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L?- Singular Dichotomy for Orbital Measures
on Complex Groups

S. K. Gurta - K. E. HARE (%)

Abstract. — It is known that all continuous orbital measures, i, on a compact, connected,
classical simple Lie group G or its Lie algebra satisfy a dichotomy: either i € L? or
1" is purely singular to Haar measure. In this note we prove that the same dichotomy
holds for the dual situation, continuous orbital measures on the complex group G©.
We also determine the sharp exponent k such that any k-fold convolution product of
continuous G-bi-invariant measures on G© is absolute continuous with respect to
Haar measure.

1. — Introduction.

Let G be a compact, classical, connected, simple Lie group and g its Lie al-
gebra. The orbital measure, uy, is the G-invariant, probability measure sup-
ported on the adjoint orbit generated by H € g. It is a continuous measure
whenever H # 0 and is always singular to Haar measure on g. In [5] it was shown
that all continuous orbital measures satisfy the following L?- singular dichot-
omy: If k € N, then the k-fold convolution product, 1%, is either singular to Haar
measure or belongs to L?(g) N L(g), meaning ﬂ’f{ is absolutely continuous to
Haar measure and has an L' N L? density function. Moreover, for every H # 0
there is always an exponent k with 1%, € L? and the minimal choice of k = k(H)
can be specified. A similar result was also established in [4] for the continuous
orbital measures on the group G, i.e., the G-invariant, probability measures
supported on non-trivial conjugacy classes in G. In both the Lie algebra and Lie
group case, the (known) overall minimal exponent, ko = ko(g) (respectively,
ko(G@)) is at most rank G + 1 (resp., 2rank G). A consequence of the L? result is
that g * -+ * 1y, € L' whenever g, ... , Ui, are continuous, G-invariant mea-
sures on G.

These results improved upon earlier work of Ragozin [7] who showed, in
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particular, that iy - - - * pgpe € LN(G) whenever py, ..., ugme are continuous,
G-invariant measures on G. More generally, Ragozin in [8] studied zonal mea-
sures on the symmetric space G/K, where G is a connected Lie group, K is a
connected compact subgroup and G/K is isotropy irreducible. He showed that if
M- -+ Haim/x @re any continuous K-invariant measures, (these are called zonal
measures) then py * - * fgim/x € LYG/K). A compact, connected, simple Lie
group G is a special instance of this setting as it can be viewed as the compact
symmetric space (G x G)/D where D = {(x,x) : x € G}. Under this identifica-
tion the D-invariant measures on the symmetric space correspond to the G-in-
variant measures on G.

In this article, we consider the non-compact symmetric space, G /G, which is
dual to the compact symmetric space (G x G)/D. The zonal measures on G* /G are
the G-invariant measures and so can also be considered as G-bi-invariant measures
on the complex group G*. We show that when G is one of the classical Lie groups
the L2- singular dichotomy continues to hold for the analogue of the orbital mea-
sures on G Moreover, /iy * -+ * fi, () € L" for all G-bi-invariant measures on G*
and the number k(q) is sharp with this property. It is an improvement of Ragozin’s
result for compact symmetric spaces since dimG" /G = dim G > ko(g).

2. — Basic Facts and Notation.

Let G be a compact, connected, simple Lie group and ¢ its Lie algebra.
Following Ragozin [8] we will consider elements of g as right invariant vector
fields on G. The Lie group acts on the algebra by the adjoint action Ad( - ). We
will also write Ad( - ) for the conjugation action of G on G. The orbital measures
on G or g are the G-invariant, probability measures, 1, for ¢ € G or g respec-
tively, defined by:

[ fiu, = [ radgiaimig for f € Co(@)
g G

where G = G or g and m denotes Haar measure on G. These measures are
supported on the conjugacy class, C, C G, or adjoint orbit, O, C g, generated by
the element a and are continuous (non-atomie) if @ is not in the centre of G in the
group case, and a # 0 in the algebra case. They are the extreme points of the
convex set which is the intersection of the unit sphere with the cone of positive
measures in the space of continuous, G-invariant measures.

Let G" be the complexification of G; that is, G' is the Lie group corre-
sponding to the Lie algebra g = g @ ig and thus has dimension over R equal to
dim g“. The compact group G can be identified with the compact symmetric
space (G x G)/D where D = {(g,9) : g € G}. The group G" is non-compact and
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G" /G is the non-compact symmetric space dual to (G x G)/D. A good reference
for basic facts about analysis on symmetric spaces is [6].

In this paper we consider the zonal measures on the symmetric space G* /G as
the G-bi-invariant measures on the complex group G“. When u(xG) = 0 for all
x € G" the measure y is called continuous; these are the non-atomic measures on
G® /G. The extreme points of the the convex set which is the intersection of the unit
sphere with the cone of positive measures in the space of continuous G-bi-invariant
measures are the continuous measures on G* given by u, = mg * é, * mg, where
a € G, a # identity element e. They satisfy the integration formula

f fdu, = f f Feay)dme@@)dmey) for f € Co(GY)

G“ G G

and are supported on the double coset GaG. By analogy, we call these the orbital
measures on G .

Let t be a maximal abelian subspace of g and A = exp(it) C G“. Every orbital
measure is equal to ft, = fley, iy Tor some a € A, H € t (see page 458, [1]).

Let @ (resp. @) denote the (positive) roots of g with respect to the com-
plexified torus t". The root space decomposition of (g, t") is

=t P a.

aed

For every root o € @, let E, € g* denote a root vector and choose RE,, IE, € g
such that £, = RE, + ilE,. The theory of roots and root vectors is important in
our arguments and the following easy fact, in particular, will be very useful.
LEMMA 2.1. — Let H € t and a = exp(tH). Then
(i) Ad(a)RE, = RE, cosh a(H) — ilE, sinh a(H),
(i) Ad(a)IE, = IE, cosh a(H) + iRE, sinh a(H).

Proor. — (i) Fora € &, [H, E,] = i0(H)E,, where o(H) € R. By equating real
and imaginary parts of the previous equality we get that [H, RE,] = —a(H)IE,,
and [H,IE,] = «(H)RE,. An easy calculation gives

Ad(w)RE, = Ad(exp(tH)RE, = exp(ad(tH))RE,
_ io: (ad(iH))" RE,

prd n!
HTL H’ﬂ
== *(H) REa—iZa( 18,
n! n!
n even n odd

= cosh a(H)RE, — isinh a(H)IE .

The proof of (ii) is similar. O
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3. — L? Results.

We can obtain L? results for convolution powers of orbital measures on the
complex group G“ by comparing with the L? results for the corresponding or-
bital measures on the Lie algebra g.

THEOREM 3.1. — Suppose H € 1, yy is the orbital measure supported on the
adjoint orbit in g generated by H and pioy, i s the orbital measure on G" sup-
ported on the double coset G(expiH)G. There is a positive constant B = B(H)
such that

||'u]1C1HL2(g) = BH/‘léxpiHHLZ(G“)'

PRrROOF. — It is convenient to introduce some additional notation. Let W be the
Weyl group and let p denote half the sum of the positive roots. For A € t* we will put

o= 1T @2
aedt
and let ¢(1) denote the Harish-Chandra ¢ function

_ 1)
D= Tan

For a complex group, Plancherel’s formula ([6, p. 454]) states that
AN —2 4,
1= [ 1T e da.
e

Put @ = expiH. The Fourier transform of an orbital measure on G is a con-
tinuous function on t* and it equals ([6, p. 432]),

3 dets esH)
SO — b))
,ua(/D = ¢A(a) Cu-) Z det's es(/),H) ’
seW

when the denominator is not zero. If the denominator is zero then numerator is
also zero and ¢,(a) is defined as a limit which exists.
Given Z € t, put

AONZ) = Z det s 542,
seW

It is known (c.f. [10, 4.14.4]) that

Z dets @S<p’H) = e*(p,H) H (e(%H) _ 1)

seW aed™

= ¢ () H e? /2 H 2 sinh a(H).

acd? acd?
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Thus ¢,(a) is an indeterminate form if and only if there are positive roots « such
that a(H) = 0. (We call such H singular.) In this case

' ANZ)
¢,(a) = c(d) o ) [T e“%/2 [] 2sinh «(Z)
ned” acdt

where the limit is taken over non-singular Z. Hence
|[AD(Z)|

[ 2sinh «(Z)
a(H)=0

6,@] = [eDIb Jim

where
ePH) ] )2
by = by(H) = 1ed > 0.

I 2sinh a(H)
a(H)#0

Of course, (1}11(1) sinh (0)/0 = 1, thus

I |A()(Z)| o |[A((Z)|

im =by lim ————

Z=H| ] sinh oc(Z)/Z’ Z-H | ] oc(Z)‘
a(H)=0 a(H)=0

where by = 2-cwrd{z2(H)=0} Thege observations imply that

e e, = [16,@[* eI d

2k
A02)|
[] «2)

o(H)=0
2k

stf Zhn}{ A2 di
n

[T 2| TP
o(H)=0

= (bybe)* [ |c()P* 2| lim
(1) e z-n

da

where by = (b1b)* [ IT(p)| 2> 0.
On the other hand, the Fourier transform for the orbital measure yuy is a
continuous function on g given by the formula

1(p) lim _AW@)

e IR B
a(H)#0 a(H)=0




414 S. K. GUPTA - K. E. HARE

where, again, the limit is taken over Z non-singular and it exists. (This can be
deduced, for example, from the formulas developed in [2], noting that their or-
bital measures are normalized so that the measure of the adjoint orbit is
I, gra(H ), rather than 1, as in our case.) Together with the Weyl integration
formula this shows that

e 72y = [117G P17z ()2

e

(2) 2%
. AWM dl
=b lim
where
2k
1(p)
by=|——"=| >0.
‘ 1 «#H
w(H)#0
Combining (1) and (2) clearly gives the result. |

4. — Singularity Results.

We can also obtain singularity results for measures on G* by comparing with
the singularity properties of the corresponding orbital measures on the Lie al-
gebra. Our arguments depend strongly on the following characterizations of
singularity for orbital measures on the complex group G* and the Lie algebra g.

PROPOSITION 4.1. — Let ay,...,a;, € A C G* and suppose p, , ..., u,, are the
orbital measures on G* supported on the double cosets Ga;G. Then y, * -+ Moy
1s singular with respect to the Haar measure on G“ if and only if the function
fe = filay, ..., ap) : GF' — G given by

fig1, 92, -, Gr1) = 910192 - + - GrORGE+1

has rank less than the dimension of G* at almost every (gi, ..., gr1) € GFFL

ProoF. — Ragozin [8, Thm. 2.5] essentially proves that if the rank of f,. is equal
to the dimension of G* at almost every g1,...,gr1, then g, = ---* g, is abso-
lutely continuous. Conversely, if rank f;. is less than the dimension of G at almost
every gi,...,0r+1, then a continuity argument implies rankf, <dimG" at every
(91, - -,9k+1) and thus Sard’s theorem says the measure of the image of f}, is zero.
But the image is the product of the double cosets, Ga;1G - - - Gay G, which supports
the measure y,, * - - - * , , and hence this measure is singular. O
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A similar argument (see [7] and [3]) gives the analogous result for g.

PROPOSITION 4.2. — Let H,,...,H, €t and suppose gy, ..., pug, are the
orbital measures on g supported on the orbits Op,. Then gy *---* py, 18
singular with respect to the Haar measure on g if and only if the function
F, = F(Hy,...,H;): G* — g given by

Fi(g1,...,g1) = Ad(g1)H; + - - - + Ad(gr)H,
has rank less than the dimension of g at almost every (gi,...,gx) € G*.
Thus to determine the singularity of u£, a € A, we will need to study the

differential of fi(a,...,a) at the point (g1,92,93,...,9k+1). This is the map
il g, ... g from @1 to g whose value at (X3, ..., X;11) C ¢ is ®)

X; +Ad(gla)X2 +Ad(glag2a)X3 + - +Ad(glag2a. X1
Thus rank fi, at (g1,92, - ..,9%+1) is the dimension of the vector subspace
a+Ad(gi1a)g + Ad(grag2a)g + - - - + Ad(gragz0 . . . gra)g.

As g1 € G, Ad(g1)g = q, so there is no loss of generality in assuming g; = e, the
identity element in G. Thus one can deduce the following useful characterization
of singularity.

COROLLARY 4.1. — Let a € A. Then ik is singular to the Haar measure on G©
if and only if for almost all (g2,9s, . .., gr) € G,
q + Ad(a)g + Ad(agea)g + - - - + Ad(ags . .. agra)g G g* .

To reduce this to a computation of something more tangible, given a € A, say
a = expiH with H € t, we will set

N = span{RE,, IE, : sinh a(H) # 0}
= span{RE,, IE, : o(H) # 0}.

It is well known that A is not trivial if H # 0 (a # e). We will also write N for
{a € @:a(H) # 0}. It should be clear from the context which is meant.

LEMMA 4.1. — Let H € 1, a = exp(iH) € A and g2,9s,...,95x € 6. Then
a + Ad(a)g + Ad(agea)g + - - - + Ad(ags . . . agra)g
= q 4+ N +Ad(aga)iN + - -- + Ad(ags . . . agy)iN.

(Y This is true because of our convention of using right invariant vector fields.
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PrOOF. — Lemma 2.1 gives the formula
3) Ad(a)RE, = cosh o(H)RE, — sinh a(H)II[E,

and a similar formula for Ad(a)IE,. Thus by definition of N, Ad(a)RE, (or
Ad(a)IE,) belongs to g if o ¢ A and belongs to g + iN if « € A. In particular,
Ad(a)g C g + iN. Thus g + Ad(a)g C g + N and from this one can deduce that

Ad(agsa)g C Ad(aga)(g +iN) C g +iN + Ad(age)iN.

Continuing inductively, we see that LHS C RHS.

For the other inclusion, we note that formula (3) also implies that if « € NV,
then i[E, ¢ g + Ad(a)g. A similar statement is true for :RE,, hence q 4 iN C
a + Ad(a)g. More generally,

sinh a(H)Ad(ags . . . ag;)ilE, = —Ad(ags . . . ag;)(Ad(@)RE, — cosh a(H)RE,)
C Ad(ags . .. agja)g + Ad(agz . . . ag;10)g

and similarly for iRE,. Thus RHS C LHS. |

We make one more simplification in the next lemma.

LEMMA 4.2. — Let H € t and a = exp(itH). Let g2,93,...,9r € a. Then
q + 1IN + Ad(age)iN + Ad(ageags)iN + - - - + Ad(ags . . . agi)iN
= q+N + Ad(g2)iN + Ad(gog3)iN + - -+ Ad(ga . .. gkiN.

ProoOF. — Let ff be a root, g € G and assume

Ad(QRE; =t + > (¢,RE, + d,IE,) for some ¢ € t.

By Lemma 2.1,

Ad(ag)REp = Ad(a) (t + Z(caREa + deEm)>

=t+ Y (c,RE, +d,IE,)+ Y (c,RE, + d,IE,)cosh a(H)

oa@N oeN
+ Y i(—cdE, + d,RE,) sinh a(H).
aeN
Therefore
Ad(ag)iREy — Ad(g)iREy = > i(c,RE, + d,IE,)( cosh a(H) — 1)
aeN
— Y (~¢.IE, + d,RE,) sinh o(H)
aeN

eqg+iN.
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A similar result holds for :IEg. Thus for any g € G,
Ad(ag)iN C g+ iN +Ad(g)iN and Ad(g)iN C g +iN + Ad(ag)iN.
Since Ad(a)g = g + N, this gives
Ad(ageg3)iN C Ad(age)(g + IN + Ad(ags)iN)
C g+ 1N + Ad(age)iN + Ad(agzags)iN .
Combining these results we see that
Ad(geg3)iN C g + N + Ad(ageg3)iN
C g+ N + Ad(age)iN + Ad(agzags)iN,
hence
a + N +Ad(g2)iN + Ad(g293)iN C g + N + Ad(ag2)iN + Ad(agzags)iN .
One can similarly deduce that
a + N + Ad(agonN + Ad(ageagz)iN C q + N + Ad(go)iN + Ad(geg3)iN .

The proof follows inductively. O
Together the two lemmas give

COROLLARY 4.2. — Let H € t, a = exp(iH) and g2,9s, ..., 9k € 6. Then

a + Ad(a)g + Ad(agea)g + - - - + Ad(ags . . . agra)g
= g+ iWN +Ad(g2) N + Ad(g293) N + - - - + Ad(gs . .. gr) N).

We can now prove our main singularity result.

THEOREM 4.1. — Let H € t, a = expiH and k € N. Then it is a singular or-
bital measure on G if and only if ¥y is a singular orbital measure on g.

PROOF. — Prop. 4.2 says that 4, is singular if and only if dim ), <dim g a.e.,
where F(x1, . .., x;) = Ad(x)H + - - - Ad(«x,)H is the addition map onto the k-fold
sum of the orbit Oy. The differential of F, at (x1, ... ,2;) € G* maps onto the sum

k

of the tangent spaces to Og at a;Hax; !, > T, 17,-1(On). Without loss of generality
we can assume x; = e. =1

It is known that Ty(Og) = N [3, Prop. 2.1], thus T, y,-1(Oy) = Ad(x)N.
Therefore ,u’;{ is singular if and only if 1

N +Ad@) N + Ad(xs) N + - - - + Ad(xp) N S g,
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or, equivalently,
(4) q + iV + Ad(@) N + Ad@s) N + - - + Ad(ep) N G g*

for almost all &,...,2;. Now put go = &2, g3 = g5 @2 and gr = 9;% - .. 95 '@
Combined with Cor. 4.2 this shows that 4, is singular if and only if for almost all
92,9k

q +Ad(@)g + Ad(agsa)g + - - - + Ad(ags . .. agra)g S q° .

By Corollary 4.1 it follows that 4, is singular if and only if 4 is singular. O

When we write that a measure u € L' N L? we mean that it is absolutely
continuous with respect to the Haar measure and its density function belongs to
L' N L2. The following dichotomy theorem was proved in [5, Theorem 8.2].

THEOREM 4.2. — Suppose H # 0 belongs to the torus of any of the classical,
compact, connected, simple Lie algebras q. There exists an integer ky(H) such
that 1, € LA(@) N LA(@) for all k > ko(H) and 1% is singular to the Haar measure
on g for all k<ky(H).

The value of ky(H) is specified in [5]. The maximum value depends on the Lie
algebra, but in all cases is at most rank G + 1.

This theorem in combination with Theorems 3.1 and 4.1 yields the dichotomy
result for complex groups.

COROLLARY 4.3 (Dichotomy Theorem for Complex Groups). — Let G be a
classical, compact, connected, simple Lie group and let G- be its complex-
ification. Suppose a € A\{e}, say a=exp(iH) with He t\{0}. Then
1 e LAGY)YNLMGY) for all k > ko(H) and 1 is singular to the Haar measure
on G“ for all k<ko(H).

COROLLARY 4.4. — Let x(q) = max{ko(H) : H € t\{0}}. If 11y,..., 1, are any
continuous G -bi-invariant measures on G, then p * - - - u, € LY(GY).

Proor. — Let a4, ..., a, € A\{e}. By Holder’s inequality and the dichotomy
theorem for complex groups, 4, *---* u, € L*. Being a non-zero measure, its
support, Ga;G - - - Ga,.G, has positive Haar measure. The arguments in Prop. 4.1
show that this implies that the rank of the function f.(g1,...,0x1) =
§10102 . - - §ic0iGrs1 is equal to the dimension of G* on a set of positive measure.
But then an analyticity result implies the same is true almost everywhere.
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Since this holds for all a4, . . ., a, € A\{e} it follows from the proof of Theorem
2.5 in [8] that any x-fold convolution product of continuous G-bi-invariant mea-
sures is absolutely continuous. O

Of course, x is sharp with this property since there are continuous orbital
measures with ;! purely singular.

REFERENCES

[1] A. W. KNAPP, Lie Groups beyond an introduction, Birkhauser Verlag AG (2002).

[2] A. DooLEY - F. Riccr, Characterisation of G-invariant Fourier algebras, Un. Boll.
Mat. Ital., 9 (1995), 37-45.

[38] S. Gupta - K. HARE, Singularity of orbits in classical Lie algebras, Geom. Func.
Anal., 13 (2003), 815-844.

[4] S. Gupra - K. HARE, L2-singular dichotomy for orbital measures of classical
compact Lie groups, Adv. Math, 222 (2009), 1521-1573.

[5] S. GUPTA, - K. HARE - S. SEYFADDINT, L? -singular dichotomy for orbital measures of
classical simple Lie algebras, Math. Zeit., 262 (2009), 91-124.

[6] S. HELGASON, Differential geometry, Lie groups and symmetric spaces, Academic
Press, New York (1978).

[7] D. RaGoziN, Central measures on compact simple Lie groups, J. Fune. Anal., 10
(1972), 212-229.

[8] D. RAGozIN, Zonal measure algebras on isotropy irreducible homogeneous spaces, J.
Func. Anal., 17 (1974), 355-376.

[9] F. Riccr - E. STEIN, Harmonic analysis on nilpotent groups and singular integrals
11. Singular kernels supported on submanifolds, J. Fune. Anal., 78 (1988), 56-84.

[10] V. S. VARADARAJAN, Lie groups and Lie algebras and their representations, Spring-

er-Verlag, New York (1984).

Sanjiv Kumar Gupta: Dept. of Mathematics and Statistics
Sultan Qaboos University, P.O. Box 36, Al Khodh 123, Sultanate of Oman
E-mail: gupta@squ.edu.om

Kathryn E. Hare: Dept. of Pure Mathematics
University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
E-mail: kehare@uwaterloo.ca

Received October 13, 2009 and in revised form April 7, 2010



