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Central Elements in Pseudo-D-Lattices and Hahn
Decomposition Theorem

ANNA AVALLONE - GIUSEPPINA BARBIERI - PAOLO VITOLO

Abstract. — We prove a Hahn decomposition theorem for modular measures on pseudo-
D-lattices. As a consequence, we obtain a Uhl type theorem and a Kadets type theorem
concerning compactness and convexity of the closure of the range.

1. — Introduction.

Effect algebras (alias D-posets) have been independently introduced in 1994
by D. J. Foulis and M. K. Bennett in [6] and by F. Chovanek and F. Kopka in [8]
for modelling unsharp measurement in a quantum mechanical system. They are
a generalization of many structures which arise in Quantum Physics [10] and in
Mathematical Economics [12, 7], in particular they are a generalization of or-
thomodular posets and MV-algebras.

G. Georgescu and A. Iorgulescu in [13] introduced the concept of a
pseudo-MV-algebra, which is a non-commutative generalization of an MV-
algebra, and A. Dvurecenskij and T. Vetterlein in [11] introduced the more
general structure of a pseudo-effect algebra, which is a non-commutative
generalization of an effect algebra. The investigation of these structures is
motivated by quantum mechanical experiments. For a study see for example
[11, 14, 16].

In this paper we prove a Hahn decomposition theorem for modular mea-
sures on pseudo-D-lattices (i.e. lattice-ordered pseudo-effect algebras). To
prove this theorem, a crucial result is the following: If 1 is a o-additive modular
measure on a g-complete pseudo-D-lattice L, and there are no nonzero negli-
gible elements, then x attains its supremum in a central element. For this, an
essential tool is a characterization of central elements given in the first part of
the paper.

As a consequence of Hahn theorem, we obtain a Uhl type theorem, namely,
we prove that, if X is a Banach space with the Radon-Nykodym property and
u:L — X is a nonatomic modular measure of bounded variation, then u(L) is
convex and compact. Moreover, we prove that the previous result also holds
whenever X is a B-convex space.
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2. — Preliminaries.

DEFINITION 2.1. — A partial algebra (E,+,0,1), where + is a partial binary
operation and 0, 1 are constants, is called a pseudo-effect-algebra if, for all
a, b, c € E, the following properties hold:

(P1) The sums a + b and (a + b) + ¢ exist if and only if b + ¢ and a + (b + ¢)
exist and in this case (a +b) +c=a+ (b +c).

(P2) For any a € E, there exist exactly one d € E and exactly one e € E such
thata+d=e¢+a =1

P3) If a + b exists, there are d, e € E such thata +b=d+a="0b+e.

(P4) If 1+ a or a + 1 exists, then a = 0.

We note that, if 4 is commutative, then £ becomes an effect algebra.

If we define a < b if and only if there exists ¢ € E such that a + ¢ = b, then <
is a partial ordering on £ such that 0 < a <1 for any a € E. If F is a lattice with
respect to this order, then we say tha E is a lattice pseudo-effect-algebra or a
pseudo-D-lattice.

If E is a pseudo-effect algebra, we can define two partial binary operations on
E such that, for a,b € E, a/b is defined if and only if b\ a is defined if and only if
@ < b and in this case we have (b\a) + @ = a + (a/b) = b. In particular, we set
ta=1\e and o' = a/1.

In the sequel, we denote by E a pseudo-effect algebra, L a pseudo-D-lattice
and (G, +) a topological Abelian group.

Ifa,be Fand a < b, we set[a,b]={ce€E:a<c<b}.

If a,b € E, we write a L b to mean that the sum a + b is defined.

Ifay,...,a, € E,weinductively define a; + -+ a, = (a; + - + ay_1) + a0y,
provided that the right hand side exists. We say that the finite sequence
(ay,...,a,) of E is orthogonal if a; + - - - + a,, exists. Given an infinite sequence
(an)nen, We say that it is orthogonal if, for every positive integer n, the sum
a1 + -+ + a, exists.

The following properties of pseudo-effect algebras will be used:

PROPOSITION 2.2. — For every a,b,c € E, we have:

() a L bifand only if a <+bif and only if b < at.
(i) “(eH)=Ca)t =a
(i) Ifa Lcand b L ¢, then a + ¢ = b+ c implies a = b; similarly, ifc L a
and c L b, then ¢ +a = ¢+ b implies a = b.
v) If a<b, then b1l c implies a+c<b+c and c L b implies
c+a<c+bd.
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W) Ifa<b<cthenb\a <c\aanda/b<a/c.
i) Ifa <b<cthenc\b<c\aandb/c <a/c
(vil) Ifa <b < cthen (c\a)\(b\a) =c\band (a/b)/(a/c) =b/c.
(viii) Ifa <bthen b\a ='b/"a and a/b = a*-\b".
(ix) Ifa L band a Vb exists, then a Vb < a+ b.
x) If a <b, a<cand bAc exists, then (b\a) A (c\a) exists and equals
b Ao)\a
(xi) If a < b, a <c and b Ac exists, then (a/b) A (a/c) exists and equals
a/( Ac).

PropPOSITION 2.3. — Let a,b € E, and suppose that a Ab exists. Then
(@Ab)* =at Vbt and “(aAb) =1aVLh

PROPOSITION 2.4. — Let a,b € E such that a V b exists. For every c € E with
aVb < ¢ wehave c\(aVb) =(c\a)A(c\b) and (aV b)/c = (a/c) A (b/c).
In particular (if ¢ = 1) we have ~(a VvV b) =La ALb and (a vV b)* = at A bt

Following Dvurecenskij [9, Def. 2.1], we give the following definition.

DEFINITION 2.5. — We say that p € E is central if there exists an isomorphism
frE —[0,p] x [0, p] such that

(C1) f(p) = (p,0)
(C2) for every a € K, if f(a) = (a1, ag), then a = a; + ag.

The set of all central elements of E is called the centre of E, and denoted
by C(E).

PROPOSITION 2.6. — Let p € E be central. The following hold:

(i) Forevery a € E, both a Ap and a A pt exist.
(i) The mapping f of Definition 2.5 is unique and, for every a € E, we have
f@) = (@Ap,anph).
(ili) The mapping fp: E — [0, p] defined by a—a A p is a homomorphism.

Proor. — (i) See [9, Prop. 2.2(vi)].
(i) For every a € E, we have f(a) = (a Ap,a Ap*) by [9, Prop. 2.2(vi)].
Hence f is unique.
(iii) Let 7 denote the projection of [0, p] x [0, p*] onto [0, p]. By (ii), we have
that f, = m o f and hence f), is a homomorphism. d

The following properties of the centre also will be used in the sequel.
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ProposITION 2.7. — (1) If p,q € C(E) then p A q € C(F), and C(E) is a Boo-
lean algebra. N
) If {pr :k=1,...,n} is a subset of C(&) and a € E, then a N \/ p; =

n k=1
V (@ A pp).
k=1
Proor. — (i) See[9, Theor. 2.3].
(ii) See [9, Prop. 2.7(ii)]. O

A function u: E — G is said to be a measure if, for every a, b € E with a < b,
1) — u(a) = b\ a) = w(a/b). The map u is a measure if and only if, for every
a, b € E such that the sum a + b exists, u(a + b) = u(a) + w(b).

If w:L — G, we say that u is modular if, for every a, b € L, u(a Ab)+
wa vV b) = wa) + wd).

A uniformity U on L is said to be a lattice uniformity if the lattice operations
are uniformly continuous with respect to . A lattice uniformity ¢/ on a pseudo-D-
lattice is said to be a D-uniformaty if all the pseudo-D-lattice operations are
uniformly continuous with respect to U.

By [3, Theor. 2.9] every modular measure on L generates a D-uniformity 2/(x).

A lattice uniformity &/ on L; is said to be exhaustive if every monotone se-
quence is a Cauchy sequence, og-order continuous (o-o.c. for short) if every
monotone sequence is convergent and order continuous (o.c. for short) if the
same holds for nets.

If u: L1 — G is a modular function, u is said to be exhaustive (o-o.c. or o.c.,
respectively) if U(u) is exhaustive (g-o.c. or o.c., respectively).

3. — Pseudo-central and central elements.

In this section we will define pseudo-central elements in pseudo-effect alge-
bras, generalizing the definition of central elements in effect algebras. We will
prove the crucial fact (see Theorem 3.17) that pseudo-central is equivalent to
central. In order to prove that fact, we will also prove several properties of
pseudo-central elements. These results are essential tools in Section 4.

We begin by generalizing to pseudo-effect algebras the notions of sharp and
principal elements. We will also show that every pseudo-central element is
principal and every principal element is sharp.

DEFINITION 3.1. — We say that p € E is sharp if p Ap+ = 0.

Note that this definition looks exactly the same as in effect algebras. In
particular it seems that 1p is not taken care of.
But this does not cause any problem, as we are going to see.
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PROPOSITION 3.2. — Let p € E. The following are equivalent:

(1) p is sharp;

@) pvp=1;
@) pAtp=0;
@ ptvp=1

Proor. — (1) & (2) By Proposition 2.3 and Proposition 2.2(ii)), we have
LpAph) =tpvEpl) =LpVp. Hence p A pt = 0 (i.e. p is sharp) if and only if
L _

pVvp=1

(1) = (3) Suppose that p is sharp, and let ¢ € E with e < p and e < *p. Setting
h = (e/p)/p, we clearly have & < p and, since p = (“p)* < e, we also have, ap-
plying Proposition 2.2(v) and (vii),

h = (e/p)/p < (e/p)/e* = (e/p)/(e/1) = p/1 = p*,

so that 2 < p A p* = 0. Therefore ¢/p = p, and hence ¢ = 0.
(8) = (1) Similar to (1) = (3).
(3) & (4) Similar to (1) < (2). O

COROLLARY 3.3. — If p € E is sharp, then +p and p* are sharp, too.
PROOF. — Indeed 1p A (*p)* =Lp A p = 0 and similarly for p*. O

In order to introduce principal elements, the notion of ideal is useful (see [11,
Def. 3.4(1)]). We include it in the definition below for convenience.

DEFINITION 3.4. — An ideal of E is a nonempty subset I C E with the fol-
lowing properties:

I1) Ifaeclandb < a, then b € I.

I2) Ifa,belanda L b then a+b € I

We say that an element p € E is principal if [0,p] is an ideal (i.e. I = [0, p]
satisfies (12)).

PROPOSITION 3.5. — Let p € E. The following hold:

(a) If p is principal, then p is sharp.
(b) If e A p exists for every e € E (in particular if E is a pseudo-D-lattice)
and p is sharp, then p is principal.

ProoF. — (a) Consider any d € E with d < p and d < p*. We have p L d by
Proposition 2.2(i), and p+d < p because p is principal. Hence p+d = p,
ie.d=0.
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(b) Let a,b € E,with a <p, b <pand a L b. We have a/p < p and also, by
Proposition 2.2(v), a/p < a/1 = a*. Hence a/p < a' Ap (which exists by as-
sumption). Moreover, applying Proposition 2.2(xi), (v) and (vii), we have

(a/p)/(a* Ap) = (@/p)/a’) A ((@/p)/p)
< ((a/p)/(@/D)) Ap=@/DAp=p"-Ap=0,
and hence a/p =a* Ap. Since a L b, by Proposition 2.2(0) b < at, so that

b < at Ap = a/p. It follows, by Proposition 2.2(iv), that @ + b < a + (a/p) = p.
O

Note that principal elements also are defined exactly as in effect algebras.
In the same way we generalize the definition of central element of effect al-
gebras. What we obtain is temporarily called pseudo-central element.

DEFINITION 3.6. — We say that p € E is pseudo-central if, for every a € E,
both a A p and a A pt exist and we have
1) a=(@Ap)V@nph.

One would expect that, as in the commutative case, the above should turn out
to be an alternative equivalent definition of central elements. Indeed, this is just
the case, as we will see in Theorem 3.17.

PRrOPOSITION 3.7. — If p € E is pseudo-central, then, for every a € E, both
aVpandaV p- exist.

PROOF. — Let a € E. Since p is pseudo-central, both “a A p and a* A p* exist.
Now, by Proposition 2.3 and Proposition 2.2(ii), we have
Hat Aph)=t@H Vi@ =avp

and, similarly,
Fanpyt =Ca) vpt=avp. O

Now we prove some basic properties of pseudo-central elements.

PROPOSITION 3.8. — If'p € E is pseudo-central, then p is principal (and hence
sharp).

Proor. — Inview of Proposition 3.5(b), it suffices to show that p is sharp. Now,
putting @ = 1 into (1), we get 1 = (1 Ap) V(1 A p*) = p V p*, and the conclusion

follows from Proposition 3.2. O

PROPOSITION 3.9. — If p € E is pseudo-central, then +p = p*.
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PRrOOF. — Putting @ ='p into (1), recalling that p is sharp and applying
Proposition 3.2, we get

p=CpApVEpApH) =0V pAph) =Tpaph
so that ‘p < p', whence p L+p. Now (again by Proposition 3.2) we have
p+ip>pVvip=1,ie. p+=1p=1,and therefore ‘p = p. O

COROLLARY 8.10. — Ifp € E is pseudo-central, then p* also is pseudo-central.

PROOF. — Let g = p*. From the previous result and Proposition 2.2(ii) it fol-
lows that ¢+ = (p)* = (*p)* = p. Hence, for every a € E, both a A g and a A ¢+
existand (@ A Q) V (@A qgt) = (@Apt)ViaAp) =a. O

In order to prove Theorem 3.17, which is the main result of this section, a
number of preliminary facts on pseudo-central elements are needed.

LEMMA 3.11. — If p € E is pseudo-central, then, for every a € K, we have
a<(@Ap)+(aAph)and a < (a A*+p)+ (aAp).

ProoF. — Let a € E, and note that by Proposition 2.2(i) the sums (a A p) +
(@ Apt) and (a A+p) + (a A p) are both defined.
Since p is pseudo-central, by Proposition 3.7 and Proposition 2.2(ix), we have

a=@Ap)V(@Ap) < (anp)+(aAph).
The second inequality is proved similarly, taking into account also that, by

Proposition 3.9, we have +p = p*. O

LemMmA 3.12. — If p € E is pseudo-central, then, for every a € E, we have
(avp\a<taApanda/aVp) <atAp.

ProoF. — Let a € E and note that, as seen in Proposition 3.7, a V p exist.
Now, applying Proposition 2.2(viii), Proposition 2.4, the previous lemma and
Proposition 2.2(v), we get

@vp\a="‘@vp)/a=Cantp)/a
<Cantp)/(Fantp)+Canp)="+anp.

The other inequality goes similarly. d

LemMmA 3.13. — If p € E is pseudo-central, then, for every a € E, we have
p+@Aph)=@A*p) +p=pVaAph).
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ProOF. — First observe that, by Proposition 2.2(ix), we have p + (a A pt) >
pV(aApl); similarly, taking also Proposition 8.9 into account, we have
(@A*p)+p>pVianph).

Now applying Proposition 2.4, Proposition 2.2(v), Proposition 3.8 and
Proposition 3.2, we get

(p+@ApH)\(pV(aAph)
=((p+@rp))\p) A ((p+ @ApH)\(@Aph)
(p+@ApH)\p) Ap<A\P) AP ="pAp=0.

The other equality goes similarly, taking Proposition 3.9 into account. O

The supremum in the definition of pseudo-central element is in fact a sum.

PROPOSITION 3.14. — Ifp € Eis pseudo-central, then, for every a € E, we have
a=(aAp)+(@np")=(aAp +(aAp)

ProoF. — Let a € E. By Lemma 3.11, we already have a < (@ A p) + (a A pt)
and a < (@ A*p) + (a A p).
First, we claim that

2) a/((anp)+(@nph)) <p .
Indeed, applying Proposition 2.2(vi), we get
a/lanp)+@Aph) <@Ap)/(@Ap)+(@anpt) =anp- <p'
Now we claim that:
(3) a/((@np)+(@rph)) <p.
Indeed, observe that, by Proposition 2.2(iv) and Lemma 3.13, we have
(@Ap)+@Ap)<p+@nrp)=pVierp ) <aVp.
Therefore, applying Proposition 2.2(v) and Lemma 3.12, we obtain
a/(@np)+@nrph) <a/laVvp) <a Ap<p,

so that (3) is proved.
Finally, putting (2) and (3) together and recalling Proposition 3.8, we have

a/((@Ap)+(@nph) <pApt =0,

whence a = (a Ap) + (a A pb).
The arguments to prove that a = (a A +p) + (a A p) are analogous. O
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COROLLARY 3.15. — If p € E' is pseudo-central, then, for every a < p and
b < pt, the sums a + b and b + a both exist and are equal.

PRrOOF. — Since a < pand b < p*, we have ¢ L b; moreover, since *p = p* by
Proposition 3.9, we also have b L a.

Letc=a+bandd = b+ a. We clearly have ¢ Ap > aand ¢ A pt > b, as well
asd Ap>aanddApt > b. The previous proposition implies that

c=@CAP+CAp =@CAp)+(Ap) >b+a=d,
and also that
d=UdAp) +WdAp)>a+b=c;

hence ¢ = d. O
The following observation will be useful in the proof of the next theorem.

LEMMA 3.16. — Leta,b € Ewitha L b. Ifc <a,d<bandc+d =a+ b, then
c=aandd=">0

Proor. — Since ¢ < a, we have ¢ L b by Proposition 2.2(i). Hence, applying
Proposition 2.2(iv), we get

a+b=c+d<c+b<a+bd

so that ¢ + b = a + b, whence ¢ = a by Proposition 2.2(iii). Similarly one shows
that d = b. d

We are now ready to show that pseudo-central and central are equivalent
concepts.

THEOREM 3.17. — Any p € E s central if and only if it is pseudo-central.

Proor. — Suppose that p is central. We have seen in Proposition 2.6(i) that,
for every a € E, a Ap and a A p* exist; moreover a = (a A p) V (@ A pt) by [9,
Prop. 2.2(vi) and (vii)]: thus p is pseudo-central.

Conversely, suppose that p is pseudo-central. Define f: E — [0, p] x [0, p'] as
follows:

(4) VYo € B f(a) = (@ Ap,aAph).

By Proposition 3.8, we have f(p) = (p Ap,p A p*) = (p,0), i.e. (C1) is satisfied;
furthermore (C2) follows immediately from Proposition 3.14. It remains to show
that f is an isomorphism.

To see that f is one-to-one, note that if f(a) = f(b) then, by Proposition 3.14,

b=(aAp) +(anph)=a.
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Too see that f is onto, consider any (k,k) € [0,p] x [0,p]. Observe that
h 1L k so we can define a =h+ k. Since a Ap exists and a > h, we have
a Ap > h, too. Similarly a A pt > k. Being (@ Ap) + (@ Apt)=a=h+k, we
may apply Lemma 3.16 to get that h=aAp and k =a Ap*. Therefore
(h,k) = f(@).

Nowlet a,b € E: we complete the proof by showing that @ L bin £ if and only
if f(a) L f(b) in [0, p] x [0, p*] and, in this case, f(a) + () = f(a + D).

If @ L bin E, then clearly (a A p) L (b Ap)and (@ A pt) L (b Apl), hence we
can consider the sum

((@Ap)+ B ADP).@nph) +bAPYH) =f(a)+f0),

which means that f(a) Lf() in [0,p] x [0,p*]. Conversely, suppose that
fl@) Lf(d) in [0,p] x[0,p*]. Then the sums c=(aAp)+OAp) and
d=(a Apt)+ (bAph) exist in E; by Proposition 3.10 and Proposition 3.8, we
have ¢ < p and d < p*. Hence it is well defined in £ the sum

ct+d=(@Ap)+bBADP) +@Aph)+ B APH).

Since by Corollary 3.15 (b A p) + (a A p*) = (a A pt) + (b A p), we have, applying

Proposition 3.14,

(5) c+td=@Ap)+@Ap)+bBAP) +BGAPT) =a+b,

so that a | b. Finally, by Proposition 2.2(iv) we have c < a+ b and d < a + b,

hence ¢ < (@ + b) Ap and d < (a + b) A p*; moreover, by Proposition 3.14,
a+b=(@a+bAp)+ ((@+bApH)

and this, together with (5), implies by Lemma 3.16 that ¢ = (a + b) Ap and
d = (a + b) A pt. Therefore

fla+b)= ((a+b) Ap,(a+bAp) =(c,d)
= ((@Ap)+ (B ADP),(@Aph) + B ApH) = f(a) +f(b). O

Theorem 3.17 above allows us to characterize central elements in a pseudo-D-
lattice L.

PROPOSITION 3.18. — Let p € L. The following are equivalent:

1) p s central.

(2) For every a € L, we have a = (@ A p) + (@ A pt) = (@ A pt) + (@ A p).

B) p is sharp and, for every a €L, we have a\(aApt)<p and
a\(@Ap) <p*

4) p is sharp and, for every a €L, we have (aAp)/a<pt and
(@nph)/a<p.
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Proor. — (1) = (2) It follows from the definition and [9, Prop. 2.2(v), (vi) and
(vii)]. (Alternatively, apply Theorem 3.17, Proposition 3.9 and Lemma 3.11.)

(2) = (3) Setting a = p, we obtain p = (p A p) + (p A p*), and hence p Apt =0.

Now, for every a € L, we have a\(a Ap*) = ((@Ap) + (@ ApH))\(@Aph) =
a Ap < pand, similarly, a\(a Ap) = ((@ Ap) + (@ Ap)\(@Ap) =anpt <ph

(2) = (4) Analogous to (2) = (3).

(3)= (1) Let a € L. Applying Proposition 2.4, we get

a\(@rnpH)Vianp) = (a\(@Aph) A (a\l@aAp) <pApt =0,

and, consequently, a = (a A p*) V (a A p). Hence p is central by Theorem 3.17.
(4) = (1) Analogous to (3) = (1). O

In the sequel we will also use the following properties of the centre of L.

ProposiTION 3.19. — (a) A sequence (p1, ..., p,l) m C(L) 18 orthogonal if and
only if pn A pr = 0 whenever h # k. In this case, Z pr = \/ pr € C(L).

(b) C(L) is a Boolean algebra as a subalgebm of L.

(¢) C(L) is contained in the lattice-theoretical centre of L.

() If {aj:j€J} s a subset of L with a=\/a; and p € C(L), then
V (aj Ap) =a Ap. Jel
jed

(e) If (ay,...,a,) is an orthogonal sequence in L and p € C(L), then
n n

(Z%) Ap =) (ag Ap).

k=1 k=1
® If a€L and (p1,...,py) is an orthogonal sequence in C(L), then

n n
andpr = @npg).
=1 =1

Proor. — (a) Suppose that p;, A p = 0 whenever & # k. Then the sequence is
orthogonal and > p;, = \/ pi € C(L) by [9, Prop. 2.7G)].
=1 k=1

Conversely, we assume that (py,...,p,) is an orthogonal sequence and prove
that p;, A p, = Owhenever h # k (h,k € {1,...,n}). We proceed by induction on n.

If n = 1 the assertion is trivial. So suppose # > 1 and let the assertion be true
forn—1. |

Set p = > px; we have p;, < p for every k € {1,...,n — 1}, hence it suffices

to show tha]:t lp A py = 0. Now, since p L p,, we have p, < p* and therefore
PADPy <PpAPt =0 by[9, Prop. 2.2(iii)] (or, alternatively, by Theorem 3.17
and Proposition 3.8).

(b) By Proposition 2.7(1), C(L) is a Boolean algebra and a sublattice of L.
Now, by (a), if p,q € C(LL) and p L q, we have p + q € C(L.). Hence C(L) is a
subalgebra of L.
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(e) Let Cy(L) denote the lattice-theoretical centre of L. Since p € Cy(L) if and
only if there exists ¢ € L with p Aq =0 and such that, for every a € L,

a=(aAp)V(aAq), it follows from Theorem 3.17 that C(L) C Cy(L).
(d) follows from (e).

(e) Let f(a)=aAp for every a € L. By Proposition 2.6(iii), we have
( > ak) Ap :fp( > ak) =3 flar) = X (ax Ap).
k=1 k=1 k=1 k=1
(f) follows from (a) and Proposition 2.7(ii). O

4. — Hahn decomposition theorem.

In this section, let u: L — R be a modular measure.

We need the following result from [3, Theor. 2.12].

THEOREM 4.1. — Let U be a D-uniformity on L. Then:

@ NU) =n{U: U eU} is a DV-congruence and a lattice congruence.

(b) The quotient L= L/NU) is a pseudo-D-lattice and the quotient uni-
formity U is o Hausdorff D-uniformity.

(¢) If (L,U) is the uniform completion of (L), then L is a pseudo-D-lattice
and U is a D-uniformity on L. Moreover, if U is exhaustive, then U is o.c. and
(ﬂ, <) is complete.

(d) If uis U-continuous, then the map [t defined as ji(a) = u(a) fora € a € L
is a well-defined modular measure on L and i is the unique U-continuous ex-
tension of jt on L. Moreover, (L) is dense in j(L).

We will denote N(@U(w)) by N(u). We have
N@) ={(a,b) e L x L : u(c) = 0 for every ¢ < (a V b)\(a A D)}

Recall that, since u is a modular function, the quotient L/N(x) is modular
[19, Prop. 2.5 and Prop. 3.1].

Moreover, the closure of 0 in /(u) is

I(w)={aeL: ub)=0 for every b < a}
and (a,b) € N(u) if and only if (a Vv b)\(a A b) € I(w).

PROPOSITION 4.2. — The following statements are equivalent:
1) u is bounded.

(2) u is exhaustive.

3) u is of bounded variation.
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Proor. — By [19, Prop. 2.7] the equivalence holds for all modular measures
defined on lattices L’ which verify the following condition:
For each finite chain ag < ... < a, in L' and each I C {1,...,n}, one has

> lua) — waip)] € W) — ).

el

We now prove that L satisfies the above condition.

Let ap <...<a, be a finite chain in L. Set b; = a;_1/a; for every i < n.
By [3, Lemma 3.3] (b1,...,b,) is an orthogonal family in L and, for
I={hy,....hy;} C{1,...,mn} with h; < ... <hy, we have

k k k
Z [lan,) — way;—1)] = Zu(bhj) =pu (Z bh,) € ull) C L) — p(L). O
j=1 j=1 j=1

DEFINITION 4.3. — We say that an ideal I is normal if

(I3) Foreverya,r,s € Ewithr 1L a,a L sandr+a =a+s, we haver € I if
and only if s € L.

We say that an ideal I is a Riesz ideal if it satisfies the following Riesz de-
composition property:

(I4) Given a, b € L such that there exists the sum a + b and given ¢ € I with
c < a+b, then there exist ay, by € I such that a; < a, by < b and ¢ < ay + b;.

PROPOSITION 4.4 [14, Theor. 4.9]. — Let I be a normal Riesz ideal of L.
Suppose that r = sup I exists. Then r is a central element.

PROPOSITION 4.5. — Let L be complete and let 1 be positive. Set r = sup I(u).
Then r 1s a central element.

Proor. — By Proposition 4.4 it is sufficient to prove that I is a normal Riesz
ideal.

Obviously, I(x) is an ideal.

It is normal since, from r + @ = a + s it follows that u(») = u(s) and hence,
r € I(w) if and only if s € I(w).

We now prove that I(u) is a Riesz ideal.

Let a, b € L such that there exists a + b and r € I(u) with » < a + b. Set
i=@Vvb\bandj=1/GVr).

Sincei? L bandi+b=1rVb<a+ b, wehave ¢ < a. Moreover, the sum 7 + 5
exists and

i+j=ivVr<@®VvVbVvVr=rvb=1+b,
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whence j < b. As r € I, we have
u(@) = pu(r Vv b) — u) = pu(r) — u(r Ab) = 0.

Therefore ¢ € I. Since j <i,wegetjel.Soi+j=iVr>r. O

PROPOSITION 4.6. — (a) Letp € Lwith u(p) = sup u(L). If a < p, then u(a) > 0;
ifa<ptora<-=tp then ua) <O0.

() If N(w) = 4 and u(p) = u(r) = sup w(L), then p = 1.

(e) If N(u) = 4 and u(p) = sup u(L), then p =+ p and p* is the only com-
plement of p.

Proor. — (a) Let a < p and ¢ = p\a. Then u(a) + u(c) = u(p) > wu(c), whence
wa) > 0.

If a < pt, by Proposition 2.2(1) there exists p +a and wu(p) > ulp +a) =
u(p) + u(a), so u(a) < 0. Analogously, if a < *p, we obtain that u(a) < 0.

(b) Set m =supu(L). Since upAr)<m, u(pVvr)<m and ulpAr)+
wpVr)=up)+ ur)=2m,wehave u(pVvr)=ulp Ar)=m.Seta =(pVr)\(pAr).
We will show that a = 0.

Let b < a. We get

(6) 0 = u(@) = u(b) + u(a\b).

Since b <pVvr and a\b<a<pVr, it follows from (a) that w(b) >0 and
1(@\b) > 0. From (6) it follows that u(b) = u(a\b) = 0. Since N(u) = 4, we get
a=0.

(¢) By (a), we obtain u(c) =0 whenever ¢ < pApt or ¢ <*pAp. Since
N(u) = 4, we get p Apt =+pAp=0. By Proposition 2.3 we have 1pVp=
ptvp=1.

Let ¢ be a complement of p. We have

1(g*t) = u@) — u(q) = u(p v @) + ulp A q) — 1(q) = u(p).

From (b) it follows that g = p, whence ¢ =*p. Since +p and p' are two com-
plements of p, we get *p = p*. O

THEOREM 4.7. — If N(u) = 4 and u(p) = sup (L), then p is a central element.
Proor. — We first establish a couple of claims.

CLAIM 1. — For every a € L with a A p = 0, we have a < p*.

By way of contradiction suppose that a £ p+. Then w = a\(a A p*) # 0.

Moreover, we get “a A p # p, otherwise we would have p <*ta, from which
1
p- = a.
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By Proposition 4.6(b) it follows that u(*a A p) < u(p). Then
uCta v p) = uCta)+ up) — up Ata) > p(ta).
It follows that
0<uCtaVp) —uta) = ul) — ula Ap) — ) + ua)
= wa) — wa Ap™) = uw).

On the other hand, as a Ap = 0 and w < a, we get w A p = 0.
Hence u(w) = u(w Vv p) — u(p) < 0, a contradiction.

CLAIM 2. — For every b € L, we have b\ (b A p) < p*.

Letbe L.Puta =b\(bAp),c=aVp,d=bVp,e=cAptandf =dAp*.
Notice that e < f, since ¢ < d.

We will show that u(a A p) = u(f\e).

We have

wa A p) = pa) + up) — ua Vv p) = ub) — wb Ap)+ wp) — waVp)
= bV p)— up) + up) — waVp) = wd) — uc).
Since ¢ < d and p V p* = 1 by Proposition 4.6(c), we have by modularity of L
cVptAd)=(cvpHAad=(@VpVp)Ad=d.
Moreover, we get
w(d) = u(©) + pp* Ad) — (e Ap* Ad) = () + u(p™ Ad) — (e A ph).
It follows that
wa Ap) = u(d) — u(e) = ulp= Ad) — p(c Ap*) = u(f) — ue) = u(f\e).

As f\e <f < p*, by Proposition 4.6(a) we have u(f\e) <0 and, hence,
wa A p) <0.O0n the other hand, since a A p < p, by Proposition 4.6(a) we have
wa A p) > 0. It follows that u(a A p) = 0, whence u(p\(a A p)) = u(p).

By Proposition 4.6(b) it follows that p\(a A p) = p, from which a Ap = 0.
From Claim 1 it follows that @ < p*, and Claim 2 is proved.

Now, as —u is a modular measure with N(—u) = N(u) and —u(pt) =
sup (— (L)), we apply Claim 2 and we obtain that

(7) VoeL b\(bAph)<p.

Finally, since by Proposition 4.6(c) p is sharp, from Claim 2 and (7) we deduce,
applying Proposition 3.18(3), that p is central. O

In what follows, we denote by y, the map defined by w,(b) = u(a A b) for
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b € L. Asin[4]itis easy to see that, if a is a central element, then ¢, is a modular
measure and u = p, + pg =y, + to,. Moreover, if u is o.c., then g, and
Hg1 = i, are o0.c., too.

THEOREM 4.8. — Let p € L, g = p* and r =1 p. Then

(@) The following conditions are equivalent
(1) pu(p) = sup (L)
) u(@) = u(r) = inf u(L).
) wy, pg and w, are modular measures with p, = p,., p, > 0, p, < 0 and
=y + )

(b) If u(p) = sup u(LL), the equivalence classes p,q and # in L = L/N(u) are
central elements, ¢ =7, q is the unique complement of p and u(w) = sup u(L)
mmplies w = P.

(¢) If L is o-complete and u is o-additive, there exists an element p € L such
that u(p) = sup u(L).

PROOF. — (a) < (2) is obvious since u(q) = u(r) = u(1) — w(p).
(1) = (3): We may suppose N(u) = 4 since we may substitute L by L and u
by .. By Proposition 4.5 p is a central element. By Proposition 3.9, Corollary 3.10
and Theorem 3.17 we get ¢ = 7 and q is central element, too. By Proposition 4.6
uPZOanduqSO.
(3) & (1): Let @ € L. We have u(a) = u,(a) + u,(@) < p,(a) < u,(1) = pu(p).
Therefore u(p) = sup u(L).
(b) follows from Proposition 4.6 and Proposition 4.5.
(e) follows from [19, Prop. 1.2.2]. O

COROLLARY 4.9. — If L is complete and u is o.c., then there exists a central
element p € L such that u(p) = sup u(L).

ProoF. — We can suppose u # 0.

Observe that u is exhastive. Indeed, by [19, Prop. 3.5 and Prop. 3.6] u is o.c.
(0-0.c., exhaustive) if and only if the g-uniformity is so and, by [18, Prop. 8.1.2],
every ¢-o.c. lattice uniformity on a g-complete lattice is exhaustive.

Then by Proposition 4.2 the total variation v of 1 is bounded, and therefore, by
[20, Theor. 1.3.11], x and v generate the same topology. Then we have

I(w) ={a € L : v(a) = 0}.

By Proposition 4.5 there exists a central element ¢ € L such that (1) = [0, c].
Then, for every a € L, a = (a A ¢) + (a A ¢*), from which

wa) = pla A e)+ ula A et) = planct).

and hence sup u(L) = sup ([0, c¢*]).
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Now observe that [0, c*] is a complete pseudo-D-lattice and the restriction of
4 to [0,¢] is an o.c. modular measure. Moreover, since

IW) = {a €[0,c¢*]: /(b)) =0 for allb < a} C I(w)N[0,c"]= {0},

we have N(i/') = A.

Then by Theorem 4.8 there exists a central element p € [0,¢'] such that
w1 (p) = sup /(L) = sup u(L). Since ¢ is central in L, by [9, Prop. 2.8] p is central
in L, too. O

5. — Uhl’s and Kadets’ theorems.

In this section X is a Banach space and yu: L — X is a modular measure.

We will show a Uhl type theorem and a Kadets type theorem concerning the
convexity and compactness of the closure of the range.
We need some definitions.

DEFINITION 5.1. — We say that 1 s nonatomic (or strongly continuous) if for
every ¢ >0 there exists an orthogonal family (ai,...,a,) tn L such that
a1+ ...+ a, =1and ||ud)||<eforb < a; with i < n.

We say that u is atomless if for every a € L with p(a) # 0 there exists b<a
with u(b) # 0 and wd) # wa).

PROPOSITION 5.2. — The modular measure u is nonatomic if and only if for
every 0-neighbourhood U in U(w), there exists an orthogonal family (a4, ..., a,)
m L such that a1 + ... +a, =1 and a; € U fori < n.

ProoF. — By [3, Theor. 2.9] a basis of U(u) is the family formed by the sets

{(a,b) € L x L : ||u(c)|| <e for every ¢ < (a V b)\(a A b)}

with ¢ > 0.
Hence a basis of 0-neighbourhoods in ¢(y) is the family formed by the sets

{a e L: ||ub)|<eforb<a}

with ¢ > 0. The proof is now straightforward. O

PROPOSITION 5.3. — For every a € L, |u|(a) = sup{z @D = (i, ... by) is
an orthogonal family in L with by + ...+ b, = a}. =
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ProOF. — Let a € L and (a) = sup{z [le®)] = (b1, ..., by)is an orthogonal
family in L with by + - - + b, = a}. =

Let ay,...,a, be elements in L such that 0 = ay < a; < a, = a. For every
1 <m, put b; = a;_1/a;.

By [3, Lemma 3.3] we have that (by,...,b,) is an orthogonal family in L and
b1+ ...+ b, =0/a =a. It follows that

D llian) = plai D = (|| < i),
i=1 =1

whence |u|(a) < u(a).

Now let (by,...,b,) be an orthogonal family in L with b; + ...+ b, = a. Put
ap=0and a; =by+---+b;forie{l,..., n}.

Weget0=ay<a; <---<a,=aandb;, =a;1/a; forevery i € {1,...,n}.
It follows that

S lu@dl =" llut@) — ulai-p|| < |ul(@),
-1 -1
whence z(a) < |u|(@). |

DEFINITION 5.4. — We say that a poset E is a B-poset if it is endowed with 0
and 1, a binary relation | on L and a partially defined binary operation & which
satisfy the following conditions:

(B1) The sum a @ b is defined if and only if a L b.

(B2) Foreverya e Ewehavea®0 =00 a =a.

B3) Ifa < b, there existsc € Ewitha L cand a®c=>.
B4) Ifd<c,b<aandc La, thend Lbandd®db<cda.
B5) Ifa <c<adb, then there exists d < bwitha & d = c.

Arguing as in the proof of [3, Theor. 3.7], one sees that every pseudo-effect
algebra is a B-poset if one defines @ ®© b = a + b and the sum a + b is defined if
and only if a L b.

Consequently we obtain

THEOREM 5.5. — (a) |u| is a modular measure.

(b) If L is o-complete and u is o-additive, then uis nonatomic if and only if 1
s atomless.

(¢) If L is o-complete, X = R" and u is nonatomic, then u([0,al) is convex for
every a € L.
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ProoF. — (a) |u| is modular by [20, Prop. 1.3.10], and is a measure by
[5, Prop. 4.6].

(b) is observed in [5, §4].

(e) is proved in [3, Theor. 3.7] applying [5, Theor. 3.8]. O

In the sequel we will use the following notation:

NOTATION 5.6. — Let v: L — [0, oo[ be a measure, and A be a Boolean sub-
algebra of C(L). Put

S,(A) = {invai meN,xeX, a; € A}.

1=1

The following results go similarly to Lemma 3.1 and Theorem 3.2 of [4],
making use of Proposition 3.19(a), (d), (e) and (f).

LEMMA 5.7. — Let v: L — [0,00[ be a measure and A be a Boolean sub-
algebra of C(L). Then:

(a) Every element y € S,(A) is a measure on L with values in X. If v is
modular, y is modular, too. Moreover, if v is o.c. or nonatomic, y is so.

(b) For every element y € S,(A) there exists s € N, y1,...,ys in X and a

S S

disjoint faomily (by,...,bs) i A with \/ b;=1, y=> y;w and |V|1A(1) =
s i=1 i=1
> yillv(ba), where |y], 4 denotes the restriction of |y| to A.
i=1

We recall that X has the Radon-Nikodym property if, for every g-algebra X
of subsets of X, for every real g-additive measure v on 2 and for every X-valued
v-continuous measure u of bounded variation, there exists a v-integrable function

f with u(A) = [fdu for all A € =
A

THEOREM 5.8. — Suppose that X has the Radon-Nikodym property. Let
v: L — [0, o[ be a measure, A be a Boolean subalgebra of C(L) and 4 : A — X be
a v-continuous measure of bounded variation.

Then there exists a seq@ggnce nen S, (A) (see Notation 5.6) such that the

map u defined as w(a) = > vy(a) for a € L is an X-valued measure which ex-
tends 1. n=1

LeEMMA 5.9. — Suppose that for every ¢ > 0 and for every a € L, there exists
1
b < a with H w(b) — 5 ﬂ(a)H <e&. Then the closure of u(L) is convex.
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ProoF. — It suffices to show that for every ¢ > 0 and for every a, b € L, there

exists s € L with Hﬂ(s) — M H <e.

Lete>0and a, b€ L. Put ¢ = a\(a A D) and d = b\ (a A b). By assumptions
there exists ¢, < ¢ and d, < d such that

@)

o252

&
2 H <3
From Proposition 2.2(x) it follows that ¢ A d = 0, so that ¢, A d; = 0, too. Hence
ule, vV dy) = ulc,) + uld,).
Now, as ¢ <*(aAb), we have a Ab <c' <c¢} and analogously a Ab <
d* < d}, whence
aAb<ctAdE=(cVvd)".

Put s = (¢, vV d,) + (a A D). Since
wu(s) = wla A b) + e, V de) = wla A b) + ple,) + u(dy),

we have
o121
= Hﬂ(a Ab) + ule,) + wu(d,) — @ _ #(aTAb) _ /%d) B ﬂ(aZA b) H
< tea —9 |+ ot -2 < ;

Now we can prove a Uhl type theorem:

THEOREM 5.10. — Suppose that X has the Radon-Nikodym property and u of
bounded variation. Then u(L) is relatively compact. Moreover, if 1 is nonatomic,
then u(L) is convex.

Proor. — We denote by v the total variation of .
The proof goes into two steps:

STEP 1. — First suppose that (L, < ) is complete and y is o.c.. As v is bounded,
by [20, Theor. 1.3.11] u and v generate the same topology. So v is o.c., too (see
Proposition 5.2). Moreover, if u is nonatomic, by Proposition 5.2 v is nonatomic,
too.

Applying Theorem 5.8 we find a sequence (v),en in S, (C(L)) (see

o0
Notation 5.6) such that u(a) = > v(@).

n=1
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Now the argument proceeds in a similar way as in [4, Theor. 5.2], applying
Corollary 4.9.

STEP 2. — We now drop the assumption (L, <) being complete and u being
o.c. We use the same notation as in Theorem 4.1.

Let U be the D-uniformity generated by v, L = L/NU), U be the quotient
uniformity and (L,i{) the uniform completion of L,U). As v is bounded,by
Proposition 4.2 v is exhaustive, too; so is U by [19, Prop. 3.6].

From Theorem 4.1 it follows that/ is o.c. and (L, <) is a complete D-lattice.
We recall that by [3, Theor. 2.9] a basis of the D-uniformity generated by a
modular measure A is the family formed by the sets

{(a,b) e L x L : ||A(c)|| <e, for every c < (a Vv b)\(a A b)}

with ¢ > 0.

Since ||u(@)|| < v(a) for every a € L, we have U(w) <U, so u and v are U-
continuous. By Theorem 4.1 the maps ji(a) := u(a) and ¥a) := v(a) fora € a € L
are well-defined {/-continuous modular measures.

Observe that j; and v are the unique o.c. Z/-continuous extensions of x and v,
respectively, with ﬁ(ﬂ) = u(L).

Moreover, j is of bounded variation. In fact we show that ||ji(a)|| < ¥(a) for all
aclL.

Indeed, if @ € L and & > 0, there exists b € L such that ||(b) — ()| < ¢ and

. - e . ~ - ~ . 2
[n(b) — Wa)| < o since & and v are U-continuous. Then

@) < %Jr )| < §+ W) <&+ W(a).

In a similar way we see that if x is nonatomic, it and & are nonatomie, too.
Therefore we can apply Step 1. O

COROLLARY 5.11. — If X = R" and u is nonatomic, then u(L) is convex and
compact.

Proor. — Apply Theorem 5.10, since i being nonatomic implies x of bounded

variation. Indeed, if y = (14, ...,u,) is nonatomic, then, for every i <m, y; is
nonatomic and hence bounded. By Proposition 4.2 every y; is of bounded variation
and so is u. O

REMARK 5.12. — If L is o-complete and x is g-additive, in 5.10 the assumption u
being nonatomic can be substituted by « being atomless like in [17], since these
two notions are equivalent (see Theorem 5.5(b)).

The last result has been proved by Kadets in [15] for g-additive measures on
g-algebras. We need a lemma.



468 ANNA AVALLONE - GIUSEPPINA BARBIERI - PAOLO VITOLO

LEMMA 5.13. — Let v: L — [0,+ ool be a measure. Suppose that, for every
a €L and a € R with 0<a<v(a), there exists b < a such that v(b) = a.

Then, for every a e L and m €N, there exists an orthogonal family

1
(a1,...,ay) n L with Z a; = a and v(a;) = " wa) for each © < m.
i=1
Proor. — Let v(a) € L with v(a) > 0.
We proceed by induction on 7 € N. The beginning is obvious.

-1
By assumption there exists b < a with v(b) = v(a). By induction there

exists anlorthogonal family (aq,...,a,_1) whose sum equals b such that
wa) = ——~ V(b) fV(a)
m—

Set a,, :=b/a. Then, as a =b+a,, =a1 + ... + Gp_1 + &y, We have that

(aq,...,ay) is an orthogonal family with w(a,,) = v(a) — v(b) = %v(a). O

We recall that X is said to be B-convex if there exist an integer n > 2

and a real number O<k<1 such that, for every «,...,x, in X,
min ‘ 5 <lmsup|\xl|\
a;=+1

The concept of B conveXIty is independent from the Radon-Nikodym prop-
erty, as observed in [4, p. 164].

THEOREM 5.14. — Suppose that X is B-convex and u is nonatomic with
bounded variation. Then (L) is convex.

ProoF. — As in Theorem 5.10 we can suppose that L is complete.
Let ¢ > 0 and a € L. By Lemma 5.9 it is sufficient to prove that there exists

1
b < a such that H u(b) — 5 ,u(a)” <&, and we may clearly assume u(a) # 0.
Choose n and k as in the definition of B-convex spaces and s € N such that
ki(a) <e. Set r = n’. Since 1 is bounded, by [20, Theor. 1.3.11]  and || generate

the same topology. Hence by Proposition 5.2 || is nonatomie, too.

Since L is g-complete, by Theorem 5.5 |u|([0,a]) is convex. Therefore, by
Lemma 5.13 we can find an orthogonal family (a4, ..., a,) in L such that XT: a;,=a
and |u|(a;) = % |tt|(e) for each 7 < 7. =
Set

I:={hy,...; g} C{1,...,7r}, with by < -+ <l

and
{1,...,’}"}\1 = {tl,...,tw}, with ¢; < --- <ty
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k

Letar =" ay;- We have p(ay) =

j=1
Then

k
ap,).
=1

J

|t — )| =5 iu(ahj) - jﬁlu(atj)

from which we obtain

) 1 1 "
min Hu(az) — éﬂ(a)H =5 min H ; a;u(a;)

Choose b < a such that ||u(b) — %,u(a)H = mlin |lgeCar) — %,u(a)”. Then we get

1 1 1, 1
Hu(b) - -;m)H < krsup ey < Skrsup (e < K@< s <e O
2 2" e PR 2 2
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