BOLLETTINO UNIONE MATEMATICA ITALIANA

Marilena Crupi, Gaetana Restuccia

Coactions of Hopf Algebras on Algebras in Positive Characteristic

Bollettino dell'Unione Matematica Italiana, Serie 9, Vol. 3 (2010), n.2, p. 349–361.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2010_9_3_2_349_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Coactions of Hopf Algebras on Algebras in Positive Characteristic

Marilena Crupi - Gaetana Restuccia

Abstract. – Let K be a field of positive characteristic p > 0. We study the coactions of the Hopf algebra of the multiplicative group H_m with underlying algebra $H = K[X_1, \ldots, X_n]/(X_1^{p^{s_1}}, \ldots, X_n^{p^{s_n}}), n \geq 1, s_1 \geq \cdots \geq s_n \geq 1$ on a K-algebra A.

We give the rule for the set of additive endomorphism of A, that define a coaction of H_m on A commutative.

For $s_1 = \cdots = s_n = 1$, we obtain the explicit expression of such coactions in terms of n derivations of A.

1. – Introduction.

In recent papers ([7], [8]) finite-dimensional commutative Hopf algebras H with underlying algebra

(1.1)
$$H = K[X_1, \dots, X_n]/(X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}}), \ n \ge 1, s_1 \ge \dots \ge s_n \ge 1,$$

where $K[X_1, \ldots, X_n]$ denotes the polynomial ring in n indeterminates X_1, \ldots, X_n with coefficients in a field K of characteristic p > 0, have been studied.

Such assumption on H comes from groups schemes theory, since by the structure theorem of infinitesimal, finite and connected group schemes ([12], 14.4), any finite-dimensional, commutative and local Hopf algebra over a perfect field has this form.

Thanks to this remark, we have concrete examples of Hopf algebras H. After, we consider a coaction of such Hopf algebras H on a K-algebra that can be commutative or not, finitely generated or not.

Thus, let $\delta:A\to A\otimes H$ be a coaction of H over a K-algebra A. For every $a\in A$, we can write

(1.2)
$$\delta(a) = a \otimes 1 + \sum_{1 \le i \le n} D_i(a) \otimes x_i + \sum_{a \in A, |a| \ge 2} D_a(a) \otimes x^a$$

where the x_i are the residue classes of the X_i in H, A is the set of all multi-indices $a = (a_1, \ldots, a_n), \ 0 \le a_i < p^{s_i}, \ 1 \le i \le n$, and where $D_i : A \to A, \ 1 \le i \le n$, are

derivations of A defined by

$$D_i = D_{(0,\dots,0,1,0,\dots,0)},$$

with 1 in the i-th position.

In this note we focus our attention on the Hopf algebra with underlying algebra (1.1), with comultiplication given by

$$\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i + x_i \otimes x_i, \ x_i = X_i + (X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}}),$$

for $1 \le i \le n$, counity defined by $\varepsilon(x_i) = 0$ and antipode S given by $S(x_i) = \sum_{i=1}^{\infty} (-1)^j x_i^j$.

Such algebra will be denoted by H_m and we call it the Hopf algebra of the multiplicative group.

Our aim is to study the coactions of H_m on a K-algebra A, that is the behaviour of the additive morphisms $D_a: A \to A$ that appear in the expression of the coactions (1.2), for $a \in A$.

More precisely, the plane of the paper is the following.

In Section 2 we recall some definitions and results about Hopf algebras.

In Section 3 we introduce the Hopf algebra of the multiplicative algebra group H_m . Then we study the coactions of H_m on a K-algebra A, giving the explicit expression of the additive morphisms $D_a: A \to A$ which appear in the coaction δ , for $a \in A$ such that $|a| \geq 1$ (Proposition 3.2).

Such coactions can be expressed only in terms of derivations D_1, \ldots, D_n of A such that $[D_i, D_j] = 0$, $D_i^p = D_i$, $1 \le i, j \le n$, $s_1 = s_2 = \cdots = s_n = 1$. (Theorem 3.3).

Section 4 contains some applications to the case A commutative local K-algebra. If δ is a coaction of H_m on A and $A^{coH_m} = \{a \in A : \delta(a) = a \otimes 1\}$ is the subalgebra of H_m -coinvariant elements, we study the extension $A^{coH_m} \subset A$. We examine some theoretical properties of such extension such as the flatness and the property to be an H_m -Galois extension (Proposition 4.2).

Moreover, if (A, m) contains the field K of characteristic p > 0, H a finite-dimensional commutative Hopf algebra over the field K satisfying (1.1) and δ a coaction of H on A, we prove the existence of a p-basis of A^{coH} over K (Proposition 4.3).

2. - Preliminaries on Hopf algebras.

Let K be a field of characteristic p > 0. Let H be a Hopf algebra over the field K with comultiplication $\Delta: H \to H \otimes H$, counit $\varepsilon: H \to k$, multiplication $\mu: H \otimes H \to H$ and antipode $S: H \to H$.

Let A be an algebra and let

$$\delta: A \to A \otimes H$$

be an algebra map and a right H-comodule structure on A. (A, δ) is called a right H-comodule algebra, and

$$A^{coH} = \{ a \in A : \delta(a) = a \otimes 1 \},$$

is called the subalgebra of *H*-coinvariant elements.

Let K be a field of characteristic p > 0. Let s_1, \ldots, s_n be positive integers and let A be the set of all multi-indices

$$a = (a_1, \dots, a_n), \qquad 0 \le a_i < p^{s_i}, \qquad 1 \le i \le n.$$

For $a = (a_1, \ldots, a_n), \beta = (\beta_1, \ldots, \beta_n) \in \mathbb{N}^n$, we define

$$a + \beta = (a_1 + \beta_1, \dots, a_n + \beta_n)$$

and

$$\begin{pmatrix} a \\ \beta \end{pmatrix} = \begin{pmatrix} a_1 \\ \beta_1 \end{pmatrix} \cdots \begin{pmatrix} a_n \\ \beta_n \end{pmatrix}.$$

Consider the Hopf algebras which "live" on the coalgebras

$$C_{\sigma} = \left(\sum_{a \in \mathbb{A}} \mathit{Ke}_a, \mathit{\Delta}, \varepsilon\right), \ \ \sigma = (s_1, \ldots, s_n) \in \mathbb{A},$$

where

$$arDelta(e_a) = \sum_{eta+\gamma=a,\ eta,\gamma\in\mathbb{A}} e_eta\otimes e_\gamma,\ \ arepsilon(e_a) = \delta_{a,0},$$

with $\delta_{a,\beta} = 1$ if $a = \beta$ and $\delta_{a,\beta} = 0$ if $a \neq \beta$.

Example 2.1. – Consider

$$H_{\sigma} = (C_{\sigma}, \mu : C_{\sigma} \otimes C_{\sigma} \to C_{\sigma}, S : C_{\sigma} \to C_{\sigma}, \eta : k \to C_{\sigma}),$$

 $\sigma = (s_1, \ldots, s_n) \in \mathbb{N}^n$, with

$$\mu(e_a \otimes e_{\beta}) = \left\{ egin{aligned} \left(egin{aligned} a + eta \\ a \end{aligned}
ight) e_{a+eta}, & ext{if } a_i + eta_i < p^{s_i} \\ 0, & ext{otherwise}; \end{aligned}
ight.$$

antipode S determined by the equalities:

$$\sum_{a+\beta=\gamma} e_a S(e_\beta) = \delta_{\gamma,0}$$

and

$$\eta(t) = te_0, \ 0 \in \mathbb{N}^n, \quad \text{for every } t \in \mathbb{N}.$$

If an Hopf algebra "lives" on the coalgebra C_{σ} , then the dual Hopf algebra H^* "lives" on the algebra $H_{\sigma} = K[X_1, \ldots, X_n]/(X_1^{p^{n_1}}, \ldots, X_n^{p^{n_n}})$ (i.e. H^* as an algebra is equal to H_{σ}), because $C_{\sigma}^* = H_{\sigma}$, where $K[X_1, \ldots, X_n]$ is the polynomial ring in n indeterminates X_1, \ldots, X_n .

Moreover there is a one to one correspondance between the actions D of H^* on A that preserves the ring invariants $A^H = A^D = \{a \in A : D(a) = a \otimes 1\}$. Then it turns out that is better to deal with coactions of H^* than with actions of H.

The importance of such algebras is underlined by a result due to Oort and Mumford ([6], Cor. 5.2) that assures that all cocommutative Hopf algebras can be described by the above algebras H_{σ} , by using the formal groups.

Now assume that H is a commutative Hopf algebra with underlying algebra

$$(2.1) H = K[X_1, \dots, X_n]/(X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}}), \ n \ge 1, s_1 \ge \dots \ge s_n \ge 1.$$

Let A be the set of all multi-indices $a = (a_1, \dots, a_n)$, such that $0 \le a_i < p^{s_i}$ and 1 < i < n.

For all i let x_i be the residue class of X_i in H. Then the elements

$$x^a = x_1^{a_1} \cdots x_n^{a_n}, \ a \in \mathbb{A},$$

are a K-basis of H.

Note that $\varepsilon(x_i) = 0$ for all i, where $\varepsilon : H \to K$ is the counit of H, since H is local with maximal ideal (x_1, \ldots, x_n) .

Let A be an algebra, and $\delta:A\to A\otimes H$, a right H-comodule algebra structure on A.

We will always write

$$\delta(a) = \sum_{a \in A} D_a(a) \otimes x^a, \quad \forall a \in A.$$

Then for all $a \in A$ and $a, b \in A$,

$$D_a(ab) = \sum_{eta+\gamma=a,\;eta,\,\gamma\in\mathrm{A}} D_eta(a) D_\gamma(b),$$

and $D_{(0,...,0)} = id$.

For all i, let $\delta_i = (\delta_{ij})_{1 \leq j \leq n} \in \mathbb{A}$, where $\delta_{ij} = 1$, if j = 1, and $\delta_{ij} = 0$ otherwise. We define

$$D_i = D_{\delta_i} = D_{(0,\dots,0,1,0,\dots,0)},$$

with 1 in the *i*-th position for i = 1, ..., n.

Note that the linear maps $D_i: A \to A$ are derivations of the algebra A, and for all $a \in A$, we have

(2.2)
$$\delta(a) = a \otimes 1 + \sum_{1 \leq i \leq n} D_i(a) \otimes x_i + \sum_{a \in \mathbb{A}, |a| \geq 2} D_a(a) \otimes x^a,$$

where $|a| = |(a_1, ..., a_n)| = a_1 + \cdots + a_n$.

In particular

$$[D_i,D_j] \in \sum_{1 \leq t \leq n} \mathit{KD}_t, \qquad D_i^p \in \sum_{1 \leq t \leq n} \mathit{KD}_t, \qquad 1 \leq i,j \leq n$$

and in the case when $s_1 = s_2 = \cdots = s_n = 1$ ([7])

$$A^{coH} = A^{\{D_1,\dots,D_n\}} = \{a \in A : D_i(a) = 0, \ 1 \le i \le n\}.$$

Example 2.2. – The commutative Hopf algebra H_a with underlying algebra

$$H_a = K[X_1, \dots, X_n]/(X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}}), \ n \ge 1, s_1 \ge \dots \ge s_n \ge 1$$

and comultiplication given by

$$\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i, \qquad x_i = X_i + (X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}}), \qquad 1 \le i \le n,$$

is called the Hopf algebra of the additive group, where n and s_1, \ldots, s_n are fixed.

If
$$s_1 = \dots = s_n = 1$$
 ([7]), $D_a = \frac{D_1^{a_1}}{a_1!} \cdots \frac{D_n^{a_n}}{a_n!}$, $a = (a_1, \dots, a_n)$, $0 \le a_i < p$, $1 \le i \le n$, where $D_1, \dots, D_n \in Der(A, A)$ with $[D_i, D_j] = 0$, $D_i^p = 0$, $1 \le i, j \le n$.

3. – The Hopf algebra of the multiplicative group.

Let

$$H_m = K[X_1, \dots, X_n]/(X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}}), n \ge 1, s_1 \ge \dots \ge s_n \ge 1,$$

be the K-algebra with comultiplication given by

$$\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i + x_i \otimes x_i, \ x_i = X_i + (X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}}), \ 1 \le i \le n,$$

counity defined by $\varepsilon(x_i) = 0$ and antipode S given by $S(x_i) = \sum_{j=1}^{\infty} (-1)^j x_i^j$.

 H_m will be called the Hopf algebra of the multiplicative group.

Lemma 3.1. - Let

$$H_m = K[X_1, \dots, X_n]/(X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}}), \ n \ge 1$$

be the Hopf algebra of the multiplicative group with $s_1 \geq s_2 \geq \cdots \geq s_n = 1$. Then

$$\varDelta(x^{\gamma}) = \sum_{a_1=0}^{\gamma_1} \ldots \sum_{a_n=0}^{\gamma_n} \sum_{\beta_1=\gamma_1-a_1}^{\gamma_1} \ldots \sum_{\beta_n=\gamma_n-a_n}^{\gamma_n} {\gamma \choose a} {a \choose a+\beta-\gamma} x^a \otimes x^\beta,$$

for every $\gamma = (\gamma_1, \dots, \gamma_n) \in \mathbb{A}$ such that $|\gamma| \geq 1$.

PROOF. – Since the comultiplication Δ is a K-algebra morphism, if $\gamma = (\gamma_1, \dots, \gamma_n) \in \mathbb{A}$, then

(3.1)
$$\Delta(x^{\gamma}) = \Delta(x_1^{\gamma_1} \cdots x_n^{\gamma_n}) = \Delta(x_1)^{\gamma_1} \cdots \Delta(x_n)^{\gamma_n}.$$

For every $i = 1, \ldots, n$, we have:

$$\begin{split} \varDelta(x_i)^{\gamma_i} &= (1 \otimes x_i + x_i \otimes 1 + x_i \otimes x_i)^{\gamma_i} = [(1 \otimes x_i + x_i \otimes 1) + x_i \otimes x_i]^{\gamma_i} \\ &= \sum_{k=0}^{\gamma_i} \binom{\gamma_i}{k} (1 \otimes x_i + x_i \otimes 1)^k (x_i \otimes x_i)^{\gamma_i - k} \\ &= \sum_{k=0}^{\gamma_i} \sum_{h=0}^k \binom{\gamma_i}{k} \binom{k}{h} (1 \otimes x_i)^h (x_i \otimes 1)^{k - h} (x_i \otimes x_i)^{\gamma_i - k} \\ &= \sum_{k=0}^{\gamma_i} \sum_{h=0}^k \binom{\gamma_i}{k} \binom{k}{h} x_i^{\gamma_i - k} \otimes x_i^{\gamma_i + h - k}. \end{split}$$

Set $\gamma_i - h = a_i$ and $\gamma_i + h - k = \beta_i$, then

$$\varDelta(x_i)^{\gamma_i} = \sum_{a_i=0}^{\gamma_i} \sum_{\beta_i=\gamma_i-a_i}^{\gamma_i} \binom{\gamma_i}{a_i} \binom{a_i}{a_i+\beta_i-\gamma_i} x_i^{a_i} \otimes x_i^{\beta_i}.$$

Hence, from (3.1),

$$\Delta(x^{\gamma}) = \sum_{a_1=0}^{\gamma_1} \dots \sum_{a_n=0}^{\gamma_n} \sum_{\beta_1=\gamma_1-a_1}^{\gamma_1} \dots \sum_{\beta_n=\gamma_n-a_n}^{\gamma_n} {\gamma \choose a} {a \choose a+\beta-\gamma} x^a \otimes x^{\beta},$$

for every $\gamma \in A$ such that $|\gamma| \geq 1$.

Proposition 3.2. - Let

$$H_m = K[X_1, \dots, X_n]/(X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}}), \ n \ge 1$$

be the Hopf algebra of the multiplicative group with $s_1 \geq s_2 \geq \cdots \geq s_n = 1$ and let A be a commutative K-algebra. Let $\delta : A \to A \otimes H_m$ be a coaction of H_m on A satisfying (2.2).

Then

$$D_a D_eta = \sum_{\gamma_1 = \max\{a_1, eta_1\}}^{a_1 + eta_1} \dots \sum_{\gamma_n = \max\{a_n, eta_n\}}^{a_n + eta_n} inom{\gamma}{a}inom{lpha}{a + eta - \gamma} D_\gamma.$$

Proof. – From the definition of a coaction

$$(1 \otimes \Delta)\delta = (\delta \otimes 1)\delta.$$

Since, for every $a \in A$,

$$\delta(a) = \sum_{a \in \Lambda} D_a(a) \otimes x^a,$$

it follows that

$$(\delta \otimes 1)\delta(a) = \sum_{a} \delta(D_{a}(a)) \otimes x^{a}$$

$$= \sum_{a} \left[\sum_{\beta} D_{\beta} D_{a}(a) \otimes x^{\beta} \right] \otimes x^{a}$$

$$= \sum_{a} \sum_{\beta} D_{\beta} D_{a}(a) \otimes x^{\beta} \otimes x^{a}.$$

Moreover, for every $a \in A$, from Lemma 3.1,

$$(1 \otimes \Delta)\delta(a) = \sum_{a} D_{a}(a) \otimes \Delta(x^{a})$$

$$= \sum_{a} D_{a}(a) \otimes \left[\sum_{\gamma=0}^{a} \sum_{\tau=a-\gamma}^{\gamma} {a \choose \gamma} {\gamma \choose \gamma + \tau - a} x^{\gamma} \otimes x^{\tau} \right]$$

$$= \sum_{a} \sum_{\gamma} \left[\sum_{\tau=a-\gamma}^{\gamma} {a \choose \gamma} {\gamma \choose \gamma + \tau - a} D_{a}(a) \right] \otimes x^{\gamma} \otimes x^{\tau}$$

$$= \sum_{\tau} \sum_{\gamma} \left[\sum_{\tau=a-\gamma}^{\gamma} {a \choose \gamma} {\gamma \choose \gamma + \tau - a} D_{a}(a) \right] \otimes x^{\gamma} \otimes x^{\tau}.$$

Comparing (3.2) and (3.3), we have

$$egin{align*} D_{\gamma}D_{ au}(a) &= \sum_{ au=a-\gamma}^{\gamma}inom{lpha}{\gamma}inom{\gamma}{\gamma+ au-a}D_a(a) \ &= \sum_{ au_1=a_1-\gamma_1}^{\gamma_1}\cdots\sum_{ au_n=a_n-\gamma_n}^{\gamma_n}inom{lpha}{\gamma}inom{\gamma}{\gamma+ au-a}D_a(a) \ &= \sum_{lpha_1=\max\{\gamma_1,\, au_1\}}^{ au_1+\gamma_1}\cdots\sum_{lpha_n=\max\{\gamma_n,\, au_n\}}^{ au_n+\gamma_n}inom{lpha}{\gamma}inom{\gamma}{\gamma+ au-a}D_a(a), \end{split}$$

i.e.

$$D_aD_eta = \sum_{\gamma_1=\max\{a_1,eta_1\}}^{a_1+eta_1}\dots\sum_{\gamma_n=\max\{a_n,eta_n\}}^{a_n+eta_n}inom{\gamma}{a}inom{a}{a+eta-\gamma}D_\gamma.$$

Under certain conditions the coactions of H_m on a K-algebra A can be expressed in terms of derivations $D_1, \ldots, D_n \in Der(A, A)$. Precisely, we have:

Theorem 3.3. - Let

$$H_m = K[X_1, \dots, X_n]/(X_1^{p^{s_1}}, \dots, X_n^{p^{s_n}}), n \ge 1$$

be the Hopf algebra of the multiplicative group with $s_1 = s_2 = \cdots = s_n = 1$ and let A be a commutative K-algebra.

Then the coactions of H_m on A are given by derivations $D_1, \ldots, D_n \in Der(A, A)$ such that

$$D_iD_j = D_iD_i, \qquad D_i^p = D_i, \qquad 1 \le i, j \le n,$$

and

$$D_a = \frac{\prod\limits_{j_1=0}^{a_1-1}(D_1-j_1)\prod\limits_{j_2=0}^{a_2-1}(D_2-j_2)}{a_1!} \cdots \frac{\prod\limits_{j_n=0}^{a_n-1}(D_n-j_n)}{a_n!} = \frac{\prod\limits_{t=1}^{n}\left(\prod\limits_{j_t=0}^{a_t-1}(D_t-j_t)\right)}{a!},$$

$$a = (a_1, ..., a_n), 0 \le a_i < p, 1 \le i \le n \text{ and } a! = a_1! a_2! \cdots a_n!.$$

PROOF. – From Proposition 3.2, we have that

$$(3.4) \hspace{1cm} D_a D_\beta = \sum_{\gamma_1 = \max\{a_1,\beta_1\}}^{a_1+\beta_1} \dots \sum_{\gamma_n = \max\{a_n,\beta_n\}}^{a_n+\beta_n} {\gamma \choose a} {a \choose a+\beta-\gamma} D_\gamma,$$

where
$$\binom{\gamma}{a} = \binom{\gamma_1}{a_1} \binom{\gamma_2}{a_2} \cdots \binom{\gamma_n}{a_n}$$
, for $a = (a_1, \dots, a_n), \gamma = (\gamma_1, \dots, \gamma_n) \in A$.

We claim that

$$(3.5) (D_i - a_i)D_a = (a_i + 1)D_{a+\delta_i},$$

where $D_i=D_{\delta_i}=D_{(0,\dots,1,\dots,0)}$ with 1 in the *i*-th position, for $i=1,\dots,n$. In fact

$$D_i D_a = \sum_{\gamma_1 = a_1}^{a_1} \dots \sum_{\gamma_{i-1} = a_{i-1}}^{a_{i-1}} \sum_{\gamma_i = a_i}^{a_i + 1} \sum_{\gamma_{i+1} = a_{i+1}}^{a_{i+1}} \dots \sum_{\gamma_n = a_n}^{a_n} {\gamma \choose \delta_i} {\delta_i + \alpha - \gamma \choose \delta_i + \alpha - \gamma} D_{\gamma}$$

$$= a_i D_a + (a_i + 1) D_{a + \delta_i}$$

and equality (3.5) follows.

Now we proceed by induction on |a|.

Let |a| = 1.

We have to prove that

(3.6)
$$i!D_i = \prod_{i=0}^{i-1} (D_i - j_i).$$

In this case i! = 1, i = 1 and so (3.6) is true. Now let |a| > 1 and suppose

$$a_1!a_2!\cdots a_n!D_a = \prod_{j_1=0}^{a_1-1}(D_1-j_1)\cdots\prod_{j_n=0}^{a_n-1}(D_n-j_n) = \prod_{t=1}^n\left(\prod_{j_t=0}^{a_t-1}(D_t-j_t)\right).$$

We want to prove that

$$\begin{split} a_1! a_2! \cdots a_{i-1}! (a_i+1)! a_{i+1}! \cdots a_n! D_{a+\delta_i} \\ &= \prod_{j_1=0}^{a_1-1} (D_1-j_1) \cdots \prod_{j_{i-1}=0}^{a_{i-1}-1} (D_{j-1}-j_{i-1}) \prod_{j_i=0}^{a_i} (D_i-j_i) \prod_{j_{i+1}=0}^{a_{i+1}-1} (D_{j+1}-j_{i+1}) \cdots \prod_{j_n=0}^{a_n-1} (D_n-j_n) \\ &= (D_i-a_i) \prod_{t=1}^n \left(\prod_{j_t=0}^{a_t-1} (D_t-j_t) \right). \end{split}$$

By the inductive hypotheses, and from (3.5),

$$\begin{aligned} a_1! a_2! \cdots a_{i-1}! (a_i+1)! a_{i+1}! \cdots a_n! D_{a+\delta_i} &= a_1! \cdots a_n! (a_i+1) D_{a+\delta_i} \\ &= a_1! \cdots a_n! (D_i - a_i) D_a \\ &= (D_i - a_i) a_1! \cdots a_n! D_a \\ &= (D_i - a_i) \prod_{t=1}^n \left(\prod_{i=0}^{a_t-1} (D_t - j_t) \right). \end{aligned}$$

Finally, we obtain

$$a!D_a = \prod_{j_1=0}^{a_1-1} (D_1-j_1) \cdots \prod_{j_n=0}^{a_n-1} (D_n-j_n),$$

where $a! = a_1! a_2! \cdots a_n!$, for $(a_1, a_2, \dots, a_n) \in \mathbb{N}^n$.

In characteristic p

$$D_a = \frac{\prod\limits_{j_1=0}^{a_1-1}(D_1-j_1)}{a_1!} \frac{\prod\limits_{j_2=0}^{a_2-1}(D_2-j_2)}{a_2!} \cdots \frac{\prod\limits_{j_n=0}^{a_n-1}(D_n-j_n)}{a_n!},$$

$$a = (a_1, \ldots, a_n), 0 \le a_i < p, 1 \le i \le n.$$

Moreover it is easy to verify that the derivations D_i satisfy the following conditions:

$$[D_i, D_j] = 0, \ D_i^p = D_i, \ 1 \le i, j \le n.$$

REMARK 3.4. – The relations stated in Theorem 3.3 are known for n=1 and $H_m=H_{s_1}(F_m)$, where $H_{s_1}=k[X]/(X^{p^{s_1}})$ and $F_m=X+Y+XY$ is the multiplicative formal group ([1], [9]), $s_1 \geq 1$.

4. – Some applications.

In this section we study the extension of rings $A^{coH} \subset A$, by using techniques and results of ([2], [7], [10]).

Let (A, δ) be a right *H*-comodule algebra and let $R = A^{\operatorname{co} H}$.

Recall that the extension $R \subset A$ is called an *H-Galois extension* or A is *H-Galois* if the Galois map

$$\beta: A \otimes_R A \to A \otimes H, \ a \otimes b \mapsto a\delta(b),$$

is bijective.

The following result, due to H.-J. Schneider ([10]), gives a characterization of an H-Galois extension with the property of being faithfully flat. Recall that an H-Galois extension $A \subset B$ is faithfully flat if A is faithfully flat over B as a left (or equivalently right) module over B.

THEOREM 4.1. – Let H be an Hopf algebra with a bijective antipode and A a right H-comodule algebra with $B = A^{coH}$. Then the following are equivalent:

- 1) a) $A \subset B$ is a right H-Galois extension and b) A is faithfully flat left (or right B-module);
- 2) a) the Galois map β is surjective and
 - b) A is an injective H-comodule.

PROPOSITION 4.2. – Let H_m be the Hopf algebra of the multiplicative group and A a right H-comodule algebra with structure map $\delta: A \to A \otimes H_m$. Define the derivations D_1, \ldots, D_n by (2.2) and let $R = A^{coH_m}$.

Assume $s_1 = s_2 = \cdots = s_n = 1$ and A is a commutative local algebra with maximal ideal m_A and $R + m_A = A$.

Then the following are equivalent:

- (1) $R \subset A$ is a faithfully flat H_m -Galois extension.
- (2) There are $y_1, \ldots, y_n \in A$ with $\delta(y_i) = y_i \otimes 1 + 1 \otimes x_i + y_i \otimes x_i$, for all 1 < i < n.

(3) There exist $y_1, \ldots, y_n \in m_A$ such that

$$D_i(y_j) = (1 + y_j)\delta_{ij},$$

for
$$i, j = 1, ..., n$$
.

PROOF. – (1) \Rightarrow (2): By (1), A is an injective H_m -comodule (Theorem 4.1). Hence the right H_m -colinear map $k \to A$, $1 \to 1$ can be extended to an H_m -colinear map

$$\gamma: H_m \to A$$
.

Then for all *i*, since γ is H_m -colinear and $\gamma(1) = 1$

$$\delta(\gamma(x_i)) = (\gamma \otimes id) \Delta(x_i)$$

$$= (\gamma \otimes id)(x_i \otimes 1 + 1 \otimes x_i + x_i \otimes x_i) = \gamma(x_i) \otimes 1 + 1 \otimes x_i + \gamma(x_i) \otimes x_i.$$

Hence the assert follows by putting

$$y_i := \gamma(x_i),$$

for all 1 < i < n.

(2) \Rightarrow (3): Since $A = R + m_A$, for every $j = 1, \ldots, n$, $y_j = z_j + \tilde{y}_j$, $z_j \in R$ and $\tilde{y}_j \in m_A$.

Hence $D_i(y_j) = D_i(\tilde{y}_j)$ and we can assume $y_1, \ldots, y_n \in m_A$.

By hypothesis (2) and from Theorem 3.3, we obtain $D_i(y_j) = (1 + y_j)\delta_{ij}$, $1 \le i,j \le n$.

(3) \Rightarrow (1): It is easy to verify that $det(D_i(y_j))_{1 \leq i,j \leq n}$ is invertible and so $R \subset A$ is an H_m -Galois extension ([7], Theorem 4.1).

On the other hand, from ([7], Theorem 4.3), $y^a = y_1^{a_1} \cdots y_n^{a_n}$ is an R-basis of A, hence A is a free R-module and consequently a faithfully flat R-module. \square

Now we consider the next application.

Let A be a commutative ring of characteristic p>0 and A^p denotes the subring $\{x^p:x\in A\}$ of A. Let B be a subring of A. A subset Γ of A is said to be p-independent over B, if the monomials $x_1^{e_1}\cdots x_n^{e_n}$, where x_1,\ldots,x_n are distinct elements of Γ and $0\leq e_i < p$, are linearly independent over $A^p[B]$. Γ is called a p-basis of A over B if it is p-independent over B and $A^p[B,\Gamma]=A$.

Then, if B is a subring of a ring A, a subset x_1, \ldots, x_n of A is a p-basis of A over $A^p[B]$ if and only if A is a free $A^p[B]$ -module with basis $x_1^{e_1} \cdots x_n^{e_n}$, $0 \le e_i < p$.

For more details on p-bases see [3].

We state the following:

Proposition 4.3. – Let (A, m) be a commutative local algebra containing a field K of characteristic p > 0 and of dimension d > 0. Let H be an Hopf algebra

over K satisfying (2.1) with $s_1 = s_2 = \cdots = s_n = 1$, and δ a coaction of H on A with derivations D_1, \ldots, D_n defined by (2.2).

Suppose

- i) there exist $y_1, \ldots, y_n \in m$ such that the matrix $(D_i(y_j))_{1 \leq i,j \leq n}$ is invertible;
 - ii) $A \otimes K^{p^{-1}}$ is reduced;
 - iii) A/m is a separable extension of K.

If A has a finite p-basis over k, then A^{coH} has a finite p-basis over K.

PROOF. – From ([7], Lemma 3.4), there exist $\partial_1, \ldots, \partial_n \in Der(A, A)$ such that

$$[\partial_i,\partial_j]=0, \qquad \partial_i^{\,p}=0, \qquad \partial_i(y_j)=\delta_{ij}, \qquad 1\leq i,j\leq n,$$

and $R = A^{coH} = A^{D_1,\dots,D_n} = A^{\partial_1,\dots,\partial_n}$.

Since A has a p-basis over K, A is a regular local ring of dimension d ([11], Lemma 1) and R is a regular local ring of dimension d ([7], Theorem 5.1).

Moreover A is a noetherian ring that is a finite $K[A^p]$ -module. Hence the subring $K[A^p] \subset A$ is noetherian too and consequently R is a finite $K[A^p]$ -module.

On the other hand A has a finite p-basis over R ([7], Lemma 3.4), A is a finite R-module, $K[A^p]$ is a finite $K[R^p]$ -module and R is a finite $K[R^p]$ -module.

It follows that, in order to prove the statement, it is sufficient to show that the universal module of differentials $\Omega_K(R)$ is a free R-module ([3], § 38. Proposition).

We obtain the assert by following the arguments in ([2], Theorem 2).

REFERENCES

- [1] V. Bonanzinga H. Matsumura, F_m -integrable derivations, Communications in Algebra, 25 (12) (1997), 4039-4046.
- [2] M. CRUPI, Subring of constants of a ring of cha caracteristic p > 0, Le matematiche, XLVIII, No 2 (1993), 203-212.
- [3] H. Matsumura, Commutative Algebra, 2nd ed., Benjamin Inc. (New York, 1980).
- [4] H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986.
- [5] S. MONTGOMERY, Hopf algebras and their actions on Rings, CBSM, Lecture notes, 82, AMS, 1993.
- [6] F. OORT D. MUMFORD, Deformations and liftings of finite, cocommutative group schemes, Invent. Math., 5 (1968), 477-489.
- [7] G. RESTUCCIA H.-J. SCHNEIDER, On actions of infinitesimal group schemes, J. Algebra 261 (2003), 229-244.
- [8] G. RESTUCCIA H.-J. SCHNEIDER, On actions of the additive group on the Weyl algebra, Atti dell'Accademia Peloritana dei Pericolanti di Messina, Classe di Scienze Matematiche, Fisiche e Naturali, LXXXIII. ISSN: 0365-0359. C1A0501007.
- [9] G. RESTUCCIA A. TYC, Regularity of the ring of invariants under certain actions of

finite abelian Hopf algebras in characteristic p > 0, J. of Algebra, 159, No. 2 (1993), 347-357.

- [10] H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math., 72 (1990), 167-195.
- [11] A. Tyc, p-basis and smoothness in characteristic p > 0, Proc. Am. Math. Soc., 103 (1998), 389-394.
- [12] W. C. Waterhouse, Introduction to Affine Group Schemes, in: Grad Texts in Math., Vol 66 (Springer, 1979).

Marilena Crupi: Università di Messina, Dipartimento di Matematica Contrada Papardo, Salita Sperone 31, 98166 Sant'Agata (Me), Italy E-mail: mcrupi@unime.it

Gaetana Restuccia: Università di Messina, Dipartimento di Matematica Contrada Papardo, Salita Sperone 31, 98166 Sant'Agata (Me), Italy E-mail: grest@dipmat.unime.it

Received June 22, 2009 and in revised form January 20, 2010