BOLLETTINO UNIONE MATEMATICA ITALIANA

Joanna Janczewska

The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in \mathbb{R}^2

Bollettino dell'Unione Matematica Italiana, Serie 9, Vol. 3 (2010), n.3, p. 471–491.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2010_9_3_3_471_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in \mathbb{R}^2

Joanna Janczewska

Abstract. – In this work we consider a class of planar second order Hamiltonian systems: $\ddot{q} + \nabla V(q) = 0$, where a potential V has a singularity at a point $\xi \in \mathbb{R}^2$: $V(q) \to -\infty$, as $q \to \xi$ and the unique global maximum $0 \in \mathbb{R}$ that is achieved at two distinct points $a, b \in \mathbb{R}^2 \setminus \{\xi\}$. For a class of potentials that satisfy a strong force condition introduced by W. B. Gordon [Trans. Amer. Math. Soc. 204 (1975)], via minimization of action integrals, we establish the existence of at least two solutions which wind around ξ and join $\{a,b\}$ to $\{a,b\}$. One of them, Q, is a heteroclinic orbit joining a to b. The second is either homoclinic or heteroclinic possessing a rotation number (a winding number) different from Q.

1. - Introduction.

In this work we will be concerned with the existence and multiplicity of heteroclinic and homoclinic orbits for a class of autonomous second order Hamiltonian systems in \mathbb{R}^2 ,

$$\ddot{q} + \nabla V(q) = 0,$$

where a potential V satisfies the following conditions:

- (V_1) there exists $\xi \in \mathbb{R}^2$ such that $V \in C^1(\mathbb{R}^2 \setminus \{\xi\}, \mathbb{R})$,
- (V_2) $\lim_{x\to \xi}V(x)=-\infty$,
- (V_3) there is a neighbourhood $\mathcal N$ of the point ξ and there is a function $U \in C^1(\mathcal N \setminus \{\xi\}, \mathbb R)$ such that $|U(x)| \to \infty$, as $x \to \xi$ and $|\nabla U(x)|^2 \le -V(x)$ for all $x \in \mathcal N \setminus \{\xi\}$,
- (V_4) $V(x) \leq 0$ and there are two distinct points $a, b \in \mathbb{R}^2 \setminus \{\xi\}$ such that V(x) = 0 if and only if $x \in \{a, b\}$,
 - (V_5) there is a negative constant V_0 such that $\limsup_{|x| \to \infty} V(x) \leq V_0$.

In the literature, (V_3) is known as a strong force condition introduced by Gordon (see [9]). Here and subsequently, $|\cdot|:\mathbb{R}^n\to[0,\infty)$ is the norm in \mathbb{R}^n induced by the standard inner product.

A solution $q: \mathbb{R} \to \mathbb{R}^2$ of (1.1) is said to be *homoclinic* if $q(-\infty) = a = q(\infty)$ or $q(-\infty) = b = q(\infty)$, where

$$q(\pm \infty) = \lim_{t \to \pm \infty} q(t).$$

We call a solution $q: \mathbb{R} \to \mathbb{R}^2$ of (1.1) heteroclinic if $q(-\infty) = a$ and $q(\infty) = b$ or conversely.

Let E be given by

$$E = \left\{ q \in W^{1,2}_{\text{loc}}(\mathbb{R}, \mathbb{R}^2) : \int_{-\infty}^{\infty} |\dot{q}(t)|^2 dt < \infty \right\}.$$

It is known that E is the Hilbert space under the norm:

$$||q||_E^2 = \int_{-\infty}^{\infty} |\dot{q}(t)|^2 dt + |q(0)|^2.$$

We will consider the families of paths that omit ξ defined as follows:

$$egin{aligned} & \varLambda = \{q \in E \colon q(t)
eq \xi & ext{ for all } t \in \mathbb{R}\}, \ & \varGamma = \{q \in \varLambda \colon q(-\infty) = a \ \land \ q(\infty) = b\}, \ & \varUpsilon = \{q \in \varLambda \colon q(-\infty) = b \ \land \ q(\infty) = a\}, \ & \Omega_a = \{q \in \varLambda \colon q(-\infty) = a = q(\infty)\}, \ & \Omega_b = \{q \in \varLambda \colon q(-\infty) = b = q(\infty)\}. \end{aligned}$$

Let's introduce the polar coordinate system in \mathbb{R}^2 with the pole ξ and the polar axis

$$l = \{x \in \mathbb{R}^2 : x = \xi + t \cdot \vec{\xi a}, \ t \ge 0\},\$$

where polar angles are measured counterclockwise from the axis.

In this polar coordinate system one has $q(t) = (r(t)\cos\varphi(t), r(t)\sin\varphi(t))$ for all $q \in \Lambda$. There is no uniqueness of a function $\varphi(t)$. If q(t) is continuous then we can assume that r(t) and $\varphi(t)$ are continuous, too.

DEFINITION 1.1. – For each $q \in \Lambda$ such that $q(\pm \infty) \in \mathbb{R}^2 \setminus \{\xi\}$ we can determine the rotation number rot(q) (the winding number) as follows:

$$rot(q) = \left\lceil \frac{\varphi(\infty) - \varphi(-\infty)}{2\pi} \right\rceil,$$

where [s] denotes the integral part of $s \in \mathbb{R}$.

This definition is independent of the choice of a function $\varphi(t)$.

Set

$$R = \frac{1}{3}\min\{|b-a|, |b-\xi|, |a-\xi|\}.$$

From now on, $B_r(x)$ stands for an open ball in \mathbb{R}^2 of radius r > 0, centered at a point $x \in \mathbb{R}^2$.

REMARK 1.1. — Let $0 < \varepsilon \le R$. Assume that $q \in \Gamma$ and there is $T \in \mathbb{R}$ such that $q(T) \in B_{\varepsilon}(b)$. Then, by $rot(q|_{(-\infty,T]})$ and $rot(q|_{[T,\infty)})$ we mean the rotation numbers of appropriate paths in Γ and Ω_b , resp., that arise from $q|_{(-\infty,T]}$ and $q|_{[T,\infty)}$, resp., by connecting q(T) to b by a line segment.

It is justified by elementary homotopy arguments that

$$rot(q) = rot(q|_{(-\infty,T]}) + rot(q|_{[T,\infty)}).$$

Moreover, if $q([T,\infty)) \subset B_{\varepsilon}(b)$ then

$$rot(q) = rot(q|_{(-\infty,T]}).$$

We can also introduce similar notation for q in Υ , Ω_a or Ω_b .

REMARK 1.2. — If $q_1, q_2 \in \Gamma$ and there are $t_1, t_2 \in \mathbb{R}$ and $0 < \varepsilon \le R$ such that $q_1((-\infty, t_1]) \cup q_2((-\infty, t_1]) \subset B_{\varepsilon}(a)$, $q_1([t_2, \infty)) \cup q_2([t_2, \infty)) \subset B_{\varepsilon}(b)$ and $q_1(t) = q_2(t)$ for all $t \in [t_1, t_2]$ then $rot(q_1) = rot(q_2)$.

Analogous observations take place for q_1, q_2 belonging to one of the sets: Y, Ω_a and Ω_b .

To exam rotation numbers of homoclinic and heteroclinic solutions of (1.1) we introduce the sets:

$$\Gamma^{-} = \{ q \in \Gamma : rot(q) < 0 \}, \qquad \Gamma^{+} = \{ q \in \Gamma : rot(q) \ge 0 \},$$

$$\Omega_{a}^{n} = \{ q \in \Omega_{a} : rot(q) \ge n \}, \qquad \Omega_{a}^{-n} = \{ q \in \Omega_{a} : rot(q) \le -n \}$$

and

$$\Omega_b^n = \{ q \in \Omega_b : rot(q) \ge n \}, \qquad \Omega_b^{-n} = \{ q \in \Omega_b : rot(q) \le -n \},$$

where $n \in \mathbb{N}$. For $q \in \Lambda$, set

(1.2)
$$I(q) = \int_{-\infty}^{\infty} \left(\frac{1}{2} |\dot{q}(t)|^2 - V(q(t))\right) dt.$$

Let

$$\gamma^{\pm} = \inf\{I(q): q \in \Gamma^{\pm}\},$$
 $\omega_{q}^{\pm n} = \inf\{I(q): q \in \Omega_{q}^{\pm n}\}$

and

$$\omega_b^{\pm n} = \inf\{I(q): q \in \Omega_b^{\pm n}\},\,$$

where $n \in \mathbb{N}$. From now on, we will assume that

$$\gamma^- \leq \gamma^+$$
.

This involves no loss of generality.

Let us remark that if q is a member of one of the sets: Γ^{\pm} , Γ , $\Omega_a^{\pm n}$, Ω_a , $\Omega_b^{\pm n}$, Ω_b then $q+s\psi$ is a member of the same set for $s\in\mathbb{R}$ small enough and $\psi\in C_0^\infty(\mathbb{R},\mathbb{R}^2)$. Moreover, if q is a minimizer of I on one of these families then

$$\frac{d}{ds}I(q+s\psi)_{|s=0}=0=\int\limits_{-\infty}^{\infty}((\dot{q}(t),\dot{\psi}(t))-(\nabla V(q(t)),\psi(t)))dt,$$

and consequently, q is a weak solution of (1.1). Analysis similar to that in the proof of Proposition 3.18 in [13] shows that q is a classical solution of (1.1).

The goal of this paper is to exam the existence of solutions of the Hamiltonian system (1.1) that are not homotopic in $\mathbb{R}^2 \setminus \{\xi\}$ rel the endpoints. More precisely, we are going to prove the following theorems.

THEOREM 1.3. – Assume that $V: \mathbb{R}^2 \setminus \{\xi\} \to \mathbb{R}$ satisfies conditions $(V_1) - (V_5)$ and $\gamma^- \leq \gamma^+$. Then there exists $Q \in \Gamma^-$ such that Q is a classical solution of the Hamiltonian system (1.1) and $\dot{Q}(t) \to 0$, as $t \to \pm \infty$.

THEOREM 1.4. – Assume that $V: \mathbb{R}^2 \setminus \{\xi\} \to \mathbb{R}$ satisfies conditions $(V_1) - (V_5)$ and $\gamma^- \leq \gamma^+$. Then one of the following theses holds.

- (i) There is $Q \in \Gamma^+$ such that Q is a classical solution of (1.1) and $\dot{Q}(t) \to 0$, as $t \to \pm \infty$.
- (ii) There is $Q \in \Omega_a$ such that Q is a classical solution of (1.1) with rot(Q) > 0 and $\dot{Q}(t) \to 0$, as $t \to \pm \infty$.
- (iii) There is $Q \in \Gamma^-$ such that Q is a classical solution of (1.1), $\dot{Q}(t) \to 0$, as $t \to \pm \infty$ and

$$\gamma^+ = I(Q) + \omega_b^n,$$

where n = -rot(Q). Moreover, the Hamiltonian system (1.1) possesses either a classical solution $p \in \Omega_b$ such that rot(p) > 0 and $\dot{p}(t) \to 0$, as $t \to \pm \infty$ or a classical solution $Q_0 \in \Gamma^-$ such that $rot(Q_0) < rot(Q)$ and $\dot{Q}_0(t) \to 0$, as $t \to \pm \infty$.

In the case where $\gamma^- > \gamma^+$ we get the analogous theorems. Summarizing.

Conclusion 1.5. – Under the assumptions (V_1) – (V_5) , the Hamiltonian system (1.1) possesses at least two solutions which wind around ξ and join $\{a,b\}$

to $\{a,b\}$. One of them is a heteroclinic orbit joining a to b. The second is either heteroclinic with a rotation number different from the first or homoclinic.

There are some works on periodic, homoclinic and heteroclinic solutions for Hamiltonian systems with singularities. We refer the reader to: [1-6, 9, 10, 14, 15, 18] and the references given there. For a treatment of the existence of other types of solutions we refer to: [7, 8, 16, 17].

We are motivated by [14] of P. H. Rabinowitz. He studied the existence of homoclinic (to 0) solutions for a family of singular Hamiltonian systems which are periodically forced:

$$\ddot{q} + V_q(t, q) = 0,$$

where $V \in C^1(\mathbb{R} \times (\mathbb{R}^2 \setminus \{\xi\}), \mathbb{R})$ $(\xi \neq 0)$ is T-periodic with respect to t. Moreover, for each $t \in \mathbb{R}$, $V(t,\cdot)$ satisfies (V_2) , (V_3) and (V_5) uniformly in t, $V(t,x) \leq 0$ and V(t,x) = 0 iff x = 0. Under these assumptions, he proved the existence of two homoclinic orbits $q^{\pm} : \mathbb{R} \to \mathbb{R}^2 \setminus \{\xi\}$ such that the rotation number of q^{\pm} is positive and negative, respectively. In the same work he also treated a more general situation in which V has strong force singularities at ξ_1, \ldots, ξ_k . In this case he established the existence of at least k geometrically distinct solutions homoclinic to 0.

Finally, I would like to mention the paper [4] of M. J. Borges. She considered the Hamiltonian system (1.1) with the potential V possessing a global maximum at 0 and strong force singularities at two points: ξ_1, ξ_2 . Using variational methods she found homoclinic solutions winding around each singularity and around both singularities, periodic solutions and heteroclinic solutions joining 0 to periodic solutions.

Our paper is organized as follows. In Section 2 we discuss some properties of the action integral *I*. In Section 3 we prove Theorem 1.3. Section 4 provides a detailed proof of Theorem 1.4.

The problem is studied by variational methods. We look for connecting orbits by minimizing I on suitable classes of maps $q: \mathbb{R} \to \mathbb{R}^2 \setminus \{\xi\}$. Although some ideas are from [14], there are many new tricks involved in this work (see Lemmas 4.1-4.6).

2. – Some properties of the action integral.

In this section we present some properties of the action functional I given by (1.2). We will use them in our studies.

Define

$$\mathcal{M} = \{x \in \mathbb{R}^2 : V(x) = 0\} = \{a, b\},$$
$$a_{\varepsilon} = \inf\{-V(x) : x \notin B_{\varepsilon}(\mathcal{M})\},$$

where $0 < \varepsilon \le R$ and $B_{\varepsilon}(\mathcal{M}) = B_{\varepsilon}(a) \cup B_{\varepsilon}(b)$. By (V_2) , (V_4) and (V_5) it follows that $a_{\varepsilon} > 0$.

LEMMA 2.1. – Suppose that $q \in \Lambda$ and $q(t) \notin B_{\varepsilon}(\mathcal{M})$ for each $t \in \bigcup_{i=1}^{k} [r_i, s_i]$, where $[r_i, s_i] \cap [r_i, s_i] = \emptyset$ for $i \neq j$. Then

(2.1)
$$I(q) \ge \sqrt{2a_{\varepsilon}} \sum_{i=1}^{k} |q(s_i) - q(r_i)|.$$

The proof of Lemma 2.1 is the same as that of Lemma 3.6 in [13] or Lemma 2.1 in [12].

LEMMA 2.2. – If $q \in \Lambda$ and $I(q) < \infty$ then $q \in L^{\infty}(\mathbb{R}, \mathbb{R}^2)$.

LEMMA 2.3. – If $q \in \Lambda$ and $I(q) < \infty$ then $q(\pm \infty) \in \mathcal{M}$.

We can easily prove these two lemmas by the use of Lemma 2.1. For more details we refer the reader to [13] (see Remark 3.10 and Proposition 3.11) and [12] (see Corollary 2.2 and Lemma 2.4).

PROPOSITION 2.4. — If $\{q_m\}_{m\in\mathbb{N}}$ is a sequence that belongs to one of the families: Γ , Υ , Ω_a or Ω_b and $\{I(q_m)\}_{m\in\mathbb{N}}$ is a bounded sequence in \mathbb{R} , then $\{q_m\}_{m\in\mathbb{N}}$ possesses a subsequence that converges weakly in E and strongly in $L^\infty_{\mathrm{loc}}(\mathbb{R}, \mathbb{R}^2)$.

PROOF. – Assume that $\{q_m\}_{m\in\mathbb{N}}\subset\Gamma$. It is sufficient to show that $\{q_m\}_{m\in\mathbb{N}}$ is a bounded sequence in E. By assumption, there is M>0 such that for all $m\in\mathbb{N}$,

$$0 < I(q_m) < M$$
.

From this and (1.2) we get

$$\|\dot{q}_m\|_{L^2}^2 \le 2M.$$

Moreover, from Lemma 2.2 it follows that $q_m \in L^{\infty}(\mathbb{R}, \mathbb{R}^2)$ for all $m \in \mathbb{N}$.

Fix $0 < \varepsilon \le R$. Then for each $m \in \mathbb{N}$ there are $\tau_m, t_m \in \mathbb{R}$ such that $q_m(\tau_m) \in \partial B_{\varepsilon}(a), q_m(t) \in B_{\varepsilon}(a)$ for all $t < \tau_m, q_m(t_m) \in \partial B_{\varepsilon}(b)$ and $q_m(t) \in B_{\varepsilon}(b)$ for all $t > t_m$. Finally, for $q_m|_{[\tau_m,t_m]}$ there is $s_m \in [\tau_m,t_m]$ such that

$$|q_m(s_m)| = \max_{t \in [\tau_m, t_m]} |q_m(t)|.$$

Applying Lemma 2.1 we conclude that the sequence $\{q_m(s_m)\}_{m\in\mathbb{N}}$ is bounded. Hence $\{q_m\}_{m\in\mathbb{N}}$ is bounded in $L^{\infty}(\mathbb{R},\mathbb{R}^2)$.

In consequence, $\{q_m\}_{m\in\mathbb{N}}$ is bounded in E. By the reflexivity of E there is $Q\in E$ such that going to a subsequence $q_m\rightharpoonup Q$ in E, which implies that $q_m\to Q$ in $L^\infty_{loc}(\mathbb{R},\mathbb{R}^2)$.

In the rest of cases, the proof is similar.

LEMMA 2.5. – If $q \in \Lambda$ and $q(t) \in \mathcal{N}$ for all $t \in [\sigma, \mu]$ then

$$|U(q(\mu))| \leq |U(q(\sigma))| + \left(\int\limits_{\sigma}^{\mu} -V(q(t))dt\right)^{\frac{1}{2}} \cdot \left(\int\limits_{\sigma}^{\mu} |\dot{q}(t)|^2 dt\right)^{\frac{1}{2}}.$$

The proof of this lemma can be found in [14] (see (2.21), p. 271). It is based on the strong force condition (V_3) .

Applying the above inequality and (1.2), for $q \in \Lambda$ such that $q(t) \in \mathcal{N}$ for all $t \in [\sigma, \mu]$ we get

$$|U(q(\mu))| \le |U(q(\sigma))| + \sqrt{2}I(q).$$

PROPOSITION 2.6. – Let $\{q_m\}_{m\in\mathbb{N}}\subset \Lambda$ be a sequence such that $\{I(q_m)\}_{m\in\mathbb{N}}$ is bounded. Then there is r>0 such that $q_m(t)\cap B_r(\xi)=\emptyset$ for all $t\in\mathbb{R}$ and $m\in\mathbb{N}$.

PROOF. – By Lemma 2.3, $q_m(\pm \infty) \in \mathcal{M}$ for each $m \in \mathbb{N}$.

On the contrary, suppose that there exists a sequence $\{q_m(\mu_m)\}_{m\in\mathbb{N}}$ such that $q_m(\mu_m)\to \xi$, as $m\to\infty$. Fix $0<\delta\leq R$ such that $\overline{B_\delta(\xi)}\subset\mathcal{N}$. There is $m_0\in\mathbb{N}$ such that for $m\geq m_0$, $|q_m(\mu_m)-\xi|<\delta$. For each $m\geq m_0$ there exists $\sigma_m<\mu_m$ such that $q_m(\sigma_m)\in\partial B_\delta(\xi)$ and $q_m(t)\in B_\delta(\xi)$ for all $t\in(\sigma_m,\mu_m)$. Then

$$|U(q_m(\mu_m))| \le |U(q_m(\sigma_m))| + \sqrt{2}I(q_m).$$

As $\{U(q_m(\sigma_m))\}_{m\in\mathbb{N}}$ and $\{I(q_m)\}_{m\in\mathbb{N}}$ are bounded, we get $\{U(q_m(\mu_m))\}_{m\in\mathbb{N}}$ is bounded, too. On the other hand, by (V_3) , we receive $|U(q_m(\mu_m))| \to \infty$, as $m \to \infty$, a contradiction.

FACT 2.7. – If $q: \mathbb{R} \to \mathbb{R}^n$ is a continuous function such that $\dot{q} \in L^2_{loc}(\mathbb{R}, \mathbb{R}^n)$ then for each $t \in \mathbb{R}$,

$$|q(t)| \leq \sqrt{2} \Biggl(\int\limits_{t-rac{1}{2}}^{t+rac{1}{2}} (|q(s)|^2 + |\dot{q}(s)|^2) ds \Biggr)^{rac{1}{2}}.$$

This inequality was proved for example in [11] (see Fact 2.8).

Proposition 2.8. – If $Q \in \Lambda$ is a homoclinic or heteroclinic orbit of the Hamiltonian system (1.1) then

$$\dot{Q}(t) \to 0$$
, as $t \to \pm \infty$.

PROOF. – From Fact 2.7 we get

$$|\dot{Q}(t)|^2 \leq 2 \int\limits_{t-\frac{1}{2}}^{t+\frac{1}{2}} |\dot{Q}(s)|^2 ds + 2 \int\limits_{t-\frac{1}{2}}^{t+\frac{1}{2}} |\ddot{Q}(s)|^2 ds$$

for each $t \in \mathbb{R}$. As Q(t) satisfies the Hamiltonian system (1.1) we have

$$|\dot{Q}(t)|^2 \leq 2\int\limits_{t-\frac{1}{2}}^{t+\frac{1}{2}} |\dot{Q}(s)|^2 ds + 2\int\limits_{t-\frac{1}{2}}^{t+\frac{1}{2}} |\nabla V(Q(s))|^2 ds.$$

Let $\eta > 0$. By (V_4) , there is $L_1 > 0$ such that if $|s| > L_1$ then $|\nabla V(Q(s))|^2 < \frac{\eta}{4}$. Since $Q \in A \subset E$, there is $L_2 > 0$ such that if $|t| > L_2$ then

$$\int_{t-\frac{1}{2}}^{t+\frac{1}{2}} |\dot{Q}(s)|^2 ds < \frac{\eta}{4}.$$

Set $L=\max\{L_1,L_2\}$. If $|t|>L+\frac{1}{2}$ then $|\dot{Q}(t)|^2<\eta$. Hence $\dot{Q}(t)\to 0$, as $t\to\pm\infty$.

3. - Proof of Theorem 1.3.

Let $\{q_m\}_{m\in\mathbb{N}}\subset \Gamma^-$ be a sequence such that

$$\lim_{m\to\infty}I(q_m)=\gamma^-.$$

From Proposition 2.4 it follows that there is $Q \in E$ such that going to a subsequence if necessary $q_m \rightharpoonup Q$ in E and $q_m \to Q$ in $L^\infty_{loc}(\mathbb{R},\mathbb{R}^2)$. By Proposition 2.6 we conclude that $Q \in \Lambda$.

Remark 3.1. – For all $T_1, T_2 \in \mathbb{R}$ such that $T_1 < T_2$ a functional given by

$$E
i q \longrightarrow \int\limits_{T_1}^{T_2} \left(rac{1}{2}|\dot{q}(t)|^2 - V(q(t))
ight) dt$$

is weakly lower semi-continuous.

Hence for each $l \in \mathbb{N}$,

$$\begin{split} \int_{-l}^{l} & \left(\frac{1}{2} |\dot{Q}(t)|^2 - V(Q(t)) \right) dt \leq \liminf_{m \to \infty} \int_{-l}^{l} \left(\frac{1}{2} |\dot{q}_m(t)|^2 - V(q_m(t)) \right) dt \\ & \leq \lim_{m \to \infty} I(q_m) = \gamma^-. \end{split}$$

Letting $l \to \infty$ we receive

$$I(Q) < \gamma^{-}$$
.

By Lemma 2.3, $Q(\pm \infty) \in \mathcal{M}$. We will show that $Q(-\infty) = a$ and $Q(\infty) = b$. Fix

 $0 < \varepsilon \le R$. Since $q_m(-\infty) = a$, there is $\tau_m \in \mathbb{R}$ such that $q_m(\tau_m) \in \partial B_{\varepsilon}(a)$ and $q_m(t) \in B_{\varepsilon}(a)$ for all $t < \tau_m$.

REMARK 3.2. – If $q \in \Lambda$ then for each $\theta \in \mathbb{R}$, $\theta q = q(\cdot - \theta) \in \Lambda$ and $I(q) = I(\theta q)$. Moreover, if $\bar{q}(t) = q(-t)$ then $I(q) = I(\bar{q})$.

Therefore, without loss of generality, we can assume that $\tau_m = 0$ for each $m \in \mathbb{N}$. In consequence,

$$|q_m(t) - a| \le \varepsilon$$

for all $m \in \mathbb{N}$ and $t \leq 0$, and so

$$|Q(t) - a| \le \varepsilon$$

for all $t \leq 0$. As $Q(t) \in \overline{B_{\varepsilon}(a)}$ for all $t \leq 0$ and $Q(-\infty) \in \mathcal{M}$, we get $Q(-\infty) = a$. Suppose, contrary to our claim, that $Q(\infty) = a$. Let $\delta > 0$ be sufficiently small such that $4\delta < \varepsilon$ and

$$2\delta^2 + \max\{-V(x): |x-a| \le 2\delta\} < \frac{\varepsilon}{4}\sqrt{2a_{\underline{\varepsilon}}}.$$

There is $t_{\delta} > 0$ such that $Q(t_{\delta}) \in \partial B_{\delta}(a)$ and $Q(t) \in B_{\delta}(a)$ for all $t > t_{\delta}$. Since $q_m(t_{\delta}) \to Q(t_{\delta})$, there exists $m_0 \in \mathbb{N}$ such that for all $m \geq m_0$,

$$|q_m(t_\delta) - Q(t_\delta)| < \delta.$$

From this,

$$|q_m(t_\delta) - a| < 2\delta$$

for all $m \geq m_0$. Take $s^m_{\delta} \in [0, t_{\delta}]$ such that $q_m(t) \notin B_{\frac{\varepsilon}{2}}(a)$ for all $t \in [0, s^m_{\delta}]$ and $q_m(s^m_{\delta}) \in \partial B_{\frac{\varepsilon}{2}}(a)$.

Then

$$egin{split} I(q_m) &\geq \int\limits_0^{s_\delta^m} \left(rac{1}{2}|\dot{q}_m(t)|^2 - V(q_m(t))
ight)\!dt + \int\limits_{t_\delta}^\infty \left(rac{1}{2}|\dot{q}_m(t)|^2 - V(q_m(t))
ight)\!dt \ &\geq rac{arepsilon}{2}\sqrt{2a_{rac{arepsilon}{2}}} + \int\limits_{t_\delta}^\infty \left(rac{1}{2}|\dot{q}_m(t)|^2 - V(q_m(t))
ight)\!dt, \end{split}$$

by Lemma 2.1. Define

$$Q_m(t) = \left\{ egin{aligned} a & ext{if} & t \leq t_\delta - 1, \ (t - t_\delta + 1)q_m(t_\delta) + (t_\delta - t)a & ext{if} & t \in [t_\delta - 1, t_\delta], \ q_m(t) & ext{if} & t > t_\delta, \end{aligned}
ight.$$

where $m \geq m_0$. By the above, we have $Q_m \in \Gamma$ and

$$egin{aligned} I(Q_m) &= \int\limits_{t_\delta-1}^{t_\delta} \left(rac{1}{2}|q_m(t_\delta)-a|^2 - V(Q_m(t))
ight) dt \ &+ \int\limits_{t_\delta}^{\infty} \left(rac{1}{2}|\dot{q}_m(t)|^2 - V(q_m(t))
ight) dt \ &\leq &2\delta^2 + \max\{-V(x)\colon |x-a| \leq 2\delta\} \ &+ I(q_m) - rac{arepsilon}{2}\sqrt{2a_{rac{arepsilon}{2}}} \ &< &I(q_m) - rac{arepsilon}{4}\sqrt{2a_{rac{arepsilon}{2}}} \end{aligned}$$

for all $m \geq m_0$. In consequence,

$$\gamma^- \leq \liminf_{m \to \infty} I(Q_m) \leq \liminf_{m \to \infty} I(q_m) - \frac{\varepsilon}{4} \sqrt{2a_{\frac{\varepsilon}{2}}} = \gamma^- - \frac{\varepsilon}{4} \sqrt{2a_{\frac{\varepsilon}{2}}}$$

a contradiction. Thus $Q(\infty) = b$.

By the above, $Q \in \Gamma$. Suppose, contrary to our claim, that $Q \in \Gamma^+$. If $\gamma^- < \gamma^+$ then $I(Q) \geq \gamma^+ > \gamma^-$, a contradiction. Assume now that $\gamma^- = \gamma^+$. Let β be a positive constant such that $\beta < \frac{1}{2} \sqrt{2a_{\varepsilon}} (|b - \xi| - 2\varepsilon)$. Choose T > 0 such that $Q([T, \infty)) \subset B_{\varepsilon}(b)$ and

$$\int_{-\infty}^{T} \left(\frac{1}{2}|\dot{Q}(t)|^{2} - V(Q(t))dt\right)dt > \gamma^{-} - \beta.$$

Since $q_m \to Q$ uniformly on [0,T], there is $m_0 \in \mathbb{N}$ such that for $m \geq m_0$, $rot(q_m|_{(-\infty,T]}) = rot(Q) \geq 0$, and so $rot(q_m|_{[T,\infty)}) < -rot(Q) \leq 0$. Moreover, by Lemma 2.1,

$$\int\limits_{T}^{\infty} \Biggl(\frac{1}{2} {\left| \dot{q}_m(t) \right|}^2 - V(q_m(t)) \Biggr) dt \geq \sqrt{2a_{\varepsilon}} (|b-\xi| - 2\varepsilon)$$

for all $m \geq m_0$. From Remark 3.1 we get

$$\liminf_{m\to\infty}\int\limits_{-\infty}^T \left(\frac{1}{2}|\dot{q}_m(t)|^2 - V(q_m(t))\right) dt \geq \int\limits_{-\infty}^T \left(\frac{1}{2}|\dot{Q}(t)|^2 - V(Q(t))\right) dt.$$

Hence there is $m_1 \in \mathbb{N}$ such that for all $m \geq m_1$,

$$\begin{split} \int\limits_{-\infty}^{T} & \left(\frac{1}{2} |\dot{q}_m(t)|^2 - V(q_m(t))\right) dt > \int\limits_{-\infty}^{T} & \left(\frac{1}{2} |\dot{Q}(t)|^2 - V(Q(t))\right) dt \\ & - \frac{1}{4} \sqrt{2a_{\varepsilon}} (|b - \xi| - 2\varepsilon). \end{split}$$

Consequently, for $m \in \mathbb{N}$ large enough,

$$\begin{split} I(q_m) &= \int\limits_{-\infty}^T \left(\frac{1}{2}|\dot{q}_m(t)|^2 - V(q_m(t))\right) dt + \int\limits_T^\infty \left(\frac{1}{2}|\dot{q}_m(t)|^2 - V(q_m(t))\right) dt \\ &> \int\limits_{-\infty}^T \left(\frac{1}{2}|\dot{Q}(t)|^2 - V(Q(t)) dt\right) dt + \frac{3}{4}\sqrt{2a_{\varepsilon}}(|b - \xi| - 2\varepsilon) \\ &> \gamma^- - \beta + \frac{3}{4}\sqrt{2a_{\varepsilon}}(|b - \xi| - 2\varepsilon) \\ &> \gamma^- + \frac{1}{4}\sqrt{2a_{\varepsilon}}(|b - \xi| - 2\varepsilon), \end{split}$$

which contradicts the assumption $\lim_{m\to\infty} I(q_m) = \gamma^-$. Therefore $Q\in \Gamma^-$, and in consequence, $I(Q) = \gamma^-$. Thus Q is a classical solution of (1.1).

From Proposition 2.8 we get $\dot{Q}(t) \to 0$, as $t \to \pm \infty$.

4. - Proof of Theorem 1.4.

Let $\{q_m\}_{m\in\mathbb{N}}\subset \Gamma^+$ be a sequence such that

$$\lim_{m\to\infty}I(q_m)=\gamma^+.$$

From Proposition 2.4 it follows that there is a subsequence of $\{q_m\}_{m\in\mathbb{N}}$ which converges weakly in E and strongly in $L^\infty_{\mathrm{loc}}(\mathbb{R},\mathbb{R}^2)$. For abbreviation, we write

$$q_m
ightharpoonup Q$$
 in E and $q_m
ightharpoonup Q$ in $L^\infty_{
m loc}(\mathbb{R},\mathbb{R}^2)$.

Moreover, by Proposition 2.6, $Q \in \Lambda$, by Remark 3.1, $I(Q) \le \gamma^+$, and by Lemma 2.3, $Q(\pm \infty) \in \mathcal{M}$.

Fix $0 < \varepsilon \le R$. Remark 3.2 implies that we can assume that $q_m(0) \in \partial B_{\varepsilon}(a)$ and $q_m(t) \in B_{\varepsilon}(a)$ for all t < 0 and $m \in \mathbb{N}$. Then $Q((-\infty, 0]) \subset \overline{B_{\varepsilon}(a)}$, and in consequence, $Q(-\infty) = a$. Now the proof falls naturally into three parts, because Q may belong to Γ^+ , Γ^- or Ω_a .

We have divided the proof into a sequence of lemmas. The proofs of Lemmas 4.3-4.6 are similar in spirit. However, for convenience of the reader, we have decided to prove them all.

LEMMA 4.1. – For each $\eta > 0$ there is $0 < r \le R$ such that for all $x, y \in B_r(a)$ (resp. $x, y \in B_r(b)$) and $T \in \mathbb{R}$,

$$\int_{T}^{T+1} \left(\frac{1}{2} |y - x|^2 - V(l_{x,y}(t)) \right) dt < \eta,$$

where $l_{x,y}(t) = (T + 1 - t)x + (t - T)y$ for each $t \in [T, T + 1]$.

The proof of Lemma 4.1 is straightforward. Therefore we omit it.

Lemma 4.2. – If $Q \in \Gamma^+$ then Q is a classical solution of (1.1).

PROOF. – Since $Q \in \Gamma^+$, we get $I(Q) \ge \gamma^+$. Consequently, $I(Q) = \gamma^+$, and so Q is a minimizer of I on Γ^+ . Thus Q is a classical solution of (1.1).

Lemma 4.3. – If $Q \in \Omega_a$ then Q is a classical solution of (1.1) and rot(Q) > 0.

PROOF. – Set k = rot(Q). It is sufficient to show that

$$I(Q) = \inf\{I(q): q \in \Omega_a \land rot(q) = k\}.$$

Suppose, by contradiction, that there is $\tilde{q} \in \Omega_a$ such that $rot(\tilde{q}) = k$ and $I(\tilde{q}) < I(Q)$. Put $d = I(Q) - I(\tilde{q})$. Fix $0 < \eta < \frac{d}{2}$. By Lemma 4.1, there is $0 < \delta \le R$ such that for all $x, y \in B_{\delta}(a)$ and $T \in \mathbb{R}$,

$$\int_{T}^{T+1} \! \left(\frac{1}{2} |y-x|^2 - V(l_{x,y}(t)) \right) \! dt \! < \! \frac{\eta}{2}.$$

Choose T > 0 such that $\tilde{q}([T, \infty)) \subset B_{\delta}(a)$, $Q([T, \infty)) \subset B_{\delta}(a)$ and

$$\int\limits_{-\infty}^T \biggl(\frac{1}{2}|\dot{Q}(t)|^2 - V(Q(t))\biggr)dt > I(Q) - \frac{\eta}{4}.$$

Since $q_m \to Q$ uniformly on [0,T+1], there is $m_0 \in \mathbb{N}$ such that $q_m([T,T+1]) \subset B_\delta(a)$ and $rot(q_m|_{(-\infty,T]}) = rot(Q)$ for all $m \geq m_0$. Let

$$\tilde{q}_m(t) = \begin{cases} \tilde{q}(t) & \text{if } t \leq T, \\ (T+1-t)\tilde{q}(T) + (t-T)q_m(T+1) & \text{if } t \in [T,T+1], \\ q_m(t) & \text{if } t > T+1. \end{cases}$$

where $m \geq m_0$. Then $\tilde{q}_m(-\infty) = a$, $\tilde{q}_m(\infty) = b$ and

$$\begin{split} rot(\tilde{q}_m) &= rot(\tilde{q}_{|(-\infty,T]}) + rot(q_m|_{[T+1,\infty)}) \\ &= rot(Q_{|(-\infty,T]}) + rot(q_m|_{[T+1,\infty)}) \\ &= rot(q_m|_{(-\infty,T]}) + rot(q_m|_{[T+1,\infty)}) = rot(q_m), \end{split}$$

and hence $\tilde{q}_m \in \Gamma^+$. From Remark 3.1 we deduce that there is $m_1 \in \mathbb{N}$ such that for all $m \geq m_1$,

$$\int\limits_{-\infty}^T \biggl(\frac{1}{2}|\dot{q}_m(t)|^2 - V(q_m(t))\biggr)dt > \int\limits_{-\infty}^T \biggl(\frac{1}{2}|\dot{Q}(t)|^2 - V(Q(t))\biggr)dt - \frac{\eta}{4}.$$

Using the above inequalities we get

$$\begin{split} I(q_m) - I(\tilde{q}_m) &\geq \int\limits_{-\infty}^{T} \left(\frac{1}{2}|\dot{q}_m(t)|^2 - V(q_m(t))\right) dt \\ &- \int\limits_{T}^{T+1} \left(\frac{1}{2}|\dot{\tilde{q}}_m(t)|^2 - V(\tilde{q}_m(t))\right) dt \\ &- \int\limits_{-\infty}^{T} \left(\frac{1}{2}|\dot{\tilde{q}}(t)|^2 - V(\tilde{q}(t))\right) dt \\ &> I(Q) - I(\tilde{q}) - \eta > \frac{d}{2} \end{split}$$

for $m \in \mathbb{N}$ large enough, and so

$$\gamma^+ = \lim_{m o \infty} I(q_m) \geq \liminf_{m o \infty} I(ilde{q}_m) + rac{d}{2} \geq \gamma^+ + rac{d}{2},$$

a contradiction. Consequently, Q is a classical solution of (1.1).

To complete the proof, we have to show that k > 0. Suppose, on the contrary, that $k \le 0$. For $\eta > 0$ we choose δ , T, m_0 and m_1 as above.

For $m \geq m_0$, let

$$u_m(t) = \begin{cases} a \text{ if } t \leq T, \\ (T+1-t)a + (t-T)q_m(T+1) \text{ if } t \in [T, T+1], \\ q_m(t) \text{ if } t \geq T+1. \end{cases}$$

Since $rot(q_m) \ge 0$ and $rot(q_{m|(-\infty,T+1]}) = rot(Q_{|(-\infty,T+1]}) = k$, we get

$$rot(u_m) = rot(q_{m|[T+1,\infty)}) \ge 0.$$

Thus $u_m \in \Gamma^+$. Furthermore, for $m \in \mathbb{N}$ sufficiently large,

$$I(q_m) - I(u_m) \ge \int_{-\infty}^{T} \left(\frac{1}{2} |\dot{q}_m(t)|^2 - V(q_m(t))\right) dt$$
$$- \int_{T}^{T+1} \left(\frac{1}{2} |\dot{u}_m(t)|^2 - V(u_m(t))\right) dt$$
$$> I(Q) - \eta.$$

Passing to a limit we get

$$\gamma^+ = \lim_{m o \infty} I(q_m) \geq \liminf_{m o \infty} I(u_m) + I(Q) - \eta \geq \gamma^+ + I(Q) - \eta.$$

Letting $\eta \to 0^+$,

$$\gamma^+ \ge \gamma^+ + I(Q) > \gamma^+,$$

a contradiction. Therefore k > 0.

Lemma 4.4. – If $Q \in \Gamma^-$ then $\gamma^+ = I(Q) + \omega_b^n$, where n = -rot(Q).

PROOF. — Let $\eta > 0$. From Lemma 4.1 it follows that there is $0 < \delta \le R$ such that for all $x, y \in B_{\delta}(b)$ and $T \in \mathbb{R}$,

$$\int_{T}^{T+1} \left(\frac{1}{2} |y-x|^2 - V(l_{x,y}(t)) \right) dt < \frac{\eta}{2}.$$

By assumption, there is T>0 such that $Q([T,\infty))\subset B_\delta(b)$. By the definition of infimum, there exists $p\in\Omega_b^n$ such that

$$I(p) < \omega_b^n + \frac{\eta}{2}.$$

Additionally, by Remark 3.2, we can assume that $p((-\infty, T+1]) \subset B_{\delta}(b)$. Define

$$\hat{Q}(t) = \left\{ egin{aligned} Q(t) & \text{if} & t \leq T, \\ (T+1-t)Q(T) + (t-T)p(T+1) & \text{if} & t \in [T,T+1], \\ p(t) & \text{if} & t \geq T+1. \end{aligned} \right.$$

We have $\hat{Q}(-\infty) = a$, $\hat{Q}(\infty) = b$ and $I(\hat{Q}) < I(Q) + \omega_b^n + \eta$. Moreover,

$$rot(\hat{Q}) = rot(Q) + rot(p) > 0.$$

Hence $\hat{Q} \in \Gamma^+$ and $I(\hat{Q}) \geq \gamma^+$. In consequence,

$$\gamma^+ < I(Q) + \omega_b^n + \eta,$$

and letting $\eta \to 0^+$, we get

$$(4.1) \gamma^+ \le I(Q) + \omega_h^n.$$

In order to complete the proof, we have to show that $\gamma^+ \geq I(Q) + \omega_h^n$.

To this aim, fix $\eta > 0$. By Lemma 4.1, there is $0 < \delta \le R$ such that for each $x \in B_{\delta}(b)$ and $T \in \mathbb{R}$,

$$\int_{T-1}^{T} \left(\frac{1}{2} |x-b|^2 - V(l_{b,x}(t)) \right) dt < \frac{\eta}{2},$$

where $l_{b,x}(t) = (T-t)b + (t-T+1)x$ for $t \in [T-1,T]$. By assumption, there is T > 0 such that $Q([T,\infty)) \subset B_{\delta}(b)$ and

$$\int_{-\infty}^{T} \left(\frac{1}{2}|\dot{Q}(t)|^2 - V(Q(t))\right) dt > I(Q) - \frac{\eta}{4}.$$

Let $\{p_m\}_{m\in\mathbb{N}}\subset\Omega_b$ be given by

$$p_m(t) = \left\{ egin{aligned} b & ext{if} \quad t \leq T-1, \\ (T-t)b + (t-T+1)q_m(T) & ext{if} \quad t \in [T-1,T], \\ q_m(t) & ext{if} \quad t \geq T. \end{aligned}
ight.$$

Then for $m \in \mathbb{N}$ large enough,

$$I(p_m) < \int_{T}^{\infty} \left(\frac{1}{2} |\dot{q}_m(t)|^2 - V(q_m(t))\right) dt + \frac{\eta}{2}.$$

By the strong convergence of $\{q_m\}_{m\in\mathbb{N}}$ in $L^{\infty}_{loc}(\mathbb{R},\mathbb{R}^2)$, there is $m_0\in\mathbb{N}$ such that for all $m\geq m_0$, $q_m(T)\in B_{\delta}(b)$ and $rot(q_m|_{\ell_{-\infty}(T)})=rot(Q)$.

Hence

$$rot(Q) + rot(p_m) = rot(q_m) > 0.$$

From this it follows that for all $m \geq m_0$ we have

$$rot(p_m) \geq n$$
,

and so $p_m \in \Omega_b^n$. Remark 3.1 implies the existence of $m_1 \in \mathbb{N}$ such that

$$\int_{-\infty}^{T} \left(\frac{1}{2} |\dot{q}_{m}(t)|^{2} - V(q_{m}(t)) \right) dt > \int_{-\infty}^{T} \left(\frac{1}{2} |\dot{Q}(t)|^{2} - V(Q(t)) \right) dt - \frac{\eta}{4}$$

for all $m \geq m_1$. By the above, we conclude that for $m \in \mathbb{N}$ sufficiently large,

$$I(q_m) > I(Q) + I(p_m) - \eta \ge I(Q) + \omega_b^n - \eta.$$

Hence

$$\gamma^+ \geq I(Q) + \omega_b^n - \eta$$
.

Letting $\eta \to 0^+$, we receive

$$(4.2) \gamma^+ \ge I(Q) + \omega_h^n.$$

Combining (4.1) with (4.2), we get our claim.

Lemma 4.5. – If $Q \in \Gamma^-$ then Q is a classical solution of (1.1).

PROOF. – Put n = -rot(Q). It suffices to prove that

$$I(Q) = \inf\{I(q): q \in \Gamma^- \land rot(q) = -n\}.$$

On the contrary, suppose that there exists $\hat{q} \in \Gamma^-$ such that $rot(\hat{q}) = -n$ and $I(\hat{q}) < I(Q)$. Define $d = I(Q) - I(\hat{q})$. Fix $0 < \eta < \frac{d}{2}$. From Lemma 4.1 it follows that there is $0 < \delta \le R$ such that for all $x, y \in B_{\delta}(b)$ and $T \in \mathbb{R}$,

$$\int_{T}^{T+1} \left(\frac{1}{2} |y - x|^2 - V(l_{x,y}(t)) \right) dt < \frac{\eta}{2}.$$

We can choose T>0 such that $\hat{q}([T,\infty))\subset B_{\delta}(b),\,Q([T,\infty))\subset B_{\delta}(b)$ and

$$\int_{-\infty}^{T} \left(\frac{1}{2}|\dot{Q}(t)|^2 - V(Q(t))\right) dt > I(Q) - \frac{\eta}{4}.$$

Since $q_m \to Q$ uniformly on [0, T+1], there is $m_0 \in \mathbb{N}$ such that for all $m \ge m_0$, $q_m([T, T+1]) \subset B_{\delta}(b)$ and $rot(q_m|_{(-\infty, T]}) = rot(Q)$. For each $m \ge m_0$, let $\hat{q}_m : \mathbb{R} \to \mathbb{R}^2$ be defined by

$$\hat{q}_m(t) = egin{cases} \hat{q}(t) ext{ if } & t \leq T, \ (T+1-t)\hat{q}(T) + (t-T)q_m(T+1) ext{ if } & t \in [T,T+1], \ q_m(t) ext{ if } & t \geq T+1. \end{cases}$$

By definition, it follows that $\hat{q}_m \in \Gamma$. What is more,

$$\begin{split} rot(\hat{q}_{m}) &= rot(\hat{q}|_{(-\infty,T]}) + rot(q_{m}|_{[T+1,\infty)}) \\ &= rot(Q|_{(-\infty,T]}) + rot(q_{m}|_{[T+1,\infty)}) \\ &= rot(q_{m}|_{(-\infty,T]}) + rot(q_{m}|_{[T+1,\infty)}) = rot(q_{m}), \end{split}$$

and so $\hat{q}_m \in \Gamma^+$. Applying Remark 3.1 we conclude that there is $m_1 \in \mathbb{N}$ such

that for all $m \geq m_1$,

$$\int\limits_{-\infty}^{T} \biggl(\frac{1}{2} |\dot{q}_m(t)|^2 - V(q_m(t)) \biggr) dt > \int\limits_{-\infty}^{T} \biggl(\frac{1}{2} |\dot{Q}(t)|^2 - V(Q(t)) \biggr) dt - \frac{\eta}{4}.$$

Combining the above inequalities we receive

$$I(q_m) - I(\hat{q}_m) > I(Q) - I(\hat{q}) - \eta$$

for $m \in \mathbb{N}$ sufficiently large, and hence

$$I(q_m) - I(\hat{q}_m) > \frac{d}{2}.$$

In consequence,

$$\gamma^+ = \lim_{m \to \infty} I(q_m) \geq \liminf_{m \to \infty} I(\hat{q}_m) + \frac{d}{2} \geq \gamma^+ + \frac{d}{2},$$

a contradiction. Therefore Q is a classical solution of (1.1).

LEMMA 4.6. – If $Q \in \Gamma^-$ then (1.1) has either a homoclinic solution $p \in \Omega_b$ such that rot(p) > 0 or a heteroclinic solution $Q_0 \in \Gamma^-$ such that $rot(Q_0) < rot(Q)$.

Proof. – By Lemma 4.4,

$$\gamma^+ = I(Q) + \omega_b^n,$$

where n = -rot(Q). Let $\{p_m\}_{m \in \mathbb{N}} \subset \Omega_b^n$ be a sequence such that

$$\lim_{m\to\infty}I(p_m)=\omega_b^n.$$

By Proposition 2.4, going to a subsequence if necessary, there is $p \in E$ such that

$$p_m \rightharpoonup p \text{ in } E \wedge p_m \rightarrow p \text{ in } L^{\infty}_{loc}(\mathbb{R}, \mathbb{R}^2).$$

From Proposition 2.6 it follows that $p \in \Lambda$. Applying Remark 3.1 we obtain

$$I(p) \leq \omega_b^n$$
.

Lemma 2.3 implies $p(\pm \infty) \in \mathcal{M}$.

By Remark 3.2, we can assume that for all $m \in \mathbb{N}$, $p_m(0) \in \partial B_{\varepsilon}(b)$ and $p_m((-\infty,0)) \subset B_{\varepsilon}(b)$. Then $p((-\infty,0]) \subset \overline{B_{\varepsilon}(b)}$ and $p(-\infty) = b$.

We have to consider now two cases: $p(\infty) = b$ or $p(\infty) = a$.

Case 1. $-p(\infty) = b$.

Put k = rot(p). We will prove that

$$I(p) = \inf\{I(q): q \in \Omega_b \land rot(q) = k\}.$$

Suppose, contrary to our claim, that there is $\tilde{p} \in \Omega_b$ such that $rot(\tilde{p}) = k$ and $I(\tilde{p}) < I(p)$. Set $d = I(p) - I(\tilde{p})$ and take $0 < \eta < \frac{d}{2}$. By Lemma 4.1, there exists $0 < \delta \le R$ such that

$$\int_{T}^{T+1} \left(\frac{1}{2} |y-x|^2 - V(l_{x,y}(t)) \right) dt < \frac{\eta}{2}$$

for all $x, y \in B_{\delta}(b)$ and $T \in \mathbb{R}$. Choose T > 0 such that $\tilde{p}([T, \infty)) \subset B_{\delta}(b)$, $p([T, \infty)) \subset B_{\delta}(b)$ and

$$\int_{-\infty}^{T} \left(\frac{1}{2}|\dot{p}(t)|^2 - V(p(t))\right) dt > I(p) - \frac{\eta}{4}.$$

By the almost uniformly convergence of $\{p_m\}_{m\in\mathbb{N}}$, there is $m_0\in\mathbb{N}$ such that $p_m([T,T+1])\subset B_\delta(b)$ and $rot(p_m|_{(-\infty,T]})=rot(p)$ for all $m\geq m_0$.

For each $m \geq m_0$, let \tilde{p}_m be given by

$$\tilde{p}_m(t) = \begin{cases} \tilde{p}(t) \text{ if } t \leq T, \\ (T+1-t)\tilde{p}(T) + (t-T)p_m(T+1) \text{ if } t \in [T,T+1], \\ p_m(t) \text{ if } t \geq T+1. \end{cases}$$

We have $\tilde{p}_m(-\infty) = b = \tilde{p}_m(\infty)$ and $rot(\tilde{p}_m) = rot(p_m)$. From Remark 3.1 it follows that there is $m_1 \in \mathbb{N}$ such that for all $m \ge m_1$,

$$\int_{-\infty}^{T} \left(\frac{1}{2} |\dot{p}_m(t)|^2 - V(p_m(t)) \right) dt > \int_{-\infty}^{T} \left(\frac{1}{2} |\dot{p}(t)|^2 - V(p(t)) \right) dt - \frac{\eta}{4}.$$

From what has already been proved, we obtain

$$I(p_m) > I(\tilde{p}_m) + \frac{d}{2}$$

for $m \in \mathbb{N}$ large enough. Hence

$$\omega_b^n = \lim_{m o \infty} I(p_m) \geq \liminf_{m o \infty} I(ilde{p}_m) + rac{d}{2} \geq \omega_b^n + rac{d}{2},$$

a contradiction. In consequence, p is a classical solution of (1.1).

We observe that k > 0. By contradiction, assume that $k \le 0$. Fix $\eta > 0$ and choose δ , T, m_0 and m_1 as above.

Define

$$v_m(t) = \begin{cases} b \text{ if } t \leq T, \\ (T+1-t)b + (t-T)p_m(t) \text{ if } t \in [T,T+1], \\ p_m(t) \text{ if } t \geq T+1 \end{cases}$$

for $m \geq m_0$. Since $rot(p_m) \geq n$ and $rot(p_{m|(-\infty,T+1)}) = k$, we get

$$rot(v_m) = rot(p_{m|[T+1,\infty)}) \ge n - k \ge n.$$

What is more, for $m \in \mathbb{N}$ large enough,

$$I(p_m) - I(v_m) > I(p) - \eta,$$

and so

$$\omega_b^n = \lim_{m o \infty} I(p_m) \geq \liminf_{m o \infty} I(v_m) + I(p) - \eta \geq \omega_b^n + I(p) - \eta.$$

Letting $\eta \to 0^+$, we receive

$$\omega_b^n \ge \omega_b^n + I(p) > \omega_b^n$$

a contradiction.

Case 2. $-p(\infty) = a$.

Set k = rot(p). We will prove that

$$I(p) = \inf\{I(q): q \in \Upsilon \land rot(q) = k\}.$$

On the contrary, assume that there exists $\hat{p} \in \Upsilon$ such that $rot(\hat{p}) = k$ and $I(\hat{p}) < I(p)$. Put $d = I(p) - I(\hat{p})$. Fix $0 < \eta < \frac{d}{2}$. By Lemma 4.1, there is $0 < \delta \le R$ such that

$$\int_{T}^{T+1} \left(\frac{1}{2} |y - x|^2 - V(l_{x,y}(t)) \right) dt < \frac{\eta}{2}$$

for all $x, y \in B_{\delta}(a)$ and $T \in \mathbb{R}$. Choose T > 0 such that $\tilde{p}([T, \infty)) \subset B_{\delta}(a)$, $p([T, \infty)) \subset B_{\delta}(a)$ and

$$\int_{-\infty}^{T} \left(\frac{1}{2}|\dot{p}(t)|^2 - V(p(t))\right) dt > I(p) - \frac{\eta}{4}.$$

There is $m_0 \in \mathbb{N}$ such that $p_m([T, T+1]) \subset B_{\delta}(a)$ and $rot(p_m|_{(-\infty,T]}) = rot(p)$ for all $m \geq m_0$.

For each $m \geq m_0$, we define \hat{p}_m as follows:

$$\hat{p}_m(t) = \begin{cases} \hat{p}(t) \text{ if } t \leq T, \\ (T+1-t)\hat{p}(T) + (t-T)p_m(T+1) \text{ if } t \in [T,T+1], \\ p_m(t) \text{ if } t \geq T+1. \end{cases}$$

By definition, $\hat{p}_m(-\infty) = b = \hat{p}_m(\infty)$ and $rot(\hat{p}_m) = rot(p_m)$. From Remark 3.1

we see that there is $m_1 \in \mathbb{N}$ such that for all $m \geq m_1$,

$$\int_{-\infty}^{T} \left(\frac{1}{2} |\dot{p}_m(t)|^2 - V(p_m(t)) \right) dt > \int_{-\infty}^{T} \left(\frac{1}{2} |\dot{p}(t)|^2 - V(p(t)) \right) dt - \frac{\eta}{4}.$$

Applying the above inequalities we immediately check that

$$I(p_m) > I(\hat{p}_m) + \frac{d}{2}.$$

Going to a limit we get

$$\omega_b^n = \lim_{m \to \infty} I(p_m) \ge \liminf_{m \to \infty} I(\hat{p}_m) + \frac{d}{2} \ge \omega_b^n + \frac{d}{2},$$

a contradiction. Hence p minimizes I on $\{q \in \Upsilon: rot(q) = k\}$.

We now observe that k > n. To this end, we first exclude the case k < 0. Set $\bar{p}(t) = p(-t)$. Of course, $\bar{p} \in \Gamma^+$. We obtain

$$I(\bar{p}) \ge \gamma^+ = I(Q) + \omega_h^n > \omega_h^n \ge I(p) = I(\bar{p}),$$

a contradiction.

We now exclude the case $0 \le k \le n$. For this purpose, take $\eta > 0$ and choose δ , T and m_0 as above.

Let P_m for $m \geq m_0$ be given by

$$P_m(t) = \left\{ egin{aligned} a & ext{if} & t \leq T, \\ (T+1-t)a + (t-T)p_m(T+1) & ext{if} & t \in [T,T+1], \\ p_m(t) & ext{if} & t \geq T+1. \end{aligned}
ight.$$

Then $P_m(-\infty)=a$, $P_m(\infty)=b$ and $rot(P_m)=rot(p_m|_{[T+1,\infty)})\geq n-k\geq 0$, and so $P_m\in \Gamma^+$. Moreover,

$$I(P_m) \le \int_{T}^{T+1} \left(\frac{1}{2}|\dot{P}_m(t)|^2 + V(P_m(t))\right) dt + I(p_m) < \frac{\eta}{2} + I(p_m).$$

Hence $\gamma^+ \leq \frac{\eta}{2} + \omega_b^n$, and consequently, $\gamma^+ \leq \omega_b^n$, a contradiction. By the above, we have k > n.

Set
$$Q_0(t) = p(-t)$$
 for $t \in \mathbb{R}$. Then $Q_0 \in \Gamma^-$ and

$$rot(Q_0) = -rot(p) - 1 = -k - 1 < -n - 1 < -n = rot(Q).$$

Thus $Q_0 \neq Q$. Finally, by Remark 3.2, we get

$$\begin{split} I(Q_0) = & I(p) = \inf\{I(q) \colon q \in \Upsilon \ \land \ rot(q) = k\} \\ &= \inf\{I(q) \colon q \in \Gamma^- \ \land \ rot(q) = -k - 1\}. \end{split}$$

Therefore Q_0 is a classical solution of (1.1).

Applying Proposition 2.8 we complete the proof of Theorem 1.4.

Acknowledgements. This research was supported by the Polish Ministry of Sciences and Higher Education (grant no. N N201 394037).

REFERENCES

- A. AMBROSETTI V. COTI ZELATI, Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, Vol. X, Birkhäuser Boston, Inc., Boston, MA (1993).
- [2] M. L. BERTOTTI L. JEANJEAN, Multiplicity of homoclinic solutions for singular secondorder conservative systems, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 1169-1180.
- [3] S. V. BOLOTIN, Shadowing chains of collision orbits, Discrete Contin. Dyn. Syst., 14 (2006), 235-260.
- [4] M. J. Borges, Heteroclinic and homoclinic solutions for a singular Hamiltonian system, European J. Appl. Math., 17 (2006), 1-32.
- [5] P. CALDIROLI L. JEANJEAN, Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equations, 136 (1997), 76-114.
- [6] P. CALDIROLI M. NOLASCO, Multiple homoclinic solutions for a class of autonomous singular systems in \mathbb{R}^2 , Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 113-125.
- [7] P. Felmer K. Tanaka, Hyperbolic-like solutions for singular Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl., 7 (2000), 43-65.
- [8] P. Felmer K. Tanaka, Scattering solutions for planar singular Hamiltonian systems via minimization, Adv. Differential Equations, 5 (2000), 1519-1544.
- [9] W. B. GORDON, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135.
- [10] C. Greco, Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Anal., 12 (1988), 259-269.
- [11] M. IZYDOREK J. JANCZEWSKA, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389.
- [12] M. IZYDOREK J. JANCZEWSKA, Heteroclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 238 (2007), 381-393.
- [13] P. H. RABINOWITZ, Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 331-346.
- [14] P. H. RABINOWITZ, Homoclinics for a singular Hamiltonian system, in Geometric analysis and the calculus of variations, Int. Press, Cambridge, MA, (1996), 267-296.
- [15] E. Serra S. Terracini, Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Anal., 22 (1994), 45-62.
- [16] E. Serra, Homoclinic orbits at infinity for second order conservative systems, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 249-266.
- [17] E. Serra, Heteroclinic orbits at infinity for two classes of Hamiltonian systems, Boll. Un. Mat. Ital. Sect. B (7), 8 (1994), 615-639.
- [18] K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438.

Joanna Janczewska, Faculty of Technical Physics and Applied Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

Institute of Mathematics, Polish Academy of Sciences E-mail: janczewska@mifgate.pg.gda.pl, j.janczewska@impan.pl