) = | (% gt — af’ - V(Qm(t))) dt

e
N fw (% an®F — V(qm@))) dt
ts
<26% + max{-V(@): |z — a| < 25}
+1(gm) — g \/5
<I(gm) - 2 ﬁ

for all m > my. In consequence,

e o & - & )
Y Sllgqrgor;fl(an)Slg;glgfl(qm)fzy/Zag—y 4\/2%,

a contradiction. Thus Q(co) = b.

By the above, @ € I'. Suppose, contrary to our claim, that @ € I'". If y~ <y*
then 1(Q) > y* > y~, a contradiction. Assume now that y~ = y*. Let f be a po-

1
sitive constant such that f< éx/ 2a.()b — & — 2¢). Choose T >0 such that

Q(T, 0)) C By(b) and

T

f @ Q@I ~ V(Q(t))dt> dt >y~ —p.

—0o0

Since q,, — @ uniformly on [0,T], there is my € IN such that for m > my,
10U (oo ) = 10UQ) > 0, and 80 10t(qni7 ) < — 108(Q) < 0. Moreover, by

Lemma 2.1,

/ @l%(t)ﬁ - V(qmu)))dt > V/20,(1b — & - 20)

T

for all m > my. From Remark 3.1 we get

T T
liminf | qumunz V(qm@))) at> [ <%|Q<t>2 V(Q(t))>dt.
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Hence there is m; € N such that for all m > m,,
el el
| (é @) - V(qm<t>)> at> [ (Q QP - V(Q(t))) dt

1
~1 V2a,(]b — & — 2e¢).

Consequently, for m € IN large enough,

T 00
IGn = [ (%mm(mz—V(qm<t)>)dt+ I/ Gmm(t)F—V(qm(t)))dt
—00 T

T

> [ @ QO - V(Q(t))dt> di+ 5 /ar(b — & 20

3
>y —f +Z v 2a,(|b — & — 2¢)
> +%\/2a8(\b —&| — 2¢),

which contradicts the assumption lim I(g,,) = 7. Therefore Q € I'", and in
m—o00

consequence, I(Q) = y~. Thus @ is a classical solution of (1.1).
From Proposition 2.8 we get Q(t) — 0, as t — =+ oc.

4. — Proof of Theorem 1.4.

Let {gm},,ex C I't be a sequence such that
lim I(gy) =7".
M—00

From Proposition 2.4 it follows that there is a subsequence of {g, },,cn Which

converges weakly in £ and strongly in L% (R, Rz). For abbreviation, we write

¢n — Qin E and ¢, — Qin L (R, R?).

loc

Moreover, by Proposition 2.6, @ € 4, by Remark 3.1, I(Q) < 7', and by Lemma
2.3, Q(+ o0) € M.

Fix 0 <¢ < R. Remark 3.2 implies that we can assume that q,,(0) € 9B.(a) and
qm(t) € By(a) for all t<0 and m € N. Then Q(( — o0,0]) C B.(a), and in con-
sequence, Q( — co) = a. Now the proof falls naturally into three parts, because @
may belong to I'", I'™ or Q.

We have divided the proof into a sequence of lemmas. The proofs of Lemmas
4.3-4.6 are similar in spirit. However, for convenience of the reader, we have
decided to prove them all.
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LEMMA 4.1. — For each n > 0 there is 0<r < R such that for all x,y € B,(a)
(resp. x,y € B,(b)) and T € R,

T+1 1
f <§ ly — af? — V(lw(t))> dt<n,
T

where 1, ;1) = (T +1 —Ox + (¢ — Ty for each t € [T, T + 11].
The proof of Lemma 4.1 is straightforward. Therefore we omit it.
LEMMA 4.2. — If Q € I't then Q is a classical solution of (1.1).

PRrROOF. — Since @ € I'", we get I(Q) > y*. Consequently, I(Q) = y*, and so Q
is a minimizer of I on I"". Thus Q is a classical solution of (1.1). O

LEMMA 4.3. — If Q € Q, then Q s a classical solution of (1.1) and rot(Q) > 0.

PROOF. — Set k = rot(Q). It is sufficient to show that
1(Q) =inf{l(g):q € Q, N rot(q) = k}.

Suppose, by contradiction, that there is ¢ € Q, such that rot(q) =k and

I(@)<I@Q). Putd =1(Q) — I(g). Fix 0<n< g By Lemma 4.1, there is 0<d < R
such that for all x,y € Bs(a) and T € R,

T+1 1
2 n
Tf (§ ly — af? — V(lw(t))) at<?.

Choose T > 0 such that g([T, 00)) C Bs(a), Q(T, >0)) C Bs(a) and

T

[ (31@0f - vaw)a= 1@ -,

—00

Since ¢, — @ uniformly on [0, T + 1], there is my € N such that q,,, (T, T + 1]) C
Bs(a) and mt(qm\(ﬂc,ﬂ) = rot(Q) for all m > my.
Let
qit) if t< T,
gn®) =< T+1-)g)+ ¢ —-Dgn(T+1) if te[T,T+1],
gn@® if t>T+1,
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where m > myg. Then q,,( — 00) = @, ¢,(c0) = b and

rot(qm) = TOt@K—oo,T]) + Tot(Qm‘[T+17m))
= /rOt(QK—oo‘,T]) + 'Vot(qm|[T+1700))
= 10H(qm|(—co,17) + TOUGm|[741,00) = T0UGm),

and hence ¢, € I'". From Remark 3.1 we deduce that there is m; € I\ such that
for all m > myq,

T T
1,. 1.

Using the above inequalities we get

T
1)~ 1) = [ (i OF = Vg )t
h T+1

~ [ (31a0F - V@) )a
T

T

- [ (3lior - vaw)a

>I(Q)—I(é)—f7>g

for m € N large enough, and so
i . . - a_ ,  d
y" = lim I(g;,) > iminf I(q,,) + 5 > 7" + 5,
a contradiction. Consequently, @ is a classical solution of (1.1).
To complete the proof, we have to show that k£ > 0. Suppose, on the contrary,

that £ < 0. For # > 0 we choose d, T, m and m; as above.
For m > my, let

aif t<T,
U@ = T+1-ta+C—-TquT+1if te[T,T+1],
@@ if t>T+1.

Since rot(qg,,) > 0 and 7°ot(qm‘(,w,T+1]) = 10U(Q|(—c0,7+17) = k, We get

10t (Un) = 10U 741,00)) = 0.
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Thus u,, € I'". Furthermore, for m € IN sufficiently large,

T
I(qm) — I(uy) > f (;Iqm(lt)l2 - V(qm(t))> dt
- T+1 1
- f (2 [ () — V(um(t))> dt
T
>1(Q) — 7.

Passing to a limit we get

7" = lim 1(q,) > timinf ) + 1@ — 1 > 7 + 1@ — 1.

Letting # — 07,
VAR ()

a contradiction. Therefore k& > 0. O
LEMMA 4.4. - If Q € I then y© = I(Q) + w}, where n = — rot(Q).

Proor. — Let # > 0. From Lemma 4.1 it follows that there is 0 <J < R such
that for all x,y € Bs(b) and T € R,

T+1

1

T

By assumption, there is 7' > 0 such that Q([T, o0)) C Bs(b). By the definition of
infimum, there exists p € @} such that

Ip) <o +7.

Additionally, by Remark 3.2, we can assume that p(( — oo, T + 1]) C Bs(b).
Define

Q@) if t<T,
Q) =¢ T+1-)QMD)+t—-DpT+1)if te[T,T+1],
p@®)if t>T+1.
We have Q( —o0) =a, Q(oo) =b and I(Q)<I(Q) + w} 4+ 1. Moreover,
rot(Q) = r0t(Q) + rot(p) > 0.
Hence Q €I'" and I (Q) > y*. In consequence,

7 <I@Q) + ) + 1,
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and letting n — 0", we get
(4.1) 7t <IQ) + ).

In order to complete the proof, we have to show that y* > I(Q) + wy}.
To this aim, fix # > 0. By Lemma 4.1, there is 0<J < R such that for each
xe€Bsb)and T € R,

T

1
/ (5 o —bf* V(zb,m@))) di<3,

T-1

where l ,(t) = (T — )b+ (¢ — T + 1 for ¢t € [T — 1, T]. By assumption, there is
T > 0 such that Q([T, c0)) C Bs(b) and

T

[ (108 - vaw)a>r@-.

Let {pm },nen C €25 be given by
bif t<T—1,
pu®) = ¢ (T =)o+t — T + Dg,(T) if t € [T —1,T1,
gn®if t>T.

Then for m € N large enough,

I(pm) < f (% |éIWz(t)|2 - V(%n(t))) dt + g .
T

By the strong convergence of {g;,},,cx in Lis.(R, IR?), there is my € N such that

for all m > my, q,,(T) € Bs(b) and Tot(q7n|(_m7T]) = rot(Q).
Hence

7"Ot(Q) + VOt(pm) = TOt(qm) > 0.
From this it follows that for all m > mg we have
rot(pp) > n,

and so p,, € Q. Remark 3.1 implies the existence of m; € N such that

T T
1 . 2 1. 2 n
S (Glim®F - Vigu)ie> [ (G100 - viaw i §

for all m > m,. By the above, we conclude that for m € N sufficiently large,
I(gm) > 1Q) + I(pw) —n > 1(Q) + wy — 1.
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Hence

7> 1Q) + wf — 1.
Letting # — 07, we receive
(4.2) 7> 1Q) + wy.

Combining (4.1) with (4.2), we get our claim. |
LEMMA 45. - IfQ € I'™ then Q is a classical solution of (1.1).

PrOOF. — Put n = —rot(Q). It suffices to prove that
IQ) =inf{I(q):q € I~ A rot(q) = —n}.

On the contrary, suppose that there exists ¢ € I’ such that rot(¢) = —n and
1(@)<I1(Q). Defined = I(Q) — I(§). Fix 0<n< g From Lemma 4.1 it follows that
there is 0<¢ < R such that for all x,y € Bs(b) and T € R,

T+1

1 ) 0
f (E |?/ - 90| - V(lﬂcy(t))) dt< é

T
We can choose T' > 0 such that ¢([T, c0)) C Bs(b), Q(T, oc)) C Bs(b) and

T

[ (10 - vaw)a>r@-.

—00

Since ¢, — Q uniformly on [0, T' + 1], there is my € N such that for all m > my,
qu(T,T+1]) C Bs(b) and 10t(qu|_rp) = r0t(Q). For each m >my, let
Gm: R — R? be defined by
qif t<T,
@ =< T +1 =g+t —Tgn(T + D if t [T, T +1],
g if t>T+1.

By definition, it follows that ¢,, € I". What is more,

10t(Gm) = 108Gl oo 7)) + TOUGm |7 41 o)
= 10tQ(_ oo 17) + 10U (Gl (711 o))
— /rOt(q’m|(foo,T]) + TOt(qm'[TJrl,oo)) = ’I"Ot(QM)a

and so ¢, € I'*. Applying Remark 3.1 we conclude that there is m; € N such
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that for all m > m,,

T T
L. 2 1. .
£ <§|qm(t>| —V(%(t)))dt >_£ <§|Q(t)| —V(Q(t)))dt_l

Combining the above inequalities we receive
I(qm) = 1@@m) > 1@Q) — 1@ —1n

for m € N sufficiently large, and hence

Igm) — 1(qm) > g

In consequence,

y* = Tim 1(gy) > liminf I(G) +g >0t 4 g,

a contradiction. Therefore @ is a classical solution of (1.1). O

LEMMA 4.6. — If Q € I'" then (1.1) has either a homoclinic solution p € Qp
such that rot(p) > 0 or a heteroclinic solution Qy € I'~ such that rot(Qy) < rot(Q).

Proor. — By Lemma 4.4,
7 =1Q) + oy,
where n = —70t(Q). Let {pn.},,cny C 23 be a sequence such that
Tim 1(p,,) = .
By Proposition 2.4, going to a subsequence if necessary, there is p € £ such that
pm—pin E A p,—pin LE(R,RY).
From Proposition 2.6 it follows that p € 4. Applying Remark 3.1 we obtain
1(p) < .

Lemma 2.3 implies p(+ o0) € M.

By Remark 3.2, we can assume that for all m € I\, p,,(0) € 9B.(b) and
Pu(( = 00,0)) C B(b). Then p(( — 00,0]) C B,(b) and p( — cc) = b.

We have to consider now two cases: p(oco) = b or p(c0) = a.

CASE 1. — p(o0) = b.

Put k = rot(p). We will prove that
I(p) =inf{l(q):q € Qy N rot(q) = k}.
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Suppose, contrary to our claim, that there is p € Q;, such that rot(p) = k¥ and

. . d .
1(p)<I(p). Set d = I(p) — I(p) and take 0 <y < 5 By Lemma 4.1, there exists
0<96 < R such that

T+1 1 .
2
! <2 ly — " — V(lx,y(t))> dt< >

for all x,y € Bs(b) and T € R. Choose T > 0 such that p([T,0)) C Bs(b),
p([T, 0)) C Bs(b) and

T

J G PO - V(p(t))) dt > 1) ~ 7.

By the almost uniformly convergence of {py,},,cx, there is my € N such that
([T, T 4+ 1]) C Bs(b) and TOt(pm|<7oo_ﬂ) = rot(p) for all m > m.
For each m > my, let p,, be given by
p@®if t<T,
P = (T+1=0pT) + @t — Dpu(T +1) it te[T,T+1],
D) if t>T+1.

We have p,,(— o0) = b = py(c0) and rot(p,,) = rot(p,,). From Remark 3.1 it
follows that there is m; € NN such that for all m > my,

T T
1. 1.
S (GlnF = Voo Jar> [ (108 - v )

From what has already been proved, we obtain

- d
I(pm) > 1(Pm) +5
for m € N large enough. Hence
7 : CN] > d 7 d
wy = lim I(py,) > iminf I(p,,) + 5 > o) + 5,
M—00 m—0o0 2 2

a contradiction. In consequence, p is a classical solution of (1.1).

We observe that k& > 0. By contradiction, assume that k£ < 0. Fix # > 0 and
choose o, T, my and m; as above.

Define

bif t<T,
@) = (T+1-tb+ ¢ — Tpu@® if te[T,T+1],
pu@®if t>T+1
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for m > my. Since rot(p,,) > n and mt(pm‘(_w,T 1) =k, we get

10t(V) = 10U(Pm141,00) = N — Kk > 1.

What is more, for m € N large enough,

I(py) — I(vy,) > I(p) — 1,
and so

oy = m I(p,) > iminf I(v,,) + 1(p) — n > oy +1(p) — 1.

Letting 7 — 0, we receive
wy > oy +1(p) > wy,

a contradiction.
CASE 2. — p(c0) = a.

Set k = rot(p). We will prove that
I(p) =inf{I(@):q € ¥ A rot(q) = k}.

On the contrary, assume that there exists p € Y such that rot(p) =k and

1P)<I(p). Put d = I(p) — I(p). Fix 0<y< g By Lemma 4.1, there is 0 <0 < R
such that
T+1

1 , .
f (é ly —a” — V(lﬂc,y(t))) di<y

T
for all x,y € Bs(a) and T € R. Choose T >0 such that p([T,o0)) C Bs(a),
p([T, >0)) C Bs(a) and

T

1 . 2 ]7
f <§ Ip@®[" — V(p(t))) dt > I(p) — 1

There is my € N such that p,,([(T, T + 1]) C Bs(a) and rot(p,yb|(7w7T]) = rot(p) for
all m > my.
For each m > my, we define p,, as follows:
p@)if ¢t < T,
D@ =< T +1-0)p(T)+ ¢ - Dpn(T+ 1D if t [T, T +1],
) if t>T+1.

By definition, p,,( — 00) = b = Py (c0) and rot(py,) = rot(p,,). From Remark 3.1



490 JOANNA JANCZEWSKA

we see that there is m; € N such that for all m > my,

T T
1,. 1,.
[ (31w = Vo Jat > f (3150 - Voo Jar—

—00

Applying the above inequalities we immediately check that

) d
I(py) > I(pw) + bR
Going to a limit we get

wy = lim I(py) > lirrligfl(ﬁnz) +g > wy +

m—00 m 2 ’

a contradiction. Hence p minimizes I on {q € Y:rot(q) = k}.
We now observe that k > %. To this end, we first exclude the case k<0. Set
p@t) = p( —t). Of course, p € I'". We obtain
Ip) >yt =1Q) + w > wp > I1(p) =1(p),

a contradiction.

We now exclude the case 0 < k < n. For this purpose, take # > 0 and choose
0, T and my as above.

Let P, for m > my be given by

aif t<T,
P,t)y=X T+1-ta+t—Dp(T+1)if te[T,T+1],
Pu@®if t>T41.
Then Py,(— o0) = a, Py(c0) = b and r0t(Py,) = r0t(pmli7 1 ) > 7 —k > 0, and
so P,, € I'". Moreover,

T+1
1wy < [ (; Pu®f + V(Pm@))) dt -+ 1(pu) < 3+ I(pn).
T

Hence y™ < " + wy, and consequently, y* < w}!, a contradiction. By the above, we
have k > n.
Set Qo) = p(—1t) for t € R. Then @y € I~ and

rot(Qp) = —rot(p) —1=—-k—-1< —n—1< —n =7rot(Q).
Thus Qo # Q. Finally, by Remark 3.2, we get
1Qo) =I(p) = inf{l(g):q € Y A rot(q) = k}
=inf{l(q):qe I'" A rot(q) = -k — 1}.
Therefore @ is a classical solution of (1.1). O

Applying Proposition 2.8 we complete the proof of Theorem 1.4.
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