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(9) IIT (2010), 421-446

Classical Free Energies of a Heat Conductor with Memory and
the Minimum Free Energy for its Discrete Spectrum Model

GIOVAMBATTISTA AMENDOLA - SANDRA CARILLO - ADELE MANES

Abstract. — F'ree energies, originally proposed for viscoelastic solids, together with their
corresponding internal dissipations, are here considered under forms adapted to the
case of rigid heat conductors with memory. The results related to the minimum free
energy of the discrete spectrum model are then compared with some of the classical
free energies of such conductors.

1. — Introduction.

The free energy functional, in the case of materials with memory, is not ne-
cessarily uniquely defined, hence the importance of its explicit expressions is
well known. The non uniqueness of the free energy has been shown in the linear
case [7] as well as in the general one by means of abstract formulations of
thermodynamics.

This problem was firstly studied in the case of viscoelastic solids (in alphabetical
order, see [7], [10]-[12], [15]-[17], [20]), for which some interesting functionals have
been proposed as free energies. In particular, the proof of existence of a bounded
and convex set, with a minimum and a maximum element, when free energies of
materials with memory are considered, is comprised, for instance, in [17].

Later on, this study has been extended to the case of linear rigid heat con-
ductors with memory within the framework previously proposed by Gurtin and
Pipkin in [18]. The linearization of such a theory, when isotropic materials are
examined, yields a constitutive equation involving the heat flux expressed by a
linear functional of the history of the temperature gradient [18]. It is well known
that such a relation represents a generalization of the Cattaneo-Maxwell equation
[8]. Thus, in such a context, some expressions for the free energy of these mate-
rials have been given in [4] and [1], by adapting those ones proposed for viscoelastic
solids, under the hypothesis that the material states of these conductors are
characterized by the present value of the temperature 9(¢), its past history , & "and
the integrated history of the temperature gradient g' (see [3] too).

In [2] the analogous problem is considered in the case when rigid heat con-
ductors are characterized by states expressed in terms of the temperature §(t),
its past history ,d" and the past history of the temperature gradient ,g’. Any
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free energy is given by the sum of two parts, one of which is due to the internal
energy, while the other one is related to the heat flux. These two contributes are
derived in [4] and in [2], for the classical free energies related to viscoelastic
solids. Only for the Graffi-Volterra functional it has been necessary to derive the
contribute due to the heat flux by integrating by parts the form given in terms of
g' in [4]; thus, the proposed expression is not formally similar to the one in-
troduced for viscoelastic solids.

Here, after recalling these expressions, we further develop the results related to
the minimum free energy of the discrete model of a heat conductor with memory,
characterized by relaxation functions given by the sum of exponentials, (see [5], [6]).
Thus, we are able to show that the minimum free energy of such a model is very
interesting since it can be compared with some classical free energies. From its form
we can derive the kernels related to the general form of free energy. Their expres-
sions show the equivalence of the minimum free energy to the Breur-Onat functional
and, in addition, the kernels which characterize the related rate of dissipation are
obtained. Finally, the Day functional is shown to be a special case of the minimum free
energy which corresponds to the case when only one exponential, instead of a sum of
exponentials, characterizes the two kernels for the discrete model.

The material is organized as follows. Section 2 concerns the basic equations of
the linear theory of rigid heat conductors with memory, the thermodynamic
restrictions on the constitutive equations further to some useful relations. In
Section 3, states and processes are introduced. In Section 4, the linearized local
form of the Second Law of Thermodynamics and the internal dissipation are
considered; moreover, the notion of the thermal work and its expression are
given together with the definition of the minimum free energy. In Section 5, the
classical free energies introduced for viscoelastic solids and already adapted to
rigid heat conductors with memory are recalled. In Section 6, the discrete
spectrum model together with the related minimum free energy is considered. In
particular, the expression for the minimum free energy is modified in a suitable
way to be compared with few classical free energies, which are recognized to
represent its special cases.

2. — Basic equations.

The linearized constitutive equations in the case of a homogeneous and iso-
tropie rigid heat conductor with memory B, read
+0o0
@2.1) e(x, t) —agdCe, £) + f d(s),8'x, 5)ds,
0

+00
(22) gy =— [ KGs)g'x,5)ds
0
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where, in turn, e represents the internal energy, q the heat flux, < the linear part
of the temperature variation, with respect to a uniform absolute temperature
0y, and g =V4 the temperature gradient, x € Q denotes the vector position
within the fixed bounded three-dimensional domain occupied by 5, while
29, s) = S, t — s) and ,gl(x,s) == g(x,t —s), Vs € R = (0, +0), the past
histories, respectively, of 4 and g related to time ¢.

According to such a notation, the couple (J(x, ), Tz9t(x, s)) expresses the whole
history, up to time t, of the temperature, J(x,t—s), Vs € R™ = [0, +c0).
Therefore, the internal energy depends on this couple, while the heat flux de-
pends only on the past history ,g'.

The relative history up to time ¢ of the temperature, denoted by z9f,, is de-
fined by

(2.3) S(x,8) = 9" (x, s) — Ix, b).

Henceforth, since our attention is focussed on a specific point of B, the de-
pendence on x will be omitted.

We assume that the two kernels in (2.1)-(2.2), ¢’ : R" - Rand k: RT — R,
are such that o/, a”,a” € L\(R") N L2(R") and k, k', k" € L"(RT) N L2(R™). The
thermal conductivity k£ and the heat capacity

¢
2.4) alt) = ag + f o/(s)ds

0
are such that ag = a(0) > 0, and, in addition, tli1+n k) =0, as suggested by

physical considerations. Recall the definition of Fourier transform of any func-
tionf: R — R,

+00
09 dwrm [ rorsntoine wer
where
0 +00
(2.6) f-(w) :.I-f(S)(fiwst7 filw) = f f(S)eiiwst,
o S

and of half-range Fourier cosine and sine transforms,
+00 +00

2.7) fiw) = j f(s)cos(@s)ds,  fi(w) = f £(s) sin(ws)ds.
0 0

Note that definitions (2.6)s and (2.7) are unchanged if f is defined only on R". If f
is a function defined on R*, its even and odd prolongations can, in turn, be de-
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fined via f(&) =f(— &), f(&) =—f(—& or f(&) =0, for any <0, the last of
which is the causal extension; the corresponding Fourier transforms, respec-
tively, read

(2.8) fr(w) =2f(w), fr(w) = =2if(w), [friw)=f(w)—if(w).
Iff, f' € L\(RY) N LA(R™), then

(2.9) fi(@) = —af(w);
furthermore, if f € L'(R™), also [13]
(2.10) afl() = f'0) + f'(w).

It is well known that the thermodynamic laws impose restrictions on the
constitutive equations; in our case, these constraints on (2.1)-(2.2) are [14]

(2.11) wa,(w) > 0, ko(w) >0 w # 0.

Formulae (2.9)-(2.11) together with the inverse half-range Fourier transforms,
induce

+00

" _ / / _ _g
(212) @) = (@) — d©), ab)—ag = Il

@[1 — cos(wt)ldw > 0,

if a” € LY(R™), and

1 2 k()
(213) k(@)= —— K@) > 0%0 £0, kh=kO0)=-> [ Z2%do>0.
(0] T i (00]

Hence, it follows

+00 ,
(2.14) G —ag =2 f G@g50,  lim od@) = d0) >0
T w wW——+00
and
(2.15) lim wkl(w) = — lim w?k(w) =k (0) <0.
w——+00 $ w—+00
We assume
(2.16) k.(0) >0,  K(©0)<0,  d'0)>0.

Finally, the Fourier transforms f (w), defined in (2.6), can be extended on the
complex z-plane C and are analytic, respectively, in

(2.17) CO={zeC;ImzeR 7}, CP={zeC; ImzeR"™},

where R™™ = (— 00,0). Moreover, when f is analytic on R, the corresponding
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Fourier transforms [15], f1(z) are analytic, respectively, in
(2.18) C={zeC;ImzeR}, Ct'={zeC; ImzeR"}.

The notation f1(2) indicates that the zeros and the singularities of f are in C*.

3. — States and processes.

The body B, characterized by the constitutive equations (2.1)-(2.2), can be
considered as a simple material; therefore, its behaviour can be described by
means of states and processes.

Let

(3.1) a(t) = (S(t), S, ,g")

represent the thermodynamic state of B and the piecewise continuous map
P:[0,d) — R x R? defined by

(3.2) Pt) = $p(),gp() VT E[0,d),

the related thermodynamic process with duration d € R™", where &p(r) denotes
the derivative of J with respect to 7. Such a process can be applied to the body at
any time {.

We denote by 2 and I7 the sets of states and of processes, which are ad-
missible for the material. For any process P € IT with duration d € R*" we can
consider its restriction Py, .,y € I1 to any interval [71, 72) C [0,d).

The state transition function p : £ x IT — X maps any initial state ¢' € X and
any P ¢ IT into the final state ¢ = p(¢’, P) € X. If we apply the restriction Py
to ¢ = a(0), the final state is a(z) = p(c(0), Ppy5); in particular, if o(d) =
p((0), P) = 0(0), the pair (q,P) is termed cycle.

Let the process P(r) = (Jp(1),gp(1)), V1 € [0,d) be applied at the instant ¢ > 0,
when o(t) = (&(t),,ﬁt,rgt), then the subsequent states o(t + 1), Vr € (0,d] are
characterized by

(3.3) Ip:(0,d] = R, Ip(r) =IC+ 1) =I@) + f Ipn)dn,
0

the continuation of the past history of the temperature

Ip(t —8) Vs € (0, 7],

t+t _ i+t _
(3.4) 9 (s) = (Ip *, I) (s)—{&(tﬂ_s) Vs > 1

and the past history of the temperature gradient

t+t . t+1 _ gP(T*S) Vs € (07‘[]5
(35) 97(8) = (gp +r9) T (s) = {g(t fTos), Vs>o,
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Recalling (2.1)-(2.2), the internal energy and the heat flux are given by

T +00
(3.6) ot + 1) —agSp(z) + f o (3)S(s)ds + f o (5) ;8" (5)ds,
0 T
T +00
(3.7) qit+17) = — f k(s)g5(s)ds — f k(s) g (s)ds .
0 T

Consider the static continuation of two given histories (4(t), 9 and +gt, with
duration @ € R, defined by

gy g [50 vselal, { 9@ Vs € [0,al,
Ss—a) Vs>a, gis—a) Vs>a,
then, on use of (3.6)-(3.7), or directly from (2.1)-(2.2), it follows
+00
(3.9) et +a) =a@dO + [ o€ +a) SO,
0
400
(3.10) g+ =— P90~ [ ke+a),g'@de,
0
where
t
(3.11) WO(t) = f k() dy.
0

The constitutive equations (2.1)-(2.2) allow to consider two functionals
¢:RxI',— Randq: Iy — R? defined by

(3.12) eo®) = & d(t),+S"),  qa(t) =g,

where, by virtue of (3.9)-(3.10), I, and I';;, denote, respectively, the following
function spaces

+00

[ de+o.s@de

(313) I, :{Wﬂt :(0,400) — R;
0

<+ooneR+},

(3.14) I { +g! (0, +00) — R3;

400
| e+ 0.
0

<+ooVr€R+},

where t is a parameter.
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4. — Thermodynamics and thermal work.

Thermodynamics plays a central role in the study of any physical problem. In
particular, its laws impose constraints on the constitutive equations and state the
existence of the free energy, which, in the linear theory of materials with
memory, suggests the choice of the most suitable norms. It is well known (see
[17]) that, in the case of materials with memory, there is no unique expression for
the free energy; in fact, there is a convex set of these functions, with a minimum
and a maximum element, here denoted by v,, and y,,, respectively. Thus, the
interest in finding expressions for the free energy for materials with memory
follows.

In the linear theory, the thermodynamical constraints imposed on the con-
stitutive equations of B are given in (2.11) and, moreover, the linearized local
form of the Clausius-Duhem classical inequality reads

(4.1) pix,t) < elx,H)dx,t) — qx,t) - glx, 1),

where w enjoys the same properties of a canonical free energy and, accordingly,
is called free energy, for short.
Inequality (4.1) implies the following equality

(4.2) p(x,t) + D(x,t) = é(x, t)dx,t) — q(x,1) - gx, 1),

where, according to the Second Law, D(x, t), termed the internal dissipation, is a
non-negative quantity.
The thermal power, taking into account (4.1), can be written in the form

(4.3) w(t) = e®)IE) — q@) - g@).

Therefore, the thermal work, produced by the application of a process
P(r) = (Sp(1),gp(1)), VT € [0,d), at the initial time ¢, when the material state is
o(t) = (), 9", ,9"), is expressed by

d
(44) Wio,P) = WS),5',9' 8p.gp) = [ 1ot + D3p(0) — gt + 0 o0
0

Here, q(t + 1) is given by (3.7) and e(t + 1), the derivative with respect to t of
(3.6), after two integrations by parts, takes the form

T +00o
45) ot + 1) = apdp(2) + d'(0)Ip(0) +f o"(8)Sp(t — 8)ds + f ()3t + 7 — s)ds.
0 T

The thermal work on the rigid heat conductor, only during the application of a
given process, can be evaluated by considering the zero state g((0) = (0, 0", 00
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as the initial state at time ¢ = 0, when the process, P(f) = (’.ﬂp(t), gp®), vt € [0,d)
with a duration d < + oo, is applied. When (&O,T&é,rgg) denotes the ensuing
fields, whose form can be derived by (3.3)-(3.5), in [6] it is shown that the thermal
work is

d
Wiao(0), P) = W0,,0',,00: 5p,g,) = Lasi(d) + O [ SEeoyir
(4.6) d t d t '
+ [ [@'6) Ssrdssowat + [ [ 16).gh0ds - go®dt > 0,
00 00

and the process is termed a finite thermal work process.

Also in [6], (4.6), modified by means of the prolongation of P on R*, defined
letting P(z) = (0,0), Vz > d and Jp(z) = 0, for any 7 > d, combined with the ap-
plication of Plancherel’s theorem, has suggested the introduction of the function
spaces

+o00
(4.7 ﬁa(R+, R) {19 R - R; f wa()8p () [Ip ()] dw< + oo}7

+00
(48) Hy(R' R :{y : R™ — R3; f ke(@)g. (@) - [gps ()] do< + oo}.

to characterize all finite work processes.

In general, apply the process P = (8p,gp), with duration d< + oo, to the
body B at time ¢ > 0 when o(t) = (J(¢), ,J t, +g"). Here 9% and +g" are possible past
histories, which belong to I, and I}, defined in (3.13)-(3.14), so that they give a
finite work for any process in (4.7)-(4.8). When the trivial prolongation on R", via
P(r) = (0,0), Vz > d, of such a process, assuming J9p(r) = 0, Vz > d, the work
(4.4), on substitution of expressions (4.5) and (3.7) of e(t + 7) and q(t + 1), after
some integrations by parts, can be written

Wi(a(t),P) = W), 3", 9" Sp,gp)

+0o0
1 !
— 50 [ — F0)] + (0 Of S (0)dx

+00 +00
1 -
(49) +[5f a”(T—n)ﬁp(n)dn—fﬁm(f,wﬂt)} Sp(x)d
o Lo
+00 1 +00
+ [ 5 k<|r—n|>gp<n>dn—lik><r,rgt>} - gp(0dr,
o | o
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where, for any r € RY,

+00

+o0
(410) T8 = [ a4+ 0,8, Thy(r,0) = — [ k(e +0),9'O)de.
0

0

Note that, the heat flux q(t + ), given by (3.10), depends on Ifk), conversely
the energy e(t 4 7), which represents the final value of the internal energy after a
static continuation with a finite duration, does not depend on I fa). Indeed, this
follows from expression (4.4) for the work which depends on ¢ and not on e.

Since the minimum free energy coincides with the maximum recoverable
work obtained from a given state of the material, it follows

(4.11) v,, () = Wr(o) = sup{-W(a,P) : P € IT},

where [T denotes the set of finite work processes.

Thermodynamic considerations yield Wg(o) < + oo; moreover, Wg(o) is a
non-negative function of the state g, since the null process, which also belongs to
11, gives a null work.

5. — Free energies for heat conductors.

This Section is devoted to analyze various free energies which have been
introduced in viscoelasticity. They are all amenable to be adopted in the case of a
rigid heat conductor with memory according to results here presented, based
also on previous works [2]-[6] (see [9] too).

For this purpose, some requirements on the kernels in (2.1)-(2.2) and on their
derivatives need to be imposed. Specifically, the following hypotheses

(5.1) a(s) >0, a'(s) <0 VseR"
are adopted together with the further one
(5.2) a"(s) >0,

imposed on the kernel related to e, while the restrictions for the kernel k are
given by

(5.3) K(s)<0, K'(s)>0 VseR"'.

In particular, as a consequence, (2.16)s 3, previously assumed, are satisfied.
The separate contributes y© and '@ due to e and ¢, in any free energy of B,
can be emphasized via the following sum

(5.4) p(t) =y 1) + yP@).

The Day free energy. In [2] the free energy functional proposed by Day [10] in
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the case of a viscoelastic solids, has been adapted to heat conduction with
memory; it reads

1
Vay(® = Yoy + W, = 5 a0

(55) . +00 2 1 . +00 2
+ (aoc—ao)fif a’(s)wﬂt(s)ds} —|—§ [koff k(s),‘gt(s)ds] )

0 0

DO =

Here, the kernels must have the exponential form, required by Day’s functional
for viscoelastic solids, given by

(5.6) d(s)=d e * §>0, k(s) = k() y >0,
whence it follows that
(5.7) d'(s) = —8d(s),  K(s)= —yk(s),

which satisfy conditions (5.1) and (5.3), because of (2.16)3 and (2.13)2. Thus, the
corresponding internal dissipation is given by

) +DP (1)

Dpay(t) = DY), .

Day
2

2
(5.8) too -
_ 0 , [ f a/(sw,ﬁ(s)ds] +k_VO [ Of k(s)ygt(s)ds} > 0.

oo — G0 0

The Dill free energy. The analogous, in thermodynamics with memory, of the
free energy introduced by Dill [12] for viscoelastic solids, reads
wpu®) = wiu® + v ®)

oo +o0

= a0 f f @&+ &), (E) S e S

+oo  +o0

+5 f f K+ &),9'(&) g (EdEdE,

where the kernels k& and a” are required to be non-negative.
The related internal dissipation is given by

+o0 40
Dpat) = Dy + DRy = [ [ @& +&siensiiendads,
(510 . t
- [ ] #E a6 e @dnds,
0 0

which, by virtue of (5.2) and (5.3), is a non-negative quantity.
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The Fabrizio free energy. A new free energy in terms of the minimal state has
been recently introduced by Fabrizio for viscoelastic solids (see, for example,
[11]). The corresponding free energy functional is obtained in [2], where also the
functionals (4.10) as well as the following ones

+o0 +o00

(5.11) L@, =— [ da+0,8Od Ly sh=— [ de+os©d,

0 0

are introduced together with some useful relations they satisfy. Thus, the free
energy of the heat conductor with memory B is written as

W) = (6)(t)+l//(q)(t)—*aovﬁz(t)Jrz f ,()[@ (z, 8 >} dr
(5.12)

+o00

1 1 )
2 f K (7) L) (. gD d,
0

where I(ta)a)(r, 39 and Iﬁk)(l)(r, 9" denote, respectively, the derivatives with
respect to 7 of (5.11); and (4.10). They are both positive by virtue of (5.1); and
(5.3)1.

The corresponding internal dissipation is given by

2
mszM+Wm:mbh@mfﬂ

1 t 2 1 1

1 +o00 d 1 ,
2 f dr Ly(f)} (L) (7.19"] >0
0

The Breuer and Onat functional. An alternative form of the most general
quadratic form, proposed by Breuer and Onat [7] for viscoelastic solids, has been
given in the scalar case by Golden [15]; this alternative functional, adapted to B
([2]), reads

vy ) = w0 + yO(t)
+o00 400

t t
(5.14) aoﬂz(t) D) f f are(s,u) »3(s) 3" (u)dsdu

+00

4

—+00
f (s, ) ,g'(s) - rg'(w)dsdu.
0 0

Here, we distinguish the new kernels from the previous ones by means of their
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two variables. Obviously, k(s,u) and aja(s,u) = %a(s, u) are required to be

positive operators. For such kernels some conditions are assumed; that is

(5.15) ar2( + 00, u) = aiz(s, +00) =0,

(5.16) a1(s,0) = a2(0,8) = a'(s), ay(u,+00) = ag( + c0,8) =0
and

(5.17) k(s,0) = k(0, s) = k(s)

and, in addition, the derivatives k1(s,u) and ka(s,u) satisfy (5.3);.
The corresponding internal dissipation is

+o00
0

K®(s,u) .g'(s) - vg'(w)dsdu > 0,

Dy(t) = D) + DO(t) = K9 (s, u)8"(5)8" w)dsdu

+o00
0

where, in order to ensure the non-negativity of Dy, the derivative of

DO|

T

(5.18)

DO|

T

(5.19) K9(s,u) = ai(s,u) + as(s, u)

is required to be a non-negative, that is

(5.20) K% (s,u) = ania(s,u) + azia(s,u) > 0
in accordance with (5.2),

(5.21) K®(s,u) = ki (s, u) + ka(s,u) <0,

by virtue of the hypotheses on the first derivatives of k(s, ).
The Graffi-Volterra free energy. The Graffi-Volterra functional proposed for
viscoelastic solids ([16], [20] ), adapted to B in [2], reads

400
1 1
ve®) = v + v = Sad M) + 5 f d's) 8" ()Pds
(5.22) T 0
+ f [ k(s + &) g'(s + é)dé} ,g'(s)ds,

0 0

under the hypotheses (5.1) and (5.3).

In such an expression, as observed in [2], the functional 1//((? due to the internal
energy is deduced in a natural way; while the contribute x//g’) due to the heat flux
is derived in terms of ,g’, via integration by parts, the expression for the free

energy in terms of g'. Thus, the expression of wg) in (5.22), even if is not formally
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similar to the corresponding one in viscoelasticity, yields a free energy since
obtained from that one in terms of g'.
The related internal dissipation is given by

+o00
Do) = DY)+ D0 = — [ ' @rsirds
(5.23) . 0
— [ [ He+9.6+0 g s)dsde > 0.
0 0

The maximum free energy. A particular expression of the general re-
presentation (5.14) for B, as it occurs for viscoelastic solids, has the form

1
yu® = 0O + @) = iao&z(w

400 +00
1
(5.24) _if f arz([s1 — s2]) ' (s1) I (s2)ds1s2
0 0
1 400 +00
w5 [ s = 5290 ' s)dsids,
0 0

where each of the kernels a;a(|s; — s2|) and k(|s; — s2|) is required to be non-
negative.

Such a functional is called the maximum free energy of B; in fact, the cor-
responding internal dissipation vanishes [2], that is

(5.25) Dy() = D)) + D@ (t) = 0.

The Golden free energy. The analog of the minimum free energy [15] in vis-
coelasticity, derived in the frequency domain by Golden, is proposed in [5] and [6]
referring to heat conduction with memory. According to the viscoelastic case,
two equivalent expressions for the minimum free energy of 3, which represent
the parts related to the heat flux and to the internal energy, respectively, are
further given. A first expression for the minimum free energy.

The thermodynamic constraint (2.11); imposed on o’ allows us to introduce
the even function

(5.26) H(w) = wi(w) =H(—w) >0 VYo e R\{0},
which, on use of (2.12); and (2.16)s, satisfies
(5.27) H, = liT way(w) =d'(0) >0

and goes to zero at least quadratically at the origin. Hence, its behaviour is as-
sumed to be not stronger then quadratic.
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According to the assumptions in [15], the functions H(w) and of k.(w), both
positive valued by virtue of (2.11), are required to factorize as follows

(528) H(CO) = H(H(a))H(,)(w), kc(a)) = k(+)(w)k(,>(w).

Furthermore, the hypothesis of the analyticity of the Fourier transforms on R,
implies that H () which exhibits no singularities and zeros in C, is analytic
in C7, while H_)(w) has no zeros and singularities in ™ 50 that is analytic in
C*. Similar results hold for k)(w).

Let us introduce

+00 t
1L (., 12H )]
(5.29) p(a)(z) o £ P dw,

1 (w,,9 )/ (2K >(w)]

t _ (k)+ 7

(5.30) Pl =57 f —

and let

(531) pfa)(i)(w) = ﬂli%l¥ pfa)(w +1p), pﬁk)(i)(w) = /),lir%pzk)(w + ).

Note that the quantity pfk) is indicated as P’ in [5].
The use of Plemelj formulae [19] yields

(@, 8"
(a) '
(5.32) 2—1;( @) Play (@) = gy (@),

1 Iik)Jr (C!), ’V‘gt) ¢ .
2 k@ 7 () (@) = Py (@),

(5.33)
where p(a)( 2 (w) and P(k)( () can be extended on the complex plane to give two
functions p(a)( i)(z) and p(k)( i)(z) with zeros and singularities for z € C* and hence
analytic not only in C*7’, but also in R by virtue of the hypothesis on the Fourier
transforms.

Thus, the minimum free energy (4.11) is given by

+o00 +00o
1 o 1 ) 1 )
(5:34) v, ) = 5009 <t>+%_f | Plao@ | dwm_f | Pl (@) [ doo

Another expression for the minimum free energy.

A second different but equivalent form of y,,(t) has been derived by writing
(5.34) in terms of /,«191((0) and ,g', (w), related to pﬁa)( (@) and pka +(@). Thus,
(5.29)-(5.30) can be written in the form
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) f°° Ho@)] 8, @]

Ploen(@) = — lim o— o — 2 da
(5.35) o .
g 7S] How)
+ lim S  ,
i—w- 21 J o —z
1 [ k@) [r!h(w')]
(5.36) Pl (@) = = lim — f L ,
whence, denoting by * the complex conjugate,
1 (HOW) S ()
¢ . =) + /
[p(a)(+)(w)] wlll}; o f o —w da
(5.37) L
d0) [ +I,(0)/H) i
— - w ,
w—awt 271 -~ o —w
1 [ ko) ,g (co)
¢ L =) 94
(5.38) Plocn@)] = lim o _£ %

and, in particular, (5.37) becomes

1 [ Ho ) S ()
t (-) r
(6:39) Ploco@)]'= Jim oo [ =20 —dos
where the second integral of (5.37) vanishes, since its integrand functions 7491 (w)
and H,)(w), without singularities and zeros in C), are analytic in C~

The application of the Plemelj formulae gives

(5.40) H (@) 8 (0) = Gl (@) = Gy (@),
where
1 (T H W), ()
¢ il el S A e e PV
(541) Uy (@) = Hm o f o —2 el

—00
moreover,

(542) k(@) rgi(w) = qﬁk)(_)(w) - ql(sk)(+)(60)
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wherein
. 1 [ ko(@) g @)
: - /
(543) Ypo(@) = im o f s 0o

Note that the quantity Qf i)(co) of [5] is replaced by qﬁk)( ) (w), where the subscript
@ is added to distinguish this quantity from the heat flux q.
Formulae (5.38), (5.39), (5.41) together with the last relation imply

(5.44) [Pl @] = Gy @), [Pl @] = € (@),

and hence the following further equivalent form of the free energy
1 1 1
(545) v =508 O + 5 f | Gy (@ [ doo+ 5 f gl (@) |2 do

is obtained in terms of ,<9" and +g%, besides to I(¢).

6. — The minimum free energy for the discrete spectrum model and its
relation with classical free energies.

This Section is concerned about generalizations for the minimum free energy
in linear heat conduction with memory in the special case in which the relaxation
function is expressed as a sum of exponentials in order to show that some clas-
sical free energies can be derived from the results obtained for this discrete
spectrum model. This model represents the analogous of that one, previously
studied in [15] by Golden in viscoelasticity. At first, we recall the fundamental
formulae derived for this model, in rigid heat thermodynamies, in [5] and [6],
where the minimum free energy is derived by assuming different states. Since
here the states of B are defined in (3.1) in terms of (¢), .3 "and +g', we refer to [6]
only as far as the contribute to the free energy due to e is concerned. Indeed,
while in [6] the states are expressed by means of g?, we must consider the results
comprised in [5], where g’ appears in the states, for the contribute related to q.

Let the relaxation functions a and k be expressed by

n n
Ooo — Zhie‘“ft vt >0, Zgie‘kit vt >0,
=1

(6.1) a(t) = k) = § =
0 vt <0, 0 vt <0,
where 7 is a positive integer, the inverse decay times a; and k; (1 = 1,2,...,n) as

well as the coefficients #; and g; (1 = 1,2,...,n) are positive; moreover, a; and k;
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are ordered so that a;<a;y; and k;j<kjy; (j=1,2,...,% —1). The form now
n
assumed assures that the following conditions a, —a(0)=> %; >0 and

n s

k() = > g; > 0, assumed in (2.14); and (2.13), are satisfied. =
i=1

The Fourier transforms of ¢/(t) and k(t), by virtue of (2.8)3, give

(6.2) a(w) = cuzn: ai—hi ko(w) = Zn: kigi )
’ = o+ al = P+

Let us consider the kernel a. Formulae (6.2);, (5.26) and (5.27) imply

(63)  H(w) = Z 520 YoeR, Hy= Zazh = d'(0) > 0.

i=1

Then, we rewrite H(w) as

6.4 H — Hoc c 9

(6.4) (@) H{wz + a2

Where »¥ =0 and yz (j=2,3,...,m) are simple zeros of f(z) = H(w) with
— ?, such that

(6.5) B<p<di<..<d <P <d.

Hence, the factorization (5.28);, in particular, yields

n CO+ /lyl . n
(6.6)  H_y(w) = hy {—} = hoo (1 +i
1-11 W + 10, 1:21

R;
— |, hoo = H/?
a)+w7;> 00’
where

(6.7) Ri=Gi—a) ] {ZJ:Z}
7 1

=LA

The expression (5. 41) of q(a)< (@) becomes, on use of (6.6), choosing to close the
integration path in C™), becomes

i .
(6.8) (@) = iho Z o o S da),
where, by virtue of (2.6)s,
+00 .
(6.9) S(—ia) = [ e rds =[S~ iw)]

0
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Thus, the contribute due to e in (5.45), on evaluation of | q(a)( )(a)) | closing the

integration path in C™, is given by
1 +00 +00
(6.10) y/F,fL>(t):§a0ﬂ2(t)+ f f 2H.. > +2 osita) 9l(s 1y 94(sy)dsidss.
i TG

Let us consider the kernel k. Flrstly, taking into account (6.2)2, we introduce
(6.11) K@) =1+ Mk(w), K= lim K@) =) kig; >0,
which can be written in the form
a? + 6
(6.12) K(w) = K H{ o k? :

Where 62 =1 and 52 (7 =2,3,...,m) are the simple zeros of g(z) = K(w) with
w2 ordered as the analogous quantities for a in (6.5). Its factorization gives

(6.13) K yw) = m]‘[{‘”“(s } koo = (Koo ),
whence, by virtue of (6.11);,
n
H(wna‘j)
(6.14) k() = ko ik U
: (RO) = Wooo o 7 = Woo 20k
H(w+zk)
where
n
[T© -k
(6.15) U =-"___ ¢=12..n).

H (kz - kr)

i=1i#r

Taking into account (6.14), q<k)( (@), expressed by (5.43), can be evaluated on
closing the integration contour in C7; it follows

. " U, .
(616) qfk)(_)(w) =1k Zmrgi( —ik,),
r=1 T

where

+o00

(6.17) G~k = [ g ds = [0~ k)]
0
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Thus, the contribute due to q in (5.45), on evaluation of |qfk)<_)(a))|2 and, then,
closing the integration contour in C?| is given by

n

100 40 U.U:
f f 2K, Z — g kisithis) gl(s)) . ,g'(s2)ds1dss.
0 0 i.J

6.18 @) =
( ) Y ®) —~ ki + kj

DO —

Therefore, we have

W ®) = YO + @) = %aovﬂz(w

1 400 +00 n R.R
- vty —(o;s1+a;52) gt t
(6.19) 2 b[ ! A g:: a; + aje " (81) 8 (s2)ds1d52
+oo  +o00
1 —~ U;U; s
+ é f f 2K Z ki + ;{: ei(leSlJrk]éZ) rgt(sl) : Vgt(SZ)d81d82.
o 0 iR

Such an expression of the minimum free energy of the discrete model can be
compared with other free energies.
To show this, it turns out to be convenient to rewrite (6.19) as follows

1
v, = éamﬂz(t)

+o00 400

1
(6.20) ) f f N (w51, 82) 8" (51) I (52)ds1d52
0 0
1 +0o0  +oo
+ 2 f f NU"/) "”gt(sl) : 1”!7t(82)d81dS27
0 0
where
" RiBj o
(6.21) N(a)(Sl, S9) = — alz(sl, S9) = 2H Z #e*(azslﬂysﬂ’
Gt
(6.22) N iy (s1,52) = h(s1,52) = 2K i Me—acfsﬁkjsz)
. (k)\215 = ) = o) P i+ k] .

Consequently, the form (6.20), together with the kernels (6.21)2-(6.22),, is cast in
the general form of the free energy (5.14).

Firstly, the part of v,,() in (6.19), or equivalently in (6.20), which expresses
the contribute due to ¢, is examined.

A double integration by parts on (sz, +00) and, then, on (s1, +00), solves the
differential equation (6.21); and gives the solution

"1 RR
__'e

(623) 0,(81’ SZ) = _2Hoc —((lisl-‘r(ySz).
“— a; + 05 0; 05
1,7=1
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Since this solution is subject to (5.16), some interesting identities, which can
be used to verify both the positiveness of y,,(t) as well as of its corresponding
internal dissipation D,,(t) can be derived. These results are analogous to those
obtained by Golden in [15] for viscoelastic solids; however, some of them are only
similar to the ones derived in [15]; indeed, the behaviour of a with respect to the
one of the kernel of viscoelastic solids, is different.

Thus, note that the solution (6.23), using (6.1)1, needs to satisfy

a(0, 82)|82:S = asy, 0)|81:8 = —2H Z e s
= (a; +aj)ala]
(6.24)

=a(s) — s = Zhie’“"“’,
i=1

n . . n
(6.25) a(0,0) = —2H.. ) | ! && =y — oo =— Y .

We can easily obtain a first relation by evaluating the two expressions for
H_y(®), given in (6.6) where y; =0, for o =0

(6.26) f:& =1

i1 %
Then, by equating the two expression in (6.24), we obtain a relation
(6.27) > |2H, &27 — hi =0,

= ai = (ai + a)q

which is identically satisfied by means of

& Rj aihi

6.28 = .
( ) ]; (ai + aj)aj ZHOORi

Let us now consider the second expression for H_y(w) in (6.6) and evaluate its
complex conjugate; thus, H(w) can be written

. N, 20
H(w) =H_(w)[H_(w)]'= Hy ll ;:1 R; P a?
(6.29)

n R; n R 2
+;w+iai; w — ia; sz—i—aQ’

the last equality follows by virtue of (6.3);. This identity, after factorization of the
term (w — iap)_l, where w = ta, is a fixed pole of H(,)(w), gives the following
condition, necessarily satisfied for any w,
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1 |p (29 7& R; Jra)_2 aphy
w—iap | "\ w+ia, ot ] Heotia

" 2Rj(lj L Ri < R]‘
6.30 =1- - — + .
(6.30) j:%;ép (0 — iaj) (o + ia)) Z o+ wl] 12];;; — ia
il aih; |
H. i (0 — ia;) (o + ia))

Comparison between the two members of this equality, near the pole o = ia,,
that is, evaluating the limit as w — 1ap, the right-hand side admits a finite
limit and, consequently, also the limit of the left-hand side is finite. Thus, the
quantity in the square brackets in the left-hand side must vanish for o = ia,.

The same way of reasoning holds true for any a, (p =1,2,...,n); thus, it
follows
" R; aZh;
31 N Q" L =1,2,...,n).
(6.31) it sgg, (=L

Finally, equating (6.3) with (6.4) and multiplying this identity by «® + a? we
obtain a relation, which, in the limit w — ?a;, yields

a;h} no [ —d
(6.32) —g =0 ) 11 { L ;} = R;B; <0,
> =1 (% %

where R; is given by (6.7) and, by virtue of (6.5),

(6.33) Bi=(;+a) ﬁ {

J=Lj#i

>0 (1=12,...,n).
+a7} ( )

In particular, as already observed, it is easy to see that (6.23), differentiating and
using (6.28), satisfies (5.16).
Thus, on substitution of the expression (6.32) of R; in terms of B;, into (6.23),
we obtain
2 XM alzajz-hihj

(634) (1(81, Sg) = — —— —e*(ai31+aj32) <0.
Hy i1 (ai + aj)BiBj

The latter allows us to state the equivalence of the part of the free energy due to
e, that is the first two terms of (5.14), here considered with that one in the Breus-
Onat formula and hence to Golden’s alternative form.

Therefore, such a contribute can be rewritten as
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VW) = Lao0)

2
(6.35) Pl 3,30 .7,
1 asazhih
] #JB]B”(’”W“"”rvﬂ%slwt(s»dsld@.
0 0 =1\ j ) Pibj

Moreover, on use of (6.23), we can evaluate (5.19),
i: R; R;

i1 %Y

—(a;s1+a;s2)
e 7R

(6.36) K“(sy,s2) = 2H

and hence, differentiation and, then, again, use of (6.32), give

n 03(13

2
(a) § ’ o~ (is1+0j52)
(6.37) (81, Sz) H B B f1r0%2) 0

which appears in (5.18) for D (¢).
Thus, the corresponding internal dissipation can be derived

+o0  +o0
(e) 1 - a & i ihj o~ (@is1a52)
(638) Dm (t) = Hioo f A ﬁ J 79 (Sl) ’59 (82)d81d82,
0 0 ij=l1
where the coefficients are all positive, by virtue of (6.33). Moreover, this ex-
pression can be written in a form, which is clearly non-negative, that is

1 [y |
D) = e I (s1)ds:
Hoo _; Bi, !

n ,33. T

a; 1 —a; t
ZF;.[ e~ %% 9% (s9)dsy

J=1 0

(6.39)

2
1 n agh/z +o00 . ;
= L e %% . 9(s)ds| > 0.
S e

1=1

Let us, now, consider the part of y,,,(¢) in (6.19), or in (6.20), due to q.
The assumption k(sy, s2) is given by the expression (6.22)s, that is

(640) k(31, 82) — ZK Z kU+Uk —(ki81+]{{7'82)7

subject to (5.17), implies

n UU n .
(6.41)  k(0,52)],,_, = k(s1,0)], _, = 2K Y jr;ﬁ'e*k‘fs =k(s) =Y gie™,
i=1"" 7 i=1

(642)  k(0,0) = 2K, Z UU’ = Zgz
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Now, some identities analogous to the ones related to e are needed.
As before, evaluation of the two expressions (6.14) for k_y(w) in o = 0 gives

vy (di)
(6.43) = 2 s,
R | ()
i=1
by virtue of the order in (6.5), which also J; (j = 2,3, ..., n) have. Moreover, from
(6.41) it follows that
n n U
(6.44) D 12K U = fk‘ —gile ™ =0,
= P

which is identically satisfied with

zn: Uj __ Y
— f; + k]’ 2K, U;"
J=1

(6.45)

This result can be derived via the same way of reasoning already followed to
prove also the analogous relation (6.31) valid in the case of a. Accordingly, it can
be derived on evaluation of k(w) together with the use of (6.14); and its conjugate
combined with the comparison of the result with (6.2);; then, as before, in the
case of a to derive (6.31), by isolating in this identity the quantities with the factor
(o — ik,,)’l, where w = ik, is a fixed pole of K(,(w), we obtain a relation similar
to (6.30), whence the limit as w — ik, allows us to derive (6.45).

Furthermore, equating (6.2)2 with the expression k.(w), deduced by the
product k(w)[k_)(w)]", on use of (6.14);, and multiplying this identity by
@? + k2, it follows

T2 2
n k'g(a)z—&—kz) 11(60 +5.7'>
(6.46) o et kg =Ko S —————,
i=1,i#r w? + ki (w2 + k?)
i=1,iAr
whence, as v — tk,,
T/ 2 12
kg g(éj kv)
(6.47) % =" =U,C,,

where U, is given by (6.15) and
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[1(6,+#)

(6.48) C,=—"""— >0 (r=12...,n).

Now, U, given by the expression (6.47), can be written in terms of C, so that,
when substituted into (6.40), gives

2 M kikigig; o
6.49 k [ _ mIdy L —(kisitkse) > 0:
(6.49) (s1,82) K. ;7::1 e k]-)CiCje :

thus, the equivalence of the Breur-Onat formula is also stated as far as the part
of the free energy due to q is concerned and, hence, also the one of Golden’s
alternative form.

In fact, we have

+00 400 4

1 kikigi9; o
6.50 @) = 1Y) I1) (kisi+kss) ot g (s2)ds1dss.
(6:50) i (®) = g ! Of i;(kﬁkj)cicje #2),9'(s1) - vg' (s2)ds1dsz

The corresponding internal dissipation can be derived by its expression given
(5.18). To do this, using (6.40) and (6.47), we firstly derive the expression for K®,
defined by (5.21),

n
K®(s1,50) = — 2K, » _ U;Uje tosnth)

(6.51) n
— i klk7g"gj e—(kisl-‘rk_y‘sz) <0:
Kxi,j:l CiC; 7
hence,
1 +oo  +o0 4, k/{:gg
D%)(t)ZK— f f ZCJ,CZ,]6_('“””'“]'82)79%81)-»«yt(82)d81d82
R ) S A T
_ . .
1 | ~Fkigi kst ot ~kigj sy ot
6.52 = f e gt (s1)dsy | - —= f e ™ g (s2)dsz
(6:52) Ko | =1 Ci 0 ; Ci 0
- 2
1 n klgl -‘['F\OC e .
=—_ e "% ,.g'(s)ds| > 0.
Ky | G )

Obviously, the sum of (6.35) and (6.50) gives the whole free energy, as well as
the sum of (6.39) and (6.52) gives the corresponding internal dissipation.
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An interesting case is the one when » = 1 in (6.1). In this case, for a, since
71 = 0, (6.6) becomes

B o . R’y L B
(653) H(,)(CO) = hso o+ i = Noo <1 + 'Lw+ ia1>’ Ri=-0, H,= arhi,
while, for k, (6.14) yields
. 1
(654) k(,)(a)) = Zkoo m, U1 = 1, Koo = klgl.

Thus, the expression (6.10) of % (t) reduces to

2
+00
aO&Z(tH%aihll | e—alwt(sms} :
0

1
(6.55) ACEE
which is in agreement with the Day functional W%Ly(t) in (5.5), by virtue of (6.53)
and of the relation a., — ag = k1.

Analogously, the part of t//%)(t), given in (6.18), on use of (6.54), becomes

+00

2
1
(6.56) y/%)(t) = égl [ f e s Tgt(s)ds] ;

0

it agrees with the Day functional wg;y(t) in (5.5), since ko = k1 and in (5.7),
Y= kl.

Finally, evaluating the sum of (6.39) and (6.52) with » = 1, the internal dis-
sipation reads

+00 +00

2 2
(6.57) Dm(t):a:’;hllf e”ls,ﬂﬂt(s)ds] +k191[f eklﬂ.gt(s)dS] ,
0 0

since from (6.32) it follows that B; = a; and, by virtue of (6.53)25 and (6.54)2 3,
(6.47) yields C; = 1.
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