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Bollettino U. M. 1.
(9) IIT (2010), 391-406

Viscosity and Almost Everywhere Solutions of First-Order
Carnot-Caratheodory Hamilton-Jacobi Equations

PIERPAOLO SORAVIA (¥)

Abstract. — We consider viscosity and distributional derivatives of functions in the di-
rections of a family of vector fields, generators of a Carnot-Caratheéodory (C-C in
brief) metric. In the framework of convex and non coercive Hamilton-Jacobi equa-
tions of C-C type we show that viscosity and a.e. subsolutions are equivalent concepts.
The latter is a concept related to Lipschitz continuity with respect to the metric
generated by the family of vector fields. Under more restrictive assumptions that
mclude Carnot groups, we prove that viscosity solutions of C-C HJ equations are
Lipschitz continuous with respect to the corresponding Carnot-Caratheodory metric
and satisfy the equation a.e.

1. — Introduction.

Since the notion of viscosity solutions has been introduced by Crandall-Lions
[6], value functions of deterministic optimal control problems, which are known to
be non differentiable in general, have been shown to solve the Bellman equation in
the viscosity sense, see [14]. It is well known however that coercive Hamiltonians
have locally Lipschitz continuous solutions and the consistency between viscosity
and a.e. solutions has been long established, being a consequence of the classical
Rademacher Theorem, see e.g. the books by Lions [14] and Bardi-Capuzzo
Dolcetta [1]. Indeed when we consider a first order HJ equation

(1.1) wu(e) + H(e, Du(x)) = A, x € Q(cC R"),

where A € R, 7> 0 and H(x,-) is convex, then it is equivalent for a locally
Lipschitz continuous function to satisfy (1.1) as an a.e. or a viscosity subsolution.
Moreover if u is a locally Lipschitz viscosity solution of (1.1), then the equation is
also satisfied a.e.. Therefore the two concepts of weak solutions are compatible. It
has to be noted however, that adding to (1.1) appropriate boundary conditions and
structure assumptions, continuous viscosity solutions are unique, while a.e. so-
lutions are not, in general.

(*) Partially supported by MIUR-Prin project “Metodi di viscosita, metrici e di teoria
del controllo in equazioni alle derivate parziali nonlineari”.
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A special subclass of HJ equations with noncoercive Hamiltonian, that we
name of C-C type, usually has solutions which are expected to be not merely
continuous but Lipschitz continuous with respect to a sub-riemannian or Carnot-
Caratheodory distance. We write such equations in the form

(1.2) tu(x) + H(e, o' (@)Du(x)) = 4, xeQ

where o(x) is an n x m matrix (m < n), the superseript ¢ means transposition and
now H : Q x R™ — R. The columns of ¢ are a family of m vector fields that will
be supposed to generate a Carnot-Carathéodory metric d. For (1.2), the concept
of viscosity solution still applies, by interpreting the gradient Du(x) in the
viscosity sense. However, a more recent theory of Sobolev spaces within this
framework has been introduced, see e.g. Franchi-Serapioni-Serra Cassano [10,
9], Garofalo-Nhieu [13], Franchi-Hajlasz-Koskela [11] and the very recent book
by Bonfiglioli-Lanconelli-Uguzzoni [4]. Namely, we can denote the vector fields
o; as differential operators X; and then, locally d-Lipschitz continuous functions
have locally bounded directional derivatives with respect to the family of vector
fields in the sense of distributions. We denote them as X;u(x). Moreover these
derivatives coincide a.e. with pointwise directional derivatives in an appropriate
sense in the directions of the vector fields, see e.g. Pansu [17], Monti-Serra
Cassano [16] and Monti [15]. Thus we can also interpret (1.2) as

(1.3) wu(x) + H(xe, Xu(x)) = 4, a.e. x € Q,

where Xu(x) = (Xju(x)).

Our plan in this paper is to create a direct correspondence between viscosity
solutions and a.e. solutions in the previous sense, a question that we did not find
explained elsewhere, thus extending the classical results holding in the Euclidian
setting. Our motivation, besides being quite a natural question in order to bridge
the two theories, relies also in the theory of absolutely minimizing functions, in
particular the Lipschitz extension problem, the infinity-Laplace equation, and the
way we extend the definition of absolute minimizers in a subelliptic setting. It
turns out that, besides the classical definition, one can equivalently define abso-
lute minimizers in a viscosity sense, see [19] and also Bieske [3] and Wang [20].

In the C-C case (1.2) we will prove parallel results to those holding for (1.1). In
Section 2 we first show that, when H(zx, -) is coercive (but note that coercivity of H
does not imply that the equation (1.2) is coercive in the gradient as well), any
viscosity subsolution of (1.2) is d-Lipschitz continuous. Then in Section 3, for a
general uniformly continuous Carnot-Caratheodory metric, we prove that it is
equivalent that a locally d-Lipschitz continuous function » satisfies (1.2) as a
subsolution in the viscosity sense or (1.3) as an a.e. subsolution. In Section 4,
under structure conditions satisfied by Carnot groups, we show that if « is a
locally d-Lipschitz continuous viscosity solution of (1.2), in particular if H(x, ) is
coercive, then u also satisfies the equation a.e.. Hence existence results for a.e.
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solutions of HJ equations in Carnot groups become a consequence of the well
known classical ones for viscosity solutions.

We finally want to recall that the role of the degenerate eikonal equation in
pde theory, a special but important example of HJ C-C equations, has been re-
cently studied by Dragoni, see [7, 8] extending some classical results holding in
the Euclidian setting.

2. — Preliminaries and notations.

We start recalling some basic facts on families of vector fields and the Carnot-
Carathéodory metric that they define. The starting point here is a family of
m < n Lipschitz continuous vector fields o;: 2 — R", j=1,...,m, QCR"
bounded, open and connected set, which we put as columns of the matrix valued
funection ¢ : Q — R™™. To such family of vector fields we associate a determi-
nistic optimal control system, namely

21) y(t) = oG)ac) = ; Qo (50,

y(©0) =, j

for any given control function a(-) € L*(0, 4 oo, B1(0)) (here B1(0) C R™ is the
unit ball). In addition, we assume throughout the paper that the family of vector
fields is of Carnot-Caratheodory type, namely the following basic assumption
holds: for all x,z € Q the set

Az ={a(-) € L0, + 00, B1(0) : 9(0;0) = @, Y(tyz;@) =2, trp € [0,+00)}
is nonempty. This allows to define the following function

d(OC,Z) = tx,z< + o0,

inf

a()eL*(0,4 00,B,(0))
which is a distance function, also called the Carnot-Caratheodory distance asso-
ciated to the family {o;}. A particular case where the previous property is satisfied is
for instance that of Riemannian metrics (m = n), when the matrix A(x) = o(x)o’(x)
is positive definite at each point x. In the sub-Riemannian case, the vector fields are
smooth and satisfy the Hérmander condition, namely {g; : j = 1,...,n} and their
Lie brackets generate the space R" at each point of Q. By Chow Theorem this is a
sufficient condition for a well defined Carnot-Caratheodory distance.

For given z € Q, the function d(-, 2) is the value function of an optimal control
problem and then it solves the corresponding Hamilton-Jacobi-Bellman equa-
tion, the eikonal equation, see [2, 1] and the references therein,

max{—oa(x)a - D,d(x,2)} = |at(9c)Dxd(9c, ) =1, xe\{z},

|a[<1
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as a continuous viscosity solution. Such equation is an important example of HJ
equation of C-C type where H(x,p) = |p| is the Hamiltonian. Notice that if we

denote
( o) >
o= ,
0@2)
and o(;)(x) is an m x m invertible matrix for all x € Q, then we can also represent
the eikonal equation as |0fl)(90)5t(x)Du(x)| =1, where

I
(2.2) (@) = o(@)og) (@) = ( )

o) (®)o (ﬁ(%)

is a new family of vector fields. The equation is still C-C with Hamiltonian
H(x,p) = |0f1)(x)fo| in this case. Vector fields of the form (2.2) appear for instance
in the case of Carnot groups, see also Section 4.

We will always consider families of vector fields such that the distance d is
uniformly continuous in the following sense: for any open set D CC Q there is a
modulus «” such that

d(®,2) < wP(jx —2|), for all w,z € D.

As a special case, it is well known that if the vector fields g; € C>°(2) and their
Lie algebra satisfy the Hérmander finite rank condition of order 7, then for any
D cc R" the distance d satisfies the estimate

d(x,z) < Lp|e — z|%, for x,z € D.

We also denote the vector fields as differential operators, i.e.
n
X;=> 0@
i=1

When ¢ : R" — R is a C' function, we define the derivatives of ¢ along the di-
rections of the vector fields as

n a
(2.3) Xip@) = 0(@) 5 9(@).

i=1

If otherwise u € L}(Q) we can define X;u in the sense of distributions when the
following equation is satisfied

f Xju(@)pw)de = — f () Z %(oij(x)w(m))dx =- f w(@) X; pla)de,
Q 7} =1 7 Q

for all p € CL(Q). If in particular « is locally Lipschitz continuous in the Euclidean
sense, then equation (2.3) is still valid for a.e. x € Q.
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Notice that we have set
n a .
X p(x) = Zl o (o4(@)p(x)) = (div g;(x)) px) + X;p(x),

in particular Xj is self-adjoint if and only if div g; = 0. One can henceforth define
the corresponding Sobolev spaces taking into account the derivatives with re-
spect to the directions of the vector fields. It is well known, among their prop-
erties, see e.g. Franchi-Serapioni-Serra Cassano [10, 9] and Garofalo-Nhieu [13],
that u € W}l("oc(D) if and only if the function » is Lipschitz continuous in D cC 2
with respect to the Carnot-Caratheodory metric d determined by the family of
vector fields, i.e.

lu(@) — u(y)| < Lyd(x,y), forall x,y e D,

for an appropriate L,, € R. In the following we will denote Xu = (Xju, ..., X,,u),
when u is locally d-Lipschitz continuous.

We now consider a continuous Hamiltonian H : Q x R™ — R with the fol-
lowing properties: H(x, -) is convex for all 2 and locally Lipschitz continuous in
the form

H(x,p) — H(y,p) < Lp( + [p/)x — ],
H(x,p) — H(y,q) < Lp + (p| v |g])")|p — ql,

forallxe,y € D CcC Q, p,q € R™ and some k > 1. Local Lipschitz continuity of H
in « could be relaxed to local uniformly continuous, but we skip these details. We
notice that our Hamiltonian H(x, -) may or may not be coercive, where this means

that at least ‘l‘im ing H(x,p) = + oo. Nevertheless even though a coercivity
p|—00 XE

condition holds, the Hamiltonian

H(x,q) = H(x,d'(x)q), (v,q) € 2x R"

(2.4)

will not be coercive in q if m <n.
Our goal in this paper is to study the relationships between the horizontal
Hamilton-Jacobi equations

wu(e) + He, Xu(x)) = A€ R, ae xe,
tu(x) + H(x, o'(x)Du(x)) = 4, in Q in the viscosity sense,

where here and in the following 7 > 0. Our approach will use convexity of the
Hamiltonian as a crucial ingredient to study subsolutions, and refined almost
everywhere differentiability statements for d-Lipschitz continuous functions due
to Monti [15] (see also Pansu [17]), holding in a Carnot group setting (and more),
to study supersolutions.

We end this section by showing that the two previous equations are clearly
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related by a general regularity result of viscosity subsolutions of C-C HJ
equations. We start by considering Hamiltonians H of Bellman type, see
however Remark 2.3 below. We suppose that

(2.5) H(xe,p) = mezgc{—f(x, a)-p—Uxa)}, @pexR",

where A is a compact subset of a metric space and f:QxA — R™,
l:Qx A — R are continuous functions satisfying

(2.6) |f@,a) — f(z,0)] < Lple —z|, |lx,a) —U(z,a)] < Lplx — 7|,

for all x,z € D CC 2, a € A. Since the whole discussion in the paper concerns
local properties, we will also assume the data to be bounded. Then we also have
the following representation formula

lzl(ac,q) = maji{—a(x)f(x, a)-q—lx,a)}, forall (x,q) € 2 x R"
ac

The latter is the Bellman Hamiltonian of an optimal control problem governed by
the following control system

(2.7) Y@ = aly@®) fy@), ad), y0) =,

for all Borel measurable controls a : [0, + co) — A. In the next statement we will
also suppose that the Hamiltonian H be coercive in the following sense: we can
find 0 > 0 such that

(2.8) fx,A) D B(0,0), forallxec Q.

REMARK 2.1. — We can relax assumption (2.8) to
cof(x,A) D B(0,0), forallxecQ

by simply using in the following relaxed controls, for instance a(-) €
L>(0, + oco; P(A)), instead of ordinary controls, where P(A) indicates the set of
probability measures on the set A. We will avoid doing that for the sake of sim-
plicity. O

REMARK 2.2. — Notice that given a trajectory y( - ) of (2.7) we can define of by

change of variables y(t) = y( ) and obtain that

ot
L+ 1fll
It = s(GO)at), H0) =,

Fa®, a( )

L+ [ fllo
d((®), ) <t and d(y@®),x) < ¢1 + || fl|)-

where a(t) =

€ B1(0) is a solution of (2.1). In particular
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Notice moreover that if coercivity (2.8) holds, then any trajectory of (2.1)
can be reproduced by a trajectory of (2.7). Indeed for any given a(-) €

L0, + 00; By(0)) we can select a( - ) € L™(0, + 00; A) such that f (?7“)7 a(% )> -

oa(t), where ¥ is the solution of (2.1) corresponding to a. Therefore if we define
y(@t) = y(ot), we get that y is the solution of (2.7) corresponding to a(-). In
particular for any given x,y € Q, we can find a € L>(0, + co; A) such that the
corresponding trajectory of (2.7) satisfies #(0) = x,%(t) = y and

d(x,y) = dt.
O

We prove the following result. For the definition and basic theory of viscosity
solutions, the reader can consult the classical paper Crandall-Ishii-Lions [5] or [1].

ProposITION 2.1. — Assume (2.5) (2.6) and (2.8). Any bounded (upper
semicontinuous) viscosity subsolution of
u(x) + H(x, o' (e)Du(x)) = 4, in Q
1s d-Lipschitz continuous.
ProoF. — The simple proof is based on the optimality principle as in [18] de-
spite the fact that the HJB equation may not satisfy a comparison principle. Since

u is a viscosity subsolution, for all a( - ) € L*°(0, + co; A) we have that for y(s) € Q
for all s € (0,¢) then

t
u(x) < f e Pl (y(s), als))ds + e “uy(t)).
0

For any given x,y € Q, as in Remark 2.2 we now choose a( - ) and the corre-
sponding trajectory #( - ) such that 4(0) = x, %(t) = ¥, d(x,y) = 6t. Then we obtain

u(@) — uy) < |t = A = e Du) <0 (U + ollulJde, .
Reversing the roles of x,y we conclude. O
REMARK 2.3. — Proposition 2.1 still holds even if the control set A in (2.5) is
unbounded, provided the functions f, [ satisfy suitable coercivity conditions. To

this end we can use the optimality principle as in Garavello-Soravia [12]. In
particular this applies to a generic convex Hamiltonian H satisfying (2.4) and

H(x,p) > Cy|p|" — Cs,

for all &, p and some r > 1, C; > 0, when we represent it in the form (2.5) by convex
duality. O
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The following is an easy and useful consequence of Proposition 2.1.

COROLLARY 2.2. — If u is a viscosity subsolution of
u(x) + H(e, o' (®)Du(x)) = 4, in Q
and y(-) is a trajectory of (2.7) then the function w(y(-)) is locally Lipschitz

continuous.

Proor. — The following proof actually holds for any d-Lipschitz function. We
use Remark 2.2 and take any interval such that y(t) € Q for all ¢ € [r, s], where
y(-) is a trajectory of (2.7). Then we get

luy(r)) — u(y(s))| < Lody (), y(s) < Lu(1 + [ fll. s —7l.

3. — Viscosity and a.e. subsolutions.
This section deals with the case of subsolutions and we study the two dif-
ferential inequalities
wu(e) + H, Xu(x)) < A, ae.x € Q,
u(x) + H(x, o'(x)Du(x)) < 2, in Q in the viscosity sense.
In our approach a crucial ingredient is the convexity of the Hamiltonian. We

prove the following statement.

THEOREM 3.1. — Assume (2.4) and that a; € W2>(Q; R") forj =1,...,m. Let
u: Q — R be a bounded d-Lipschitz continuous function, then

wu(x) + H(e, Xu(x)) < A, ae.xeQ
if and only if

u(x) + H(e, o' (@)Du(e)) < A, in Q in the Viscosity sense.

We prove the two parts of the statement separately.

PROPOSITION 3.2. — In the assumptions of Theorem 3.1 if
tu(r) + H(x, Xu(z)) < A, ae x € Q,
then we have
wu(z) + H(x, o' (x)Du(z)) < A, z € Q,

m the viscosity sense.



VISCOSITY AND ALMOST EVERYWHERE SOLUTIONS OF FIRST-ORDER ETC. 399

Proor. — We fix x, € 2 and prove that « is a viscosity solution of
tuw(x) + H(e, o' (e)Dux)) < A,  x € Bx,,r)
forr > 0 sufficiently small so that B(x,,r) C 2, +[ — 7,7]" C Q.Fixe, > 0sothat
To +[—rr]" C Q, ={xeQ:dist(x,002) > 2,}.

We may also suppose that » < ¢,/2.
We use the standard mollification where p : R" — [0, 4 c0) is C*°, f ple)dx =1,

supp p C B(0,1), ¢ € (0,¢,) and p,(x) = 81 p(%). If u is a d-Lipschitz continuous

function, we define u, = u * p, and compute, for x € B(x,, ), ¢ <&,

X =D o) 5 [ e v

_ me(x) f uy) —pe(m )y = U(x) fu(?fl) o (*=2)ay
_Z f lf(x) (@P)(z)dz
=1 g <1

On the other hand, by the Lipschitz property of u we also compute
Xius pa) = [ Xup o — )y
Q
. 1¢ 0 [x—y
= —!u(y) [dlv ai(yp.(x —y) + 5; oY) 8—%/7(7)] dy

e ~ (.1 ) Y
= —(div op)u * p,(x) + ; Qf s u(y)o-y(y)(&p)( . )dy

n —
= —(@div opu @) + Y f aij(a — ez)M(aip)(z)dz.

=1 |g|<1

We now study the convergence in B(x,,r/2) of

(8.1) Xju * p,(a) — Xju,(x)

- Z f = (03 — 82) — 0(@) u(@ — &))@z — (div o)) * p,@).
=1 g <1
The idea is to observe that, by integrating by parts in dz; we have
) [ Do)z @penaz = Z f G Oz = v 7;(@)

=1
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and then add and subtract the term (div g;) » in the right hand side of (3.1).
As for the last term, we easily estimate in B(x,,r/2)
[(div aj)u * p,(x) — (div apul| , < [lo]ly (o) + |lull ),
where d(x,y) < o(|x — y|) for all x,y € B(x,,7/2).
For each term in the sum (3.1), we estimate for |z| <1
%(aij(ac —&2) — g(x)) Wl — &2) + Doy(x) - 2z ulx)
=| - Doy(x — &.2) - 2z u(x — e2) + Doy(x) - z u()|
< || Dol Jut@) — wiw — e2)||2| + [D?o]| o [o||ue] .2
< [lollg o0 (e) + [l o),

where ¢, € (0,¢) is suitably chosen.
We can then estimate in B(x,,r/2)
(32) X520 5 p, = Xyt || oo < (0|l o0 + Dl 00 (&) + [l ),

where w, is the Lebesgue measure of the unit ball in R”. In particular the family
{Xju.}, is bounded in L>(B(x,,7/2)).

We now go to the HJ equation and compute by the above, the convexity of the
Hamiltonian and Jensen’s Lemma

tu(x)  + H(x, o' (@®)Du,(x)) = tu.(x) + He, Xu(x)) < tu.(x)
+ H(x, Xu * p () + o(1)

< o) + [ pule — ) H@, Xu(y)dy + o(1)

§fpg(ac — lruy) + Hy, Xu@)) + LA + || Xul| e — y[ldy + o(1)
< A+ o0(1).

The previous inequality holds in B(x,,7/2) pointwise and thus in the viscosity
sense because u, is smooth. By the stability of viscosity solutions, see [5] since
u, — % uniformly in B(x,,7), we can then conclude

(@) + He, o' (@)Du@) < 4, By, 1),
in the viscosity sense. O
REMARK 3.1. — We notice that in the previous proof it is shown that with the

standard convolution and mollifiers we have that for a d-Lipschitz continuous

function
Xu, — (Xu) xp, — 0, in L3, (Q).

In particular Xu,(x) — Xu(x) in L} (Q).

loc
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We also observe that the corresponding statement of Proposition 3.2 for
supersolutions is false even in the Euclidean setting. For instance u(x) = ||
satisfies «/(x) = 1 a.e.in ( — 1, 1) nevertheless it is not a viscosity supersolution of
such equation. O

We now proceed with the other part of Theorem 3.1. Here we use the non-
linear convolution, classically defined for any bounded and upper semicontinuous
function u : 2 — R by setting

, 1 )
u(x) = sup s wy) — = v — , xeR"
yeg{ Y 282‘ vl }

PROPOSITION 3.3. — In the assumptions of Theorem 3.1 if
(3.3) () + H(e, o' ()Dux)) < 1, x € Q,
i the viscosity sense, then

wu(x) + H(xe, Xu(x)) < 4, ae.xe€ Q.

ProoF. — We start with a general claim. Let {«*}, C C(R") be a family of
locally Lipschitz continuous functions in the Euclidean sense such that u, — u
locally uniformly in Q and {Xu*}, is locally bounded in L>(2; R™). Then for any
open V CC Q we have that Xu? — Xu in L2(V). Indeed for all ¢ € CX(V) we
compute

f Xub(x) — Xu@)p(@)de = — f (U () — u@) X p(x)dx — 0,
1% 14

and then by density [ (Xu®(x) — Xu(x)) f(@)dx — 0 for all f € L3(Q).

If u: 2 — R is a d-Lipschitz continuous function satisfying (3.3), we build
an appropriate family of approximations by nonlinear sup-convolution. We use
some well-known properties of the functions u?, see e.g. [1]. It is known that
u® > in Q, u* are semiconvex, u? — u locally uniformly in Q and, for any
given open set V CC Q, at each point of differentiability « € V and ¢ suffi-

T'e - € D"u(T%x), where Téx is such that

ciently small we have Du’(x) = 2

1
w(x) = w(T?x) — 52 |z — Tx|* and we have denoted the superdifferential
Dru(x,) = {p € R" : there is ¢ € C>(Q), p = Do(x,), x, € ArgMax(u — ¢)}.

1
One can also easily show that — |o— T%f < o’ (21/Hu|\ e) =o0(1) by
. . . 262 o
d-Lipschitz continuity of w.
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From the assumptions we then get
(34) wu(T?x) + H(T?x, o' (T?2)Dui(x)) < 1, ae.xeV.

We pause for a second and repeat the same argument choosing as Hamiltonian
|p| and A = ess — sup |[Xu(x)| < + oo by the d-Lipschitz property of u. Then

xeV
|Xu(x)| < 4 fora.e.x € V and therefore |o'(x)Du(x)| < A in the viscosity sense by
Proposition 3.2. As above we obtain

|at(Tgac)Du£(x)| <A aezxeV
and
| Xui(x)| = |o'@)Du(x)| < | (Téx)Dué(x)| + |(a' (@) — o' (Tx)) Duf(x))
< A+ ||Da|| e — T?x||Du(x)| = A+ 0(1), ae.xeV.
In particular in V
tim sup X0l < [1Xu]

and the family {Xu"}, is uniformly bounded in L>(V).

Now we go back to (3.4). From what we just observed and (2.4) we also get

u(xe) + H(e, Xu’(x)) < A+0(), ae xcV.
Now fix > 0 and suppose ¢ sufficiently small so that o(1) < d. Then consider
A, ={f € LAX(V;R™) : H(x,f(x)) < A+ 6 — tu(x) a.e.}.

We have that A; is convex and closed in L2(V;R™), hence closed in the weak
topology. Moreover we showed that {Xu*}, C A,. Thus Xu € A, since Xu* — Xu
in L2(V; R™) as we saw in the beginning. Threrefore

() + H@e, Xu(x) <A1+, ae xeV.
Being ¢ and V C Q arbitrary, we can conclude. O
REMARK 3.2. — This remark may look a bit technical but it is sometimes useful,

see e.g. [19], and is due to the particular nature of viscosity solutions. It is a
consequence of Theorem 3.1. Notice that if

(3.5) H,o'@Du@) <1, xcQ,

in the viscosity sense, then the following inequalities are both satisfied
H(x,Xu(x)) </, Hx,—X(—ux) <41, ae xc.

Using again Theorem 3.1 from the latter we also obtain that

(3.6) H@,—d'@D(—w)(x) <1, xeQ,
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in the viscosity sense. This is not obvious because while (3.5) is a condition on the
viscosity superdifferential of u, (3.6) is instead a condition on the subdifferential of
u since DT ( — u) = —D~u, see [5, 1] for details. O

4. — Viscosity and a.e. supersolutions.

In this section we consider a Bellman Hamiltonian written in the form (2.5).
We consider a locally d-Lipschitz continuous function u € C(£2) and suppose that
it is pointwise almost everywhere differentiable with respect to the family of
vector fields. Namely we assume that it satisfies the following first order Taylor
expansion with respect to the horizontal gradient defined in the sense of dis-
tributions

4.1)  uly) =ul) +Xu@) - —2) +o(d(y,x)), asy — x, forae xecQ.

In the above, as a general notation we set & = (xy, ..., %,) if £ = (x1,...,2,). The
first general Rademacher-type theorem in Carnot groups is due to Pansu [17].
The work by Monti [15] in the case of real-valued functions, relates Pansu dif-
ferential with the distributional derivatives of % and shows (4.1) in more general
Carnot-Caratheodory spaces than Carnot groups. A crucial assumption that
identifies the setting used in [15] (among other facts, see [15] for details) and
explains why we use the difference (¥ — ) in the first order term of (4.1) is the
following special structure of the vector fields, namely that

(42) Uij(x) = 5ija i,j € {11 ce ,W’L},
where the notation J;; indicates the Kronecker delta.
We prove the following.
THEOREM 4.1. — Assume (2.6) and suppose that u € C(2) is locally d-
Lipschitz continuous and satisfies (4.1) and (4.2). If u satisfies
(4.3) u(x) + H(e, o' (@)Du(x)) > 4, € Q,
in the viscosity sense, then

wu(x) + H(xe, Xu(x)) > 4, ae.x € Q.

Proor. — Let u € C(£2) be a viscosity supersolution of (4.3), we work in any
open D CC Q. By the optimality principle, see e.g. Soravia [18]

t
o . —181 1 -1t
uw = 0%,& e SR !. e LA+ Uy(s), als)]ds + e~ uly (),

where 7, is the first exit time of the trajectory of (2.7) from D. Therefore if we
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choose an optimal relaxed control & € L*(0, + oo; P(A)) and the corresponding
optimal trajectory y with %(0) = x € D we have

Tt (A o ¢ 7rt
(4.4) ¢ u(z/(z;)) “(x)—% e UGs), as)ds > 1 ) - )

for all sufficiently small ¢ > 0.
On the other hand, by (4.1) we can write

w(@y@)) — ulx) (y(t) ac)

; = Xu(x) - +01), ast— 0, forae xeD.

Therefore from (4.2) and (4.4) we deduce (notice that of = f)

_p Tt 4
9_;_2u@@»fXMM'%jf@@%ﬂ@ﬂsf—fKM$a@»k
0
(45) _ -1t S = t
= (17:) u(?}(t)) - Xu(x) . Mtx) _ % e—rsl(y(s), &(S))ds + 0(1)
0

>J+01), ast—0, for ae. xc Q.

We now observe the following bounds

< Moo

t
[ ra. s
0

Therefore for a.e. given x € D we can find a sequence ¢, — 0 such that

tn ty
( f F@(s),a(s)ds, f Lg(s), a(s))ds) = (f,]) € co{(f(x,a),U(x,a)) : a € A}.

Hence by (4.5) and taking the limit 7 — 400 we obtain
() + H(e, Xu(x)) = tulx) + max{ —fx, ) Xu(x) — e, a)}

= tu(x) + {—Xw(x) - f — 1}

(, l)eco( f(x A) I, A))
> tu(x) — Xu(x) ~f .y > A,

for a.e. x € Q. O

We conclude the paper with a direct consequence of the results we proved so
far, an existence result of almost everywhere solutions of Hamilton-Jacobi
equations in a C-C setting. This result extends those obtained by Monti [15] and
Monti-Serra Cassano [16] for the eikonal equation. We add that results and
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methods to prove existence of continuous viscosity solutions of the most com-
mon boundary value problems for first order HJ equations are now well known,
see e.g. [1].

COROLLARY 4.2. — Assume that the wvector fields o;€ W22(Q; R™),
j=1,...,m, are generators of a Carnot-Caratheodory, uniformly contin-
uous distance d. Assume moreover that (2.6), (2.5), (2.8) and (4.2) are
satisfied. Let u € C(Q) satisfying (4.1), be a viscosity solution of

() + H(e, o' (@)Du(x)) = 2, in Q.
Then u satisfies

wu(x) + H(xe, Xu(x)) = A, for ae. x € Q.
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