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Multipliers on Pseudoconvex Domains
with Real Analytic Boundaries

JOSEPH J. KOoHN

Dedicated to the memory of Professor Aldo Andreotti
on the 30th anniversary of his death

Abstract. — This paper is concerned with (weakly) pseudoconvex real analytic hy-
persurfaces in C". We are motivated by the study of local boundary regularity of the
0-Neuwmann problem. Subelliptic estimates in a neighborhood of a point P in the
boundary (which imply reqularity) are controlled by ideals of germs of real analytic
functions I'(P), ..., I""Y(P). These ideals have the property that a subelliptic estimate
holds for (p, q)-forms in a neighborhood of P if and only if 1 € I%(P). The geometrical
meaning of this is that 1 € I9(P) if and only if there is a neighborhood of P such that
there does not exist a g-dimensional complex analytic manifold contained in the
wntersection of this neighborhood. Here we present a method to construct these
manifolds explicitly. That is, if 1¢ I1(P) then in every neighborhood of P we give an
explicit construction of such a manifold. This result is part of a program to give a
more precise understanding of regularity in terms of various norms. The techniques
should also be useful in the study of other systems of partial differential equations.

Introduction.

Complex analysis on a domain 2 C C", from the point of view of partial dif-
ferential equations, is basically the study of the Cauchy-Riemann equations on Q.
In particular the study of the inhomogeneous Cauchy-Riemann equations
dp = a, where ¢ is orthogonal to the nullspace of 9, leads to the )-Neumann
problem. There are a number of excellent sources which include a detailed ex-
position of the 9-Neumann problem, for example [CS] and [S].

In case Q is bounded, pseudoconvex, and has a smooth boundary an im-
portant question is local regularity on the boundary. This can be formulated as
follows. Suppose that P € bQ2, where b2 denotes the boundary of 2, and that U
is a neighborhood of P such that the restriction of a (p, ¢)-form a to U N Q is in
C*(UNR). The question is: when is ¢ € C*(U N Q)? This problem is open,
however it has been solved for a large class of domains. In particular, it is
completely solved in the case when U N bQ is real analytic (see [K1]). In gen-
eral, local regularity for (p,q)-forms does not hold if there exists a complex
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analytic q-dimensional variety W c U NbQ. The result in the case when
U N bQ is real analytic is that local regularity holds for (p, ¢)-forms if and only if
there does not exist any complex analytic g-dimensional variety W C U N bQ.
To prove this result we need subelliptic estimates which we describe below.

Let Q@ ¢ C" be a bounded domain with a smooth boundary. By a smooth
boundary we mean that the boundary of ©, denoted by b€, has a neighborhood U
on which there is a function » € C*°(U) with dr # 0 and » = 0 on bQ. If P € bQ we
denote by TII;O(bQ) the space;

T (0Q) = {L € TY(C") | L(»")|p = 0}.

The Levi form at P is the quadratic form on T};O(bQ), denoted by Lp, defined by:
(1) Lp(L,L") = ((00r)p, L NL'),

where L, L € T};O(b.Q). Using Cartan’s identity the Levi form can also be given
by

2) Lp(L,L") = (IL,L'],(0r)p),

where [L,L'] = LL' — L'L. We choose  so that <0 in U N Q. The domain bQ is
pseudoconvex if Lp is positive semidefinite for each P € bQ. We denote by A9
the space (p, ¢)-forms on Q which are in C*(Q). We denote by 8 : C*(Q) — A"
the operator defined by (9f,L) = L(f). The induced operator on forms is also

denoted by 9 : APY — AP9*! The Ls-adjoint of & denoted by d*. The domain of
d* intersected with C>(Q) is denoted by DP9, so that 9* : DP9 — AP7! where

®3) DM = {pe A | p L Ir|,, = 0},
where L denotes the interior product. On D"? we define the “energy form” @ by
(4) Qp, ) = (99, 0p) + ("9, ).

If P € b2 we say that a subelliptic estimate for (p, q)-forms holds at P if there
exists a neighborhood U of P and positive constants ¢ and C such that

(5) lol? < CQp, ),

for all p € D1, 1
The estimate (5) for ¢ = 5 Was first proved, for strongly pseudoconvex do-

mains (i.e. when the Levi form is positive definite), by C. B. Morrey (see [M]). In
that case (5) is used (see [K1]) to prove existence and local regularity for the
0-Neumann problem on strongly pseudoconvex domains. L. Nirenberg and I (see
[KN]) proved that if (5) holds at P € bQ for some ¢ > 0 then the J-Neumann
problem is locally regular in a neighborhood of P. The local regularity of the
0-Neumann problem has many applications (see [CS] and [S]), including the
study of the Bergmann kernel, holomorphic mappings, etc.
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The key to understanding (5) at P € bQ2 is the analysis of the maximum order
of contact of germs of complex analytic varieties at P to bQ2. In dimension 2 it
suffices to consider only non-singular varieties, necessary and sufficient condi-
tions for (5) are given in [K2] and [G]. In higher dimensions singular varieties
enter the picture and the problem is much more difficult. J. P. D’Angelo dis-
covered (see [D’A]) that if the maximum order of contact (called the D’Angelo
type) at P is finite then it is finite at all points in a neighborhood of P. Using this
result D. Catlin (see [C2]) solved the problem completely by proving the re-
markable result that (5) holds at P if and only if the D’Angelo type at P is finite.

This problem has been studied in [K3] using ideals of subelliptic multipliers.
These are defined as follows.

DEFINITION 1. — Suppose that Q € C" is a bounded pseudoconvex domain
with a C* boundary and that P € bQ then a subelliptic multiplier for (p,q)-
forms on Q at P is a germ of a C* function f at P such that there exists a
neighborhood U of P and positive constants ¢ and C such that

(6) Ifol? < CQp, ),

forallp € DP9 N C®(U N Q). We denote by IP9(P, Q) the set of all f with the above
property.

REMARK. — ZP4(P, Q) is independent of g, that is Z?4(P, Q) = 7%9(P, Q) for all
p. We will write Z9(P, Q) instead of ZP1(P, Q).

Obviously (5) holds for some neighborhood of P € bQ if and only if
1 € ZP9(P, Q). The proof in [K3] is based on a construction, recalled below, of an
ascending sequence of ideals contained in Z9(P, Q). In case the defining function
ris real analytic in a neighborhood of P it is shown that if 1 is not in any ideal in
this sequence then there exists a manifold of holomorphic dimension ¢ in bQ.
Then, using a result of Diederich and Fornaess (see [DFY]), it is shown that the
existence of such manifolds in bQ is equivalent to the existence of complex
analytic manifolds in bQ2. Different proofs of the result of Diederich and Fornaess
were given by Bedford and Fornaess (see [BF]) and by Siu (see [Si]). Here we
present an explicit construction of these manifolds.

The main theorem.
In this section we will formulate the main theorem. First, we will construct

the sequence of ideals mentioned above.
In [K3] it is shown that the set Z9(P, Q) has the following properties:
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1. 79 P, Q) is an ideal over C*.

2. T9(P, Q) = /TP, Q), where for any ideal S of germs of functions V/S, the
real radical of S, is defined to be the ideal consisting of all g such that there exists
anm € 7" and an f € S with |g|" < |f].

3. 7 and the coefficients of 97 A 9r A (99r)" 7 are in Z¢(P, Q).
4. If fi,....f; are in T9UP,Q) = {/TL(P,Q) then the coefficients of
O A - NOf; Adr A dr A@Ir)" "7 are in TU(P, Q).

If S is a set of forms we will denote by coeff' S the ideal generated by the
coefficients of the forms in S with respect to a holomorphic system of co-
ordinates. Note that this ideal is independent of the coordinates used.

DEFINITION. — If f1,. .., f; are germs of C* functions at P € b2 we denote by
Al(P.f1,..., f;) the set of germs of C™ functions at P defined by:

AUP.fi,..., f) = coeff {Ofi A...Of A O A ADIr)' T},
Set

IPp) = l\)\/(T, coeff {0r A dr A (99r)" 1))

and, inductively for & > 1

IiP) = /U] _,(P), | JfAUP.fi, ... D,

where the union is taken over all j-tuples of elements in szl(P), with
1 <j<mn—gq.Then I(P) C Il ,(P) and we define the ideal

1) = | JI(P)

Then clearly I%(P) c Z9(P, ) hence (5) holds if 1 € I7(P).
The following definition is used to formulate the main result.

DEFINITION. — Let V' C bQ be a real analytic variety. Then bQ2 is V-convex if

whenever f e V is a reqular point and L € T};O(bQ) 1s transversal to TII;O(V)
then L(L,L) > 0.

The main result of this paper is the following.

MaAIN THEOREM. — Let Q C C" be a domain with a smooth boundary 52 and
Py € bQ and assume that bQ is V(I7(Py))-convex, where V(I%(P,)) denotes the
variety of 19(P;). Then 1¢ I9(Py) if and only if in every neighborhood U of Py
there exists a ¢-dimesional complex analytic variety W c U N V(I%(Py)), so that,
in particular, W C U N bQ.
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REMARKS.

1. In the general case when bQ is V(I9(Py))-convexity does not hold the
theorem is still true but the argument is much more complicated and will
be presented in a more general context in a future paper.

2. Inthe important case when dimV({I%(Py)) = n — 1, there are no transversal
(1, 0) vectors therefore bQ is V(I1(Py))-convex.

First we will prove that the existence of such a W implies that 1¢ I9(Py),
that is:

NECESSITY. — if in every neighborhood U of P there exists a ¢g-dimensional
complex analytic variety W C U NbQ then 1¢I19(Py). Since the condition
1 € I9(Py) is open it will suffice to show that if P € W is a regular point of W then
1¢ 19(P). Let {z1, . .., %y} be holomorphic coordinates with origin at Py. Let U be a
neighborhood of P so that all points in U N W are regular points of W. Let L be a
(1, 0) vectorfield tangent to W. Then L = > (; % with L(r) = 0 when » = 0. Since

(3
CT(W) = TY(W) @ T" (W) we obtain, applying (2), £(L,L) = ([L,L],0r) =0
on W. Since £ is semi-definite on bQ the ( satisfy the following system of
equations on U N W

Z /rZiCi = O
i=1
and

n
E ngijCi = 07
i=1

for j=1,...,n. Since W is ¢-dimensional these equations have ¢ linearly in-
dependent solutions on W and hence, by Cramer’s rule, the coefficients of
r A Or A (09r)" 7 vanish on W. Therefore the elements I g(P) vanish on W so
thatif f € I f(P) then L(f) = 0 on W. Thus the { satisfy the additional equations

n
L(H =) fli=0,
i=1
on W for each f € I{(P). Hence, adjoining these equations to the above system,
we conclude that all elements of Ig(P) vanish on W. Proceeding inductively we
see that for each k all elements of IZ(P) vanish on W and therefore 1¢ I(P)
completing the proof.

REMARK. — Note that if there is a q-dimensional manifold W C bQ then the
above implies that for each P € W we have 1¢ I9(P) and hence W C V(I(Py)).
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From now on we will deal only with germs of real analytic functions (more
precisely complex value functions whose real and imaginary parts are real
analytic), thus in each of the ideals defined above we will consider only the germs
of real analytic functions. We will abuse notation and denote by I g(P) and I7(P)
the ideals consisting only of real analytic functions contained in the corre-
sponding ideals defined above.

DEFINITION. — If I is an ideal of germs of real analytic functions at P then
the Zariski tangent space at P is defined by

ZRD ={LeTy |L(f)=0iff eI}

If V C bQ1is a germ of a real analytic variety at Py and if P € V then the Zariski
tangent space to V at P is defined by

z0V) = 2,2 @(Vy).

We denote by V(P) and by V(P) the varieties V(I}(P)) and V(I(P)), re-
spectively. Then from the above definitions we obtain the following lemma (see
[K3]).

LEMMA 1. — If P € V]((Py) then P € V]! (Po) if and only if
dim(Z;°(IL(Py) N Np) > g,
where N p is the null space of the Levi form defined by
Np={LeT;0bQ) | Lp(L,L)=0}.
Then we have:
dim(Z5"IU(Py) N Np) > g.

The following lemma is easily proved with a slight modification of the proof of
necessity given above.

LEMMA 2. — If V C bQ is a germ of real analytic variety at Py and if there
exists a sequence {P,} of regular points of V which converges to Py such that for
each P, has a neighborhood U, with dimTll;O(V NU,) NNp = q then 1¢ IP(Py).

To prove the theorem we have to find W C bQ2. We know that if such a W
exists then W c V([1(P)), when P € W. To each f € I7(P) we will associate a
holomorphic function Hp[f], defined below, such that Hp[ f1(P) = 0 and Hp[f]
vanishes on any complex manifold that contains P and is contained in

{@eC"|f(@ =0}
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DEFINITION. — Iff is a real analytic function in a neighborhood of P € C" we
define the holomorphic function Hplf] by

Holf1 = Y & Df(PYe — PY'

Note that Hpl f1does not depend on the choice of coordinates, it is characterized
as the unique holomorphic function h with the property that Dih|p = D3 f|p, for
all a = (ay,...,a,).

REMARK. — If W is a complex analytic manifold on which a real analytic
function f vanishes and if P € W then Hp[ f] vanishes on W. This is true because:
if a complex curve through P contained in W is parametrized by
t—z(t) = (z1(), ..., 2,@) with t € {C | |t| <1}, 2(0) = P, and f(2(t)) = 0 for all
t € {C]|t|<1} then

Di*f (@), = DY"Hplf1z®)|, = 0,
for all m. Hence Hp[f1(z(t)) =0 for all t € {C | |t|<1}.

The first step in the proof of the theorem is to define a subset A C V4(P,) with
Py € A. We will prove that if U is any neighborhood of Py and if P € U N A then
there exists a complex analytic manifold W with P €¢ W c V4(P) C bQ with
dimW = q. A is defined as follows. Let g1, ...,gnx be generators of 19(Py).

1. A; = U NregVi(Py), where regVi(P,) are the regular points of VI(Py).

2. As = {P' € A; such that there exists a neighborhood U’ ¢ U’ C U of P’
such that U’ NregV?(Py) is a real analytic manifold}.

3. A3 = {P’ € Ay such that dim(U' N regV4(Py)) is maximal}.

4. Ay ={P € Assuch that there exists a neighborhood U” c U” C U’ of P’ with
dim(T5 (U N regVa(Py)) = dim(Tp, (U"N regV4(Py)) for all P” € U" N regV(Py)}.

5. A = {P" € A4 such that there exists a neighborhood U"” c U"” c U” of
P" with din(Tp)(U" N VI(Po) NN pr) = dim( T (U" 0 VI(Py) N N pn)) for all
P e U" NregVi(Py)}.

Fix P € A and abusing notation we will denote the neighborhood U" corre-
sponding to P by U. We will assume that ¢ is as large as possible, so that

(7 1¢ 19(Py) but 1 € I971(Py).

Set m = dimT3’(Vi(Pg). Then, from lemma 2, it follows that ¢ =
dim(TE"(V4(Py) N N p).

By a coherence theorem for ideals of real analytic functions (see [N]) the ideal
I9(P) is generated by elements of 19(P,). Hence there exist f;, 11, - - -, fu € 19(Py)
such that 9f,, 1A, ..., Adf, #0 in a neighborhood of P. Without loss of gen-
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erality, we assume that f, = r and that the f;,,.1,. .., f,_1 are real. Let z1,...,z,
be coordinates with origin at P such that:

l.zi=Hp(fip)fori=m+1,...,n

Then 8%’ .. ’8% is a basis of T};O(Vq (Py). Then by replacing the zy,...,z,
1 m
and the f), .1, ..., fn_1 by appropriate linear combinations we obtain:

2. 1,7(0) = ;04 for i, j =1,...,n — 1. Since in a neighborhood U of P the
rank of the Levi form on 79U N VI(Py)) N N p is constant and since 1 € I971(Py)
we have 4 = ... =/, =0and 4; > 0 when ¢ + 1 < ¢ < m. From V?(P)-convexiy
it follows that 4; > 0whenm +1<:i:<n—1.

Note that f;,,(0) = d;; for [ = m + 1,...,n. Furthermore, 9/ f;(0) = 9/7(0) =
when |a| > 1.

We define new holomorphic coordinates {w;,...,w,} on a small neighbor-
hood U’ of P by

w; = %, ifl< 1< qgandi=n
040z71(0
Wy =2+ Z 27()21 ifg+1<j< m,
-ae&
where A is the set of all a =a;...0a, such that g1 =... =0, =0. It is im-

portant to note here the following.

NoOTE. — The sum above can be taken only over |a| > 2 since 7,(0) = 0 when
1<i1<q.

The main theorem will be proved by showing that if W is the ¢-dimensional
complex manifold W defined by
W={QeU |w(Q =0, when ¢ +1<i<mn}

then W cV?cCbQ. That is, we will show if fel? then we have
S, ..., wy,0,...,0) = 0. This will be established by proving that:

8) 0305 £(0) =
when a, f € A. To prove (8) it will suffice to prove
9) d%08r(0) =

when a, f € A, since (9) implies that W C bQ and hence, by a previous remark
W cVvi.
The first step towards proving (9) is:
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LEMMA 3.
(10) 8;)6@f1ﬂ(0) = 87%810_7.1”(0) =0

when a € Aand q+1<j<m.
Proor. — Expanding r in a Taylor series in the z and z coordinates we get:

r(z) = Z W aaa/” 7(0)z2"

=2Re(z,) + Z 2ilzil? + 2Re( Z 02057(0)2"

a0 %

+ Z Tagaﬂ 70)2°z#
|a|>0, \ﬁ\>0 ﬂ
expressing the 2’s in terms of the w’s we have
2 = w;, if1< 1< gandi=mn;
07 07(0)

1 . .
z]:wjfzzi'w“, ifg+1< j< m,
7 aeA @

then, with ¢ + 1 < j < m, we obtain

3“5Z 7"(0)
l |z7| —szzj(0)|w7 ;L Z ¢l a|2

acA

020510 «“
= —2Re (Z%ﬁ()wawj) + Z Ailow;]?

acA m+1

+Z/1_ al

a€A J

2
0%0z.7(0
L |0:0570) )‘ [

substituting this in the above expansion of 7 it follows that the coefficients of the
w’w; and the w“w; vanish when a € A and ¢ + 1 < j < m, which proves (10).

From now on we will fix P. Then, to simplify notation, we will write /9 and V1
instead of 19(P) and VY(P), respectively.

DEFINITIONS.

1. R, is the ideal of germs of functions at 0 generated by {87;‘)8@/}1”} with f € A
and |a| + |f] <

2. 1% 1s the ideal of germs of functions at 0 generated by {6;851 7} with f € A
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and |a| + |f| < . (This is the ideal I9(P), it should not be confused with the
previously defined I1(P).)

3. If D1is an ideal of germs of real analytic functions at 0 and if a, f € A then

we set
D.= Y 040uD,
la|+[p|<7
m
~ 0
D‘L’+1 - Z Ty
J=q+1 Oy
n—1
= 0
DT+1 = 6— Ts
j=m+1 Wy
Dig = Y 94D,
|a|<t
and
D= » 4D
la|<t

4. My s the ideal of germs of functions at 0 which vanish at 0.

REMARKS.

1. Note that {lq,lg,Rz,'f\’,z,kz,R[T],R[ﬂ,('Rl)[ﬂ,(kl)[ﬂ [T],Iq } C My, and
Twm; € Mo when 1 # j.

2. If g € 19 then g is a combination of the 9fj, hence I = (fyu+1, ..., fu) SO
that if > 1 then 1Y = (fyus1, - - -, fu)r-

Suppose that U is a sufficiently small neighborhood of 0 so that there is a
basis of T1%(U NbR) consisting of the vector fields Li,...,L,_1 on U such
that:

1 If @ € UNV then Ly, ..., Lulq is a basis of Tg' (V).

2. If Q € UN V4 then Ly, ..., Lylq is a basis of T5"(1) N Ng.
0 .

3. Li|0—% O,forz—l,...,n—l.

1

Renumbering and taking appropriate linear combinations we have:

(11) Li= 6wl+z 1—+ Z 76@0]

J=q+1 J=m+1
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fort=1,...,q,

0 "0

ow; gi; ow;
fort=q+1,...,m, and

0 Ty, O
13 L: = _ Wi _
(13) L ow; 1y, Owy,
fori=m+1,...,m—1.

DEFINITION. — Let A, B, and C be ideals generated by the {a-g Jwith1 <i<gq
and q +1 <j <m, the {b]} with1 <i < qandm+1<j <n, and the {c]} with
g+1<i<mandi+1<j<n, respectively.

REMARK. — Note that A+ B+ C C M.

LeMmMA 4. — With the notation given above

(14) Bl © Mo+ Aie_1),

(15) B.=1, mod (MO n AH),
and

(16) DLOLDY € Resy + Mo+ Ay,
(17) e € Resy + Mo + Re.

with1<i<q q+1<h<m, and |a| + |f| = .

Proor. — Fori=1,...,q we have:

Lif) =fun + 3. alfiy + 3 bl

J=q+1 j=m+1
hence L;(f;) € (f1), where (f;) denotes the ideal generated by f;. Then
J10; = ~fu, mod(Mo(A+ B)).
Since fj,,, # 0 we obtain
Big =1L, mod(Mo(Ap + Bie) + Ape 1y + Bre-1y)

after applying 07 and taking the ideals generated when {a € A ||a| <7},
{t|1<i<q},and {l | m+ 1 <1< n}. Then (14) follows by induction. A similar
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argument gives (15) and since f,, = r we obtain (16). To prove (17) consider

n
i
Ly(r) =7y, + Z Cp -
k=q+1

Since Lj(r) =0 on r =0 we have L;(r) € (r). We can solve the above for ¢},
because 7, # 0, and obtain

CZ € k1 + Mo']:?,l.

Then, by differentiating ¢ times and by induction we obtain (17) concluding the
proof of the lemma.

LEMMA 5. — Then we have for t > 1:

(18) 7:?'T+2 C MO + RT + A’L’*l + erla
and
(19) B C Mo+ Rep1 + A1+ Ay

PRrROOF. — Let L in TLO([{' NbQ) whose restriction to UNV? is in
TOUNVHNAN). Then £(UL,L)>0 on UNbQ and L(IL,L)=0 on UNVY.

_ q
Hence L, L(L,L) =0on U NVY. So that if L = 5 {;L; we have
Ly L(L, L) = Z Ly L(Li, L) G = 0
Q=1

on UNV4 Hence Lkﬁ(Li,l:j) =0 on UNV? so that 7Lk£(Li,I_J]-) e I? for
1=1,...,qand k =m+1,...,n— 1. The Levi form £(L;, L) is given by

FoN_ /'/'wk
L(L;, L) = VYwyiw, — Tlviwﬂ g Yoy, O z

T
m
] wk
(20) - Z Yoy, @ i + Z Vw/wk 2
Jj=q+1 Vo, Jj=m+1

a Z w]wnbi T mod(I?).

Jj=m+1 Wn

Since L; is in theﬁnull space of the Levi form on V¢ we have £(L;,L;) = 0 on V¢
and hence £(L;,Ly) € 1. Then

(21) é2C1q+}:31 + MyA + B.
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Applying 9% and summing over {a € A | |a| < 7}, we obtain
(Izel)[,ﬂ] cIi,+ (fEl)m + MoAp + A1y + B
then from (14) we obtain
(22) (él)[zﬂ] C Mo+ Ap-1g

by induction. Next, since 7y,z,(0) = 4;dj with 4; > 0, we solve (20) for bi? and
then using (16) we get

BC I+ Ry +Re+ Mo(A+B).
Then
B CI!+Rey1 + Reyo + Mo + Ay

From (15) we get

B, C B+ Revt + Rejz + Mo+ A
hence we obtain
(23) Br C RT+1 + 7~€r+2 + MO + AT—l'

Now

m
T\ — h ~h
E(Lth) = Vwyiy + Z (thwj&i + Tw;w, CLJ-)
h=q+1
n—1
h h
+ Z (T'Whﬂ)jbi +Twiwhbj )

h=m+1

(24)
mod (b}, b)) + AA+ AB + BA + BB).
Hence, solving (24) for 7,4, we get
Re C 19+ Mo(A+ A+ B+B).
Then applying Ly, to £(L;,L;) in (24) we have L,L(L;, L;) € 1Y and solving for
Ty, We obtain
Ry C 1"+ Mo(A + A+ Bi +By) + A+ A+ B+ B+ Ry
Then
Reys C Mo+ Re1 + A+ A, + B, + B..

Using (23) and its conjugate, we obtain (18) after substituting r — 1 for 7. Then
(19) follows from (18) and (23), thus concluding the proof of the lemma.
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LEMMA 6. — The ideals A, R, and R satisfy the following.

(25) A[r] C MO
and
(26) A, C Mo+ R; + Rese.

PROOF._— If1 <i<gandq+1<h <mthenwehave £(L;,L;) =0onV?so
that ﬁ(Li,Lh) € 17 and

n m
T E =k E k
L(L’L) Lh) :mum)h + Tu)zm Ch + "/'w/ﬁﬁ;h ai
k=q+1 k=q+1

27 Y

k=m+1
Since when q + 1 < k < m we have 7,4, # 0 we solve (27) for a¥ and obtain
b €I+ R+ Ry + MR

Applying 9% with |a| < = and recalling that I E’T] C My and that (8) implies that
(Re411 € Mo, we get

.A[T] C Mo+ 'R[T] + (7~21)[T].
Then (22) implies
.A[T] C Mo+ ’R[T] + .A[ffz]

then, sinece R;; C My, this proves (25) by induction. Next we get

Ar €I+ Re + Rega + MoResz + Resr.
From (15) and (18) we get
A C Mo+ R, + 7~37+2 + A o+ A, .
Hence
A: C Mo+ R+ Regz + Aro + Arp

and by induction we prove (26).

To finish the proof of the proposition we still have to prove that R, c M, and
that R. C Mo. We proceed as follows. For 1 <4,j<q and ¢+1<h <m we
have L, L(L;,L;) € I? and hence, from (24) we obtain

s, € 17+ Mo(Ar + A1 + By + B1) + A+ A+ B+ B+ Ry
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Thus with |a| + || < v+ 3 and f # 0 we obtain

05057 €1¢ + Mo(Acsr + Acir + Byt + Beia )
+ A+ A, + B+ By 4 Reyo

Then applying (15), (19), (26), and (25) we get

kf+3 C MO + RT + 7~?»L—+2
and thus by induction we get
7:\),T+3 C MO + RT'

Consider £(L;, L;) with 1 < i, j < ¢ then £(L;,L;) € I? and from (24) we get

~ = q ~ =
Ro C Re A+ RoB + Z (b?) C R1+ Re A+ ReBB.

i=1
Hence

Rete C Rep1 + Mo+ A1 + B,

then, by induction, we get R..2 C M. Combing all the above we conclude that
all the ideals mentioned are contained in M. In particular I C My, therefore
W < V% which completes the proof of the theorem.
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