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Mumford-Tate Domains

MARK GREEN - PHILLIP GRIFFITHS - MATT KERR

For Aldo Andreotti, a mathematician of tmpeccable taste whose work added further
luster to the extraordinary Italian tradition in geometry.
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Introduction.

Mumford-Tate groups have emerged as the principal symmetry groups
in Hodge theory. Their significance is both geometric and arithmetiec.
Geometrically, this is due in part to their relation with monodromy and
Noether-Lefschetz loci. Arithmetically, they arise in the study of the en-
domorphism algebra of a Hodge structure and of the fields of definition
associated to Noether-Lefschetz loci. The theory of Mumford-Tate groups is
relatively much more highly developed in the classical case of weight one
Hodge structures.

A Mumford-Tate domain Dy, is, by definition, the orbit under a Mumford-
Tate group M of a point in the period domain D classifying polarized Hodge
structures with given Hodge numbers. In the classical weight one case, the
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quotient of a Mumford-Tate domain by an arithmetic group are the complex
points of a Shimura variety. These have been the object of extensive and deep
study over the years. In contrast, in the non-classical case the study of Mumford-
Tate domains is relatively unexplored. In this largely expository paper we will
describe some of the main properties of Mumford-Tate domains, with special
emphasis on those aspects that are different from the classical case. Very
roughly speaking, we may say that many of the geometric aspects of Shimura
domains carry over, in some ways in a richer form, to general Mumford-Tate
domains. But the arithmetic theory is much less developed, perhaps due at least
in part to the absence thus far of any connection between automorphic re-
presentations in Lo(M(Q) \ M(A)) and variations of Hodge structure in quo-
tients of Mumford-Tate domains by arithmetic groups.

As mentioned, this paper is largely expository and is intended to be an in-
troduction to and overview of some aspects of Mumford-Tate domains. Very few
complete proofs of stated results will be given. For these we refer to the
monograph [GGK] as well as to specific references cited in the paper. As general
references to the theory of Mumford-Tate groups we suggest the original paper
[Mu], [DMOS], the very useful notes [Mo], and the relevant section in the recent
book [PS].

We conclude this brief introduction with the

CONVENTION. Throughout this paper, unless mentioned otherwise, Hodge
structures will always refer to ones that are polarized. Some of the aspects of
Mumford-Tate groups are present for general Hodge structures, but their
deeper properties seem to require a polarization.

I. — Definition of Mumford-Tate domains.
I.A — Hodge structures.

Throughout this paper, V will denote a Q-vector space and
Q:VeV-0Q
a non-degenerate bilinear form satisfying
Qu,v) = (- 1"Qv,u) u,vevV
where 7 will be the weight of the Hodge structure. We denote by
T = (g V)@ (" V)

T.,o — @ Ta,b
a,b



MUMFORD-TATE DOMAINS 283

the tensor algebra associated to V where V is the dual of V. Thus Q € 7. We
alsoset Vg = V® R and Vi =V ® C. We will use the terminology of algebraic
groups [Bo]; unless otherwise noted they will be defined over Q. We set

G =Aut(V,Q)

and denote by G(R) and G(C) its real and complex points.
In keeping with general conventions, we set

S = Resc/rGm,c

where “Res” denotes the restriction of scalars a la Weil. This is an algebraic
group defined over R. For k = R or C we have

a —b\ d®+b0*#0
b a ) abek

_ 2 2 __
w - {5 7))

a
b

S(k)

Then

S(R) = C* via ( _ab) — a+1b,

and U(R) = S! is a maximal compact subgroup of S(R).
Setting t = a + b, a representation

(I.A1) ¢ : UR) — G(R)

decomposes over C into eigenspaces V¢ such that
ou = 't u € VP
yra — 7

The Weil operator associated to (I.A.1) is

C =),
so that C = i?~% on V7%, We denote by S(}, C G(R) the circle given by the image
p(U(R)).

DEFINITION. — A Hodge structure of weight n is given by a representation
(I.A.1) where all non-zero eigenspaces have p + q¢ = n and where the Hodge-
Riemann bilinear relations

{ D QWPILVPI) =0  p#En—p
D Qu,Cu) >0 0#ueVe

are satisfied.
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We will denote a Hodge structure by (V,Q, ¢), or sometimes simply by V,,
and we set V, c = & VP4,
P

REMARK. — In general, a not-necessarily-polarized R-split mixed Hodge
structure is given by V as above together with a representation

S(R) — GL(Vy).

Then Vi decomposes into a direct sum of weight spaces Vg, on which
t € R* C C* acts by ", and then under the action of S, V-, decomposes as above
into a direct sum of V21’s, p + ¢ = n.

A Hodge structure induces Hodge structures Tgvb on the tensor spaces 7.

DEFINITION. — The Hodge tensors Hgg’b are given by the subspace of T*" on
which U(R) acts trivially.

Since T b is a Hodge structure of weight n(a — b), for Hg,, * to be non-zero we
must have n(a — b) = 2m and then Hg“ b are the rational tensors of Hodge type
(m,m). We will denote by Hg = @b Hg the algebra of Hodge tensors.

a,

DEFINITION. — A sub-Hodge structure of (V,Q, ¢) is given by a linear sub-
space V' C V such that V7, is invariant under p(U(R)).

It follows that @' := @ |y is non-singular and polarizes the (p, q)-decompo-
sition of V{. given by the eigenspaces of p(U(R)) acting on V{.. Moreover, the
Q-orthogonal complement V' :=V” is again a sub-Hodge structure and
V =V @ V", Briefly, the category of Hodge structures is semi-simple.

LB - Period domains and their compact duals (cf. [C-MS-P] and [CGG]).

Let (V,Q) be as in section I.LA above and AP = h%P, p+ q=mn with
2hP = dim V, a set of Hodge numbers.

DEFINITION. — The period domain D associated to the above data is the set of
polarized Hodge structures ¢ : U(R) — G(R) with the given Hodge numbers.

The real Lie group G(R) acts transitively on D by conjugation, and because
for ¢ € D the polarizing forms are definite on the V9, the isotropy group H, of ¢

is a compact subgroup of G(R). It is clear that S1 C H,, and that
H,= Z(S;,) is the centralizer of S(}) m G(R).
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Fixing a reference point ¢, € D, there is an identification
D = G(R)/H,,.

This gives D the structure of a manifold. As will be seen shortly, it is in fact
a homogeneous complex manifold. A useful equivalent set-theoretic identi-
fication is

D_ set of conjugacy classes
| 999" of H,, in G(R)

The Hodge structure associated to the conjugacy class gpyg~! is given by
0 =999~ : UR) — G(R).

The Lie algebra g of the simple algebraic group G is a Q-linear subspace
of Hom(V,V), and the form @ induces on g a non-degenerate, symmetric
bilinear form

B:geg— C,

which is (up to scale) just the Cartan-Killing form. For each point ¢ € D
Adqﬂ N 1L}T(AR) — Aut(gJR,B)

induces a Hodge structure of weight zero on g. This Hodge structure is polarized
by B, and it is a sub-Hodge structure of V ® V. We have the description

Gqc =@ Q;”

iy X € g satisfying
g¢ = X: ng N V()pofi,qui

The complexified Lie algebra of the isotropy group is

by =g’
We note that
i i it
(IB.1) (gw”,gw“) Cg, .
Setting
- _ @t
Qq, >0 Qq,
we have

Gc =g, &4, ®h,c.
The complexification of the real tangent space T, x(D) to D at ¢ is

T,rD)®C=g, &4q,,
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and setting
r,D=g,

defines a G(R)-invariant almost complex structure. By (I.B.1) this almost
complex structure is integrable, verifying that D is a homogeneous complex
manifold.

We are denoting by T',D the usual holomorphic or (1,0) tangent space at ¢ to
the complex manifold D, and by 7D the holomorphic tangent bundle.

To define the compact dual D of D we need to give the

ALTERNATE DEFINITION OF A HODGE STRUCTURE. — This is given by a Hodge
filtration F* C F*! C ... C F* = V. satisfying

QP F"P*1) =0
Qu,Cu) >0 0£uecVe.
Here we set
VP = FP O F’
and define C to be 1?9 on V4. The relation to the previous definition is given by

defining the subspaces F?) in the Hodge filtration associated to ¢ C D by

_ P
Fq, = 62 V(p .
PEp

We set

P = Z W

P'EP

DEFINITION. — The compact dual D of D is defined to be the set of flags
F*={F"CF"1C.---CF'=V:} where dimFP =fP and where the first
Hodge-Riemann bilinear relation

QP F" 1) =0
18 satisfied.
We note that by the non-degeneracy of @
FP = (F" P+t

The complex group G(C) acts transitively on D with isotropy group Pp. a
parabolic subgroup of G(C). The identification

D = G(C)/Pp.

gives D the structure of a homogeneous, rational projective algebraic variety.
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The above Q-bilinear relations and the inclusions

D < HGraSS (f?, Vo),
P

together with the standard Pliicker embedding of the Grassmanians, show that
D is defined over Q. Thus, we may talk about the field of definition of a point
F* eD.

For a point ¢ € D we denote by F; the corresponding point in D. Since G(R)
acts transitively on D, it follows that D is the open G(R)-orbit of a point F; eD.
This provides an al:c%rnaiie description of the complex structure on D.

We denote by D C D the (real-Zariski-) open set of all filtrations /'* that
define Hodge structures; i.e. that satisfy the open conditions

Jall @Fawp+1 :) V(‘,

for all p. Filtrations in some of the topological components of D’ outside of D
define Hodge structures that satisfy Hodge-Riemann I and where the Hermitian
forms in Hodge-Riemann II are non-singular but indefinite. These components
are orbits of G(R) where the isotropy groups are non-compact. Among the in-
teresting points in D are those corresponding to the limiting Hodge filtrations
that arise when a family of Hodge structures arising from a variation of Hodge
structure degenerates.

1.C — Mumford-Tate groups.

DEFINITION. — Given a Hodge structure (V,Q, p), the Mumford-Tate group
M, is the smallest Q-algebraic subgroup of G with the property that

p(U(R)) C M,(R).

In other words, M, is the intersection of all Q-algebraic subgroups M’ C G such
that M'(R) contains the circle S}p. The following is the basic property of
Mumford-Tate groups (cf. [Mu], [DMOS], [Mo]):

(I1.C.1) M,, is the subgroup of G that fixes pointwise the algebra of Hodge tensors.
We will deduce (I.C.1) from the following more general result:

(I1.C.2) M, s the subgroup of G with the property that the M,-stable subspaces
W c Tg*b are exactly the sub-Hodge structures of these tensor spaces.

Proor or (1.C.2). — If M,(W) C W then M,(R)Wg) C Wg, and since the
circle S} € M,(R) it follows that W is a sub-Hodge structure.
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Conversely, if W C Tg’b is a sub-Hodge structure, then the form @y induced
by @ is non-degenerate on W and we have

T =W e W,

Moreover, the image p(U(R)) respects this decomposition. Thus, if My C G is
the Q-algebraic subgroup of G stabilizing the subspace W C Tg‘rb, it follows that
p(UR)) € Mw(R) and thus M, C M. a

Let M|, be the subgroup of G that pointwise fixes the algebra of Hodge
tensors. We first show that M, C M’ Since Hg“ b Ty b is a sub-Hodge struc-
ture and M, is falthfully represented acting on T“b, and since ¢p(U(R)) acts
trivially on Hg ‘& it follows that the image of M, actmg on T b splits according
to T“b Hg @ (Hgy, %L and acts as the identity on the flrst factor.

To show that M, CM,, welet W C T‘”’ be a sub-Hodge structure and we
have to show that M’ (W) cCW. If dlmW d, then the line AW in Ad(T‘”’)
consists of Hodge classes and therefore, by assumption, is left fixed by M. It
then follows that M;,(W) cWw. O

Other properties of M, are:

(i) M, is a connected, reductive Q-algebraic group.

We note that M,(R) may not be connected as a real Lie group.

(i) If p: Aut(V,Q) — Aut(V,, Q,) is a representation of G = Aut(V, @) and
¢ is a Hodge structure for V, then p(¢p) is a Hodge structure for V, and

M) = p(M,).

(iii) When M, is a simple Q-algebraic group, M,(R) may not be a simple real
Lie group. More generally, the almost product decomposition of M,(IR)
into simple factors and an abelian part may be finer than the Q-almost
product decomposition of M,,.

Using (I.C.1) we may give the following

DEFINITION. — For F* € D, we define the Mumford-Tate group M. to be the
subgroup of G that pointwise fixes the algebra Hgy! of Hodge tensors.

Of particular interest are the Mumford-Tate groups Mp. that arise when
F* € D is the Hodge filtration arising from a mixed Hodge structure, especially
in the case of limiting mixed Hodge structures. The relation of these, together
with that of Mumford-Tate domains as defined in the next section, to the Kato-
Usui spaces ([KU]) remains to be carried out and seems to us a project of fun-
damental interest.
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ExampLE. — The classical example is when the weight n = 1 and the Hodge
number A0 = 1. We take V = Q7 written as column vectors,

- (" §)

Qu,v) = v Qu.

and

Then D = PY(C) and every point ¢ € D has a unique homogeneous coordinate
representative

gp<—>{ﬂ, Imz>0.

The group G(R) is equal to SLgo(R) with elements g = (Z 2
acting as usual by linear fractional transformations. Taking our reference point
@y to be given by v =1 and letting ¢ € D correspond to the conjugacy class
909", for t € S(R) represented as above by (v,u) with #* + v* = 1, we have

>, ad —bc =1,

oty — (% viab+cd) v+ d?)
PO=\ @+  u—wvab+ed )

The only proper reductive subgroups of SLa(Q) defined over Q are algebraic

1-tori, such as
Ho= (5 o)at0=1}

So M, is either SL; or a 1-torus, and the latter happens precisely whent =g - ¢ is
a quadratic irrationality.
1.D — Mumford-Tate domains.
Let ¢ € D be a Hodge structure with Mumford-Tate group M,,.
DEFINITION. — A Mumford-Tate domain Dy, C D is the M ,(IR)-orbit of ¢.
We shall sometimes omit reference to ¢ and shall simply speak of a Mumford-
Tate domain Dy; C D.

A fundamental property is

(ID.1) Dy, is a homogeneous complex submanifold of D.
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ProOF. — The basic observation is that
(L.D.2) m,, is a sub-Hodge structure of g,

This is simply because
Ad, : S(R) — m,(R).
We thus have

My = ElB m;m
=m, &, @ mO‘O

where m, = & m, @ and moo is the complexified Lie algebra of the isotropy

>0 ¢

group M,(R) N H, at ¢ of the action of M,(R) on DMW. As in the discussion in I.B
above,nt, gives the (1,0) tangent space at ¢ € Dy, to an M,(R)-invariant in-
tegrable almost complex structure. O

Let

k
Myr = S NMyda
a=1

be the direct sum decomposition of m,,  into R-simple factors m, and an abelian
part a. We observe that Adp(S(R)) preserves this decomposition. Moreover,
since ), ; is the centralizer in g of Ad p(S(R)) it follows that a C §, . Thus the
Mumford-Tate domain

DM(/‘ :Dl Xoee ><D]c

is a product of homogeneous, complex submanifolds where D, is the exp M ,-orbit
of ¢, where M, is the almost direct product HMa x T.

In practice we will be interested in the quotlent I'\ Dy, by an arithmetic
subgroup of M. The group I will not in general split so that '\ Dy, may be
irreducible Whereas Dy, is not. An example of this is in Mumford’s original paper
[Mu] where D is the Siegel upper-half space 74 and M, is simple whereas
m, g 2= sle(R) @ slo(R) @ su(2). Higher weight examples are given in section 111
of [GGK].

A fundamental difference between the classical and general cases is the fol-
lowing:

(I.D.3) In the weight n =1 case, the orbit of any compact factor of M,(R) is a
point. This is not true when n=2.

In the classical case, the orbit of any connected compact factor of M,(R) is a
compact, complex submanifold of a bounded Hermitian symmetric domain and
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therefore is a point. In the general case the fibres of
GR)/H, —» G(R)/K,,

where K, is the unique maximal compact subgroup of G(IR) that contains H,, are
compact, complex submanifolds of D. One may show by examples that there are
points ¢ € D where H,5 M, C K,,.

ExampLE. — For a weight n = 2 Hodge structure with decomposition over R
Ve = (V200 V) @ V1,

assume that this decomposition is actually defillzegl over Q. Then for a general
Hodge structure of this type with W = (V2 @ V™), and Qw = Q |w, it may be
shown that

M, = Aut(W,Qw) C G.

Since Qw is positive definite, it follows that M,(RR) is compact and that Dy, is the
fibre through ¢ of the map G(R)/H, — G(R)/K,.

II. — The structure theorem.
II.A - Variations of Hodge structure.

The main difference between the classical case when the weight » = 1 and D
is a bounded Hermitian symmetric domain and the higher weight case is that in
the latter case the maps to D arising from algebraic geometry satisfy a differ-
ential constraint. To explain this, we recall the natural identification

TE Grass (d, V(j) = I‘IOD’I(E‘7 VU/E)

for the tangent space to the Grassmannian of d-planes in Vi at a point
E € Grass (d, V). It follows that there is a natural inclusion

Tp.D ¢ & Hom(FP, V- /FP).
P

DEFINITION. — The canonical sub-bundle W C TD given by the infinitesimal
period relation is defined by

(TIL.A.1) Wge = TpeD N (@ Hom(F?, Fr-! /Fp)).
P

We will continue to denote by W the restriction to D of the infinitesimal period
relation. The bundle W — D 1is acted on by G(C) and the action of G(R) on
W — D leaves mmvariant the metric given by the Cartan-Killing form at each
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point. With the identification of the holomorphic tangent space

T,D = —
v i?o %
we have that
(IT.A.2) W, = g;l*l.

Although in this paper we shall not get into a detailed discussion, we note that
the negative curvature properties of period domains that hold in the sub-bundle
W C TD — but except in the classical case not in the whole tangent bundle —
carry over to Mumford-Tate domains and allow the application of hyperbolic
complex analysis to variations of Hodge structure in Mumford-Tate domains as
in the structure theorem (I1.B.6) below.

We will define variations of Hodge structure in the setting most appropriate
for this paper. For this we assume given a lattice

Vi,V

with V', ® Q = V. We then have the subgroup
G(7)=GL(V,)NG
of G.

DEFINITION. — A variation of Hodge structure is given by
(II.LA3) &:S—TI\D

where

@) S is a connected, smooth, quasi-projective complex algebraic variety;
(i) I is a subgroup of G(7.); and
(iii) @ is a locally liftable holomorphic mapping whose local lifts are in-
tegral manifolds of the canonical distribution given by W.

Condition (iii) means the following: Around each point s € S there is a
neighborhood ¢/ and a local lifting

D
y
U—2T\D
where @ is holomorphic and

(IL.A.4) o, :TU —W.
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Although general period domains are very far from being Hermitian sym-
metrie, a guiding principle in Hodge theory has been

Variations of Hodge structure have the same properties as they do
when D is Hermitian symmetric.*

In fact, so far as we know, the only properties special to the classical case have to
do with the presence of automorphic forms. As an example of this we have the
result

(IT1.A.5) Let M be a Mumford-Tate group with M(R) compact. Then the
mmage of Dy in I' \ D meets the image &(S) of a variation of Hodge structure
n points.

Idea of the proof. There are two steps:

(i) Any Mumford-Tate group M, with M,(IR) compact is contained in the
maximal compact subgroup K,p.2

(i) At any point ¢ € D, the subspaces W, and T,(K, - ¢) of T,,D intersect
only in zero.

Here, K, - ¢ C D is the K,-orbit of . Except in the classical case, it is positive
dimensional.
The proof of (ii) comes by observing that the complexified Lie aglebra of K, is

f,c= @ q’”
(R
whereas
11
W,=g,".

For (i), since m C g is a sub-Hodge structure, we have

(I1.A.6) me = @m " where m™* = g7 nme.
3

The assumption that M(R) is compact comes in by observing that, since the
Cartan-Killing form is negative on the semi-simple part of mg, only terms m—*!
with ¢ = 0(2) enter in (I1.A.6).

() A similar statement holds with respect to variations of Hodge structure that arise
from families of algebraic varieties. Again, so far as we are aware all properties that hold
for these have been shown to hold for general variations of Hodge structure.

(*) More precisely, we have M,(R) C K,,.
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I1.B — The structure theorem.

We begin by defining the Mumford-Tate group My for a variation of Hodge
structure (I1.A.3). For this we observe that for any y € I" and ¢ € D, we have

y(Hey®) = Hele,.

Thus the algebra of Hodge tensors is well-defined at a point of 1"\ D.

DEFINITION. — The Mumford-Tate group Mg, of a variation of Hodge
structure @ : S — I'\ D is defined to be the Mumford-Tate group Mg, where n
s a generic point of S.

More precisely, in the path-connected complement of a countable union Z of
proper analytic subvarieties of S, the algebra of Hodge tensors will be locally
constant. Generic means that n € S\ Z.

Since @ is locally liftable, choosing a base point sy € S there will be a
monodromy representation

(II.B.1) p (S, s0) — I

In what follows, we will take I" to be the image of 7;(S, s¢).
We shall consider the variation of Hodge structure (IL.B.3) up to isogeny.
This means that if S = S is a finite cover, then @ and

d=don:S—IT\D

are considered equivalent. Here I” is the subgroup of finite index in I” given by
the @ image of nl(S,§0) where 7(59) = So. The reason for doing this is the fol-
lowing: Assuming that the base point sy € S is generic in the above sense, the
algebra of Hodge tensors at any point ¢(sg) € D lying over &(sy) is invariant
under the monodromy group I". Since the polarizing form is deflnlte on each
Hg"? ois,) and 1" acts by integral matrices, it follows that I” acts on Hg"? ois,) &S a finite
group. Thus, by passing to a finite covering S — S we may assume that mono-
dromy acts trivially on Hg®>* 0)"

Assuming this has been done, so that I" fixes Hg**

(IL.B.2) I c G(Z)NMo.

ooy W€ observe first that

Secondly, if ¢ € D is any point lying over @(n) € I" \ D, then M, = My and we
have that

(IL.B.3) ®:S—TI\Dy,.

That is, by (II.B.1) the Mumford-Tate domain Dy, is invariant under I” so that
I'\ Dy, is defined. Then, by the definition of genericity of 7, the image &(S) lies
in the subvariety I" \ Dy, C I'\ D.
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We now let
(IIB4) M(p:MlX-'-XMgXT

be the almost product decomposition of My into Q-simple factors M; and an
algebraic torus 7. Denoting by D; € Dg the M;(R) orbit of ¢(sy), and noting that
T fixes ¢(sg), we have a splitting of the Mumford-Tate domain

DMLb:DlX---XDg.

(I1.B.5) STRUCTURE THEOREM — The monodromy group I splits as an almost
direct product
=TIy x---x1TIYy, k=/¢

where I';(Q) = M,.

The notation means that I'; C M; N G(Z) and that the Q-Zariski closure
;(Q) of I'; in M; is equal to M;. Letting D' = Dj .1 x --- x D; be the factors
where the monodromy is trivial, the structure theorem and its proof have the
implication:

(I1.B.6) The variation of Hodge structure is given by
¢SS*>F1\D1><~~~><Fk\DkXD/CF\D

where 1';(Q) = M;. Moreover, I'; and M;(7) = M; N G(Z) have the same algebra
of tensor invariants in T*°.

Thus, since it seems not to be known — one way or the other — whether I; is
an arithmetic group; i.e., a subgroup of finite index in M;(Z), we know at least
that as far as their tensor invariants go I'; and M;(7) are indistinguishable.

The structure theorem is a consequence of the theorem on the fixed part
(cf. [Se] and the argument given by André [A]).

Discussion. It is known that a variation of Hodge structure (I1.A.3) is al-
gebro-geometric in the following sense: The image &(S) C I' \ D is a quasi-pro-
jective algebraic subvariety of the analytic variety I\ D. It is also known that
@(S) has finite volume relative to the volume form induced by the natural G(R)-
invariant metric on D. One may then infer that the same properties hold for the
non-trivial irreducible factors

in the structure theorem. If I"; C M;(’Z) is any subgroup with I'; C I'; and such

that I} leaves invariant the inverse image of @;(S) in D;, it follows that I'; is of
finite index in I,



296 MARK GREEN - PHILLIP GRIFFITHS - MATT KERR

Suppose now that the variation of Hodge structure (II.A.3) is one of the ir-
reducible factors in (II.B.6) and set D = Dy; where M is the Mumford-Tate
group. We say that @ : S — I\ Dy is maximal if, as always up to isogeny, S is a
Zariski open set in any variation of Hodge structure

&S —>TI"\Dy
where S C S, I' C I and & = @ |g. In the classical case it is known that

(i) any variation of Hodge structure is contained in a maximal one; and
(ii) for any maximal variation of Hodge structure the monodromy group is
arithmetic.

QUESTION. — Are (1) and (11) true in the general case?

REMARK. — Once one leaves the classical case, certain phenomena that might
be described as anomalous enter. The use of Mumford-Tate groups and the
structure theorem help to siphon out anomalous phenomena. Here is an example.

DEFINITION. — A set of Hodge numbers {hF7}, ., is connected if kP,
hPrt £ 0 = WP £ 0 for all integers p € [po, p1) This property is equivalent to
any two points of D being connected by an integral curve of the distribution
W C TD. If the set of Hodge numbers is not connected then anomalous phe-
nomena arise. For example, suppose n=>5 and h*' = h'* =0 but all other
WP £ 0. The Hodge structures are then

{ Ve =V V32 V23 g V05

—32

(ILB.8) S

We note that for such a Hodge structure there is an associated abelian variety
arising from

V=V g V2
where we have
QV' . V=0
Qu,Cu) >0 0A£ueV.

For any variation of Hodge structure of type (II.B.8), the subspace V°? is
constant. Hence, if V/ C V is the fixed part where monodromy is trivial, we have

V0 a7, c VL.

Writing V' = (V/)* for the part on which monodromy has no trivial factors, the
variation of Hodge structure is just that of the family of abelian varieties given
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by the Hodge decomposition of V.
(V32AVE) @ (V32N VL),

This phenomenon is detected by splitting off the constant factors in the structure
theorem.

III. — Universal characteristic cohomology of Mumford-Tate domains.
II1.A - Characteristic cohomology.

Let X be a complex manifold and W C T'X a holomorphic sub-bundle. Then
[ =W'cTX
is a holomorphic bundle and we let I be its conjugate in (T3 X) ® C. Denoting by
A**(X) = @ AP9(X) the algebra of smooth differential forms on X we have the
P4

NOTATION. — Z%* C A**(X) is the differential ideal generated by the smooth
sections of I & I.

Concretely, if locally I is generated over an open set U by holomorphic 1-
forms 0%, then Z** consists of global forms y that locally are expressed as
W=y, AO" +y0 +%¥, NdO* +¥; A dO".
An integral manifold of Z*° is given by a manifold Y and a smooth mapping
(IIL.A.1) f:Y—X

such that f*(Z**) = 0. We may think of integral manifolds as solutions to the
differential equations

0’1 _ 5(1 _
(IIL.A.2) v =0
ao* =do" =0.

In case Y is a complex manifold and f is holomorphic — the case we will be
considering in this paper — integral manifolds satisfy
f:TY - W CTX.
The quotient space
Q" = A" (X)/T°"

has an induced exterior derivative dyg.



298 MARK GREEN - PHILLIP GRIFFITHS - MATT KERR

DEFINITION. — The characteristic cohomology H’(X) is the cohomology of the
complex (Q°,dg) where Q" = @& Q4.
p+q=n
For an integral manifold, we have a map
(ITI.A.3) fHYX) — H'(Y)

from the characteristic cohomology asssociated to (X,Z**) to the usual coho-
mology of Y. We may think of characteristic cohomology as that cohomology that
nduces ordinary cohomology on integral manifolds by virtue of their being
solutions to the PDE system (I111.A.2).

In this paper we will be interested in the case where X is a Mumford-Tate
domain and W is the infinitesimal period relation. In preparation for this we
assume that X is a homogeneous complex manifold of the form

X=A/B

where A is a real, semi-simple Lie group and B is a compact, connected subgroup.
For the complexified Lie algebras, we have the Ad B-invariant splitting

ge=1t@be
where
t=t"et"
to’l _ EI,O

defines the complex structure on X. We also assume that the Cartan-Killing form
defines an A-invariant Hermitian metric # on X. We denote by v C t*° the
subspace given by the fibore W at the identity coset, and we have the Ad B-in-
variant decomposition

" =mwav.

Using the metric, we identify t with its dual f and v with its dual 0. Finally we
denote by [iv,w], the image in b of the brackets of elements in . Since
[6c,10] C i, this is well-defined and we set

f = ker{[ ] s A2 — b}
N =[af
NoOTATION. — We set

A =, A =
AP = ((A A2 1) @ (A A7 ).

BASIC OBSERVATION. A** is isomorphic to the complex of A-invariant
forms in I°°.
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The points are: (i) We identify the various vector spaces with their duals using
the invariant metric; (ii) In degree one, v @ i gives the fibres of TxX /1 ® X /1;
and (iii) Using the Maurer-Cartan equation, f c /%10 gives the values at the
identity coset of the forms d@ where 0 is a section of I — this is the main point.

The induced exterior derivation dg induces a differential

S: A" — A

where A" = @ AP7 and we have the result
p+Hq=n

(IT1.A.4) The cohomology of the A-invariant forms in Z°° is isomorphic to
H*(A°,0).

DEFINITION. — We shall call H*(A®,0) the invariant characteristic coho-
mology.

It is this that in the next section we shall be interested in for Mumford-Tate
domains. To conclude this section we mention what we feel is a very interesting
question.

To explain this we assume that X is compact but do not assume that it is
homogeneous. We also assume that the sections of

W +[W, W]

generate a sub-bundle of 7X. Using an Hermitian metric 2 on X, we may define
Q** to be a subspace of A**(X) by taking the orthogonal complements to the
values of the forms in Z**° at each point of X. This enables us to define a global
inner product on Q*°, an adjoint d*Q to dg, and a Laplacian

dg = de*Q + dadQ
Then as usual we may define a “harmonic” space
H7 (X, h) =ker{4y : Q" — Q"}.

In order for this to have relevance to H}(X) we make the following

ASSUMPTION. — W is bracket-generating.
This means that
W W, W1+ W, [W, Wl + - = TX.

It may be checked that this assumption is equivalent to the operator A, being
hypoelliptic, and in this case we have the following Hodge-type theorem com-
municated to us by Michael Taylor:
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The natural map
H%(X ) — H%(X)
18 an 1somorphism.

For applications one would like to have a Hodge structure on H%(X). The
natural way this could arise is if one has the commutation relation

(IIL.A.5) [4g, 7] = 0

where
Hp‘q : Q. — vaq

is the projection onto forms of type (p,q). For Hermitian manifolds when
W = TX, Chern [C] proved that (III.A.5) is equivalent to the metric /& being
Kéhler. This leads to the

QUESTION. — What are the necessary and sufficient conditions, expressed in
terms of the metric h and distribution W, that (II1.A.5) holds?

II1.B - Invariant characteristic cohomology for Mumford-Tate domains.

We consider the situation of section III.A when X = Dy; € D is a Mumford-
Tate domain and Wj; C TDy is the infinitesimal period relation. We shall denote
by 437 the complex of G(R)-invariant forms in A**(Dy)/Z**, with the operator
op = Ay — A}Jl being induced by the exterior derivative.

DEFINITION. — In this situation we shall vefer to H* (A3, o) as the universal
characteristic cohomology.

The reason for the term is that the image of H*(Aj;,dy) in H5(Dyy) is G(R)
mvariant. Hence, for any variation of Hodge structure (I1.A.3) there is an in-
duced map

& : H (Ay,,0m) — H*(S)
mdependent of the monodromy group I
(ITI.B.1) PRrOPOSITION. — For the universal characteristic cohomology we have
H?PY (A3, 0m) = 0 and

H2 (A3, ) = (APP)™".
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That is, the universal characteristic cohomology vanishes in odd degree, and
in even degrees it is all of Hodge type (p, p) and given by the G(R)-invariant (p, p)
forms in the complex Q**.

Proor. — Using the Hodge structure on nt we have
me = @m
and the notational correspondence with that in the previous section is

t s @ mf’L'L

>0
m e m !
h(‘ — m°70.
The proposition will follow from
(IILB.2) (APm g A1) " = 0if p £ q.

The reason for this is that the circle S* acts by Ad ¢(S(R)) on m with eigenspaces
m~% and for t € S! we have

t(u) =t 2u, wem

tw) =2, vemb 1,
Since ¢(S(R)) C H, where H = M(R) N H, is the isotropy group, the result
follows. O

REMARK. — We note that, consistent with (I1.A.5), when M(R) is compact it
follows that A3 = (0).

DiscussioN. — The proposition should be viewed as a very partial result. The
desired result would be to explicitly identify the Ad H-invariants in 4}. We note
that the integrability condition arising from

[,]1: AAm b — m22

did not enter intg)O the proof, and those will need to play a crucial role in de-
termining (A}")™ .
For any period domain D there are defined the Hodge bundles

VP — D
with fibre V1 over ¢ € D. In a separate work it will be proved that

(I11.B.3) In the case when Dy = D; t.e., M = G, the universal characteristic
cohomology is generated by the Chern forms of the Hodge bundles.
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The proof is based on a detailed analysis of the representation theory of the
isotropy group H,. An interesting point is that except in the classical case, where
the relations among the Chern forms are universal and well-known, there are
additional relations

(III.B.4) ci(IP)e;(F"P)y =0 if i+j5>hP" P

mmposed by the integrability conditions.
For a Mumford-Tate domain Dy; C D, the Hodge bundles on D restrict to
Hodge bundles on Dj;. We ask the question

(ITL.B.5) In general, do the Chern forms generate the universal characteristic
cohomology ?

Since the conditions that a reductive Q-algebraic group be a Mumford-Tate
group are not known,® one may ask more specifically the following

(II1.B.6) Let M be a Mumford-Tate group such that M(R) is a simple Lie group
and the representation M(R) — GL(VR) is irreducible. What are the conditions
n the highest weight that the Chern forms generate the characteristic coho-
mology?

In case this holds, what are the relations on the generators?

This seems to us a particularly interesting question because the interaction
between representation theory and the integrability conditions will have to
enter.

REMARK. — At the end of section II.B we have remarked on “anomalous
phenomenon” that arise in non-classical Hodge-theoretic considerations. Another
type of anamolous phenomenon concerns the old

(ITL.B.7) QUESTION. — Can one give sufficient conditions that a variation of
Hodge structure arise from algebraic geometry?

As previously noted, all to us known properties of a variation of Hodge
structure arising from algebraic geometry® hold for general variations of Hodge
structure. However, a guess such as “a variation of Hodge structure given by

(IIIBS) ¢:S—>F1\Dl><-~-><rk\Dk

(®) We believe that this is an interesting and feasible question.
(*) We shall refer to these as motivic variations of Hodge structure.
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in (I1.B.6) is motivic” is false, because one may do something stupid like taking
a motivic variation of Hodge structure and tensoring it with a general con-
stant, non-motivic Hodge structure. What has been missing is some good
notion of primitive, which would mean that the variation of Hodge structure is
not composed as above from lower weight variations of Hodge structure. It
seems possible that universal characteristic cohomology might be relevant to
this issue.

IV. — Noether-Lefschetz loci.
IV.A — Mumford-Tate domains and Noether-Lefschetz loci.

Let ¢ € D be a Hodge structure with algebra Hg;" C T** of Hodge tensors.
Because we will be interested in the algebra Hg?* and not the particular ¢, we

denote Hg?* by H** and by M the Mumford-Tate group M,. We think of M as a
subgroup of G and not as an abstract group.

DEFINITION. — The Noether-Lefschetz locus NLy, C D is defined by
NLy = {¢ eD:H*™ C Hg;"}.

That is, NLy; consists of all Hodge structures whose algebra of Hodge tensors is
at least as big as the algebra T**°.

We may give the same definition of the Noether-Lefschetz locus l\\I/LM asso-
ciated to a point F* € D. When F* = F} for some ¢ € D, it is clear that
NLjy =NLy ND.

It is also clear that
(IV.A.1) NLy € D is an algebraic subvariety defined over Q.

As will be discussed below, N/LM will not in general be irreducible and NL,,
will be smooth but generally will not be connected. For the individual compo-
nents we have the

(IV.A.2) THEOREM. — When T1** = Hg;" for a point ¢ € D, the component of
NLjs passing through ¢ is equal to the component D}’m of the Mumford-Tate
domain passing through ¢.
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This result is plausible because both NLj; and M, are defined over Q) in terms
of the algebra of Hodge tensors associated to the Hodge structure ¢. However,
since Dy, is defined using M,(RR) it does not seem to be entirely obvious.

One consequence of the theorem is that the components of NLj; are smooth
submanifolds of D. Another is the dimension count

(IV.A3) codimpNLjy; = codim,- (m;).

This result is also not obvious. For example, if the weight n = 2m is even and
{ € V, then the locus
NL;cD

where ( € Hgff"’ =Vn V]ﬂ"-m is easily seen to be smooth and of codimension
(IVA4) h?m,O 4ot hm+l,mfl

in D. However, since to our knowledge there is as of yet no information on the
effective generators of the algebra Hg;’°,5 there does not seem to be a direct
way to iterate this procedure to estimate the codimension of NLy,.

For a variation of Hodge structure (I1.A.3), the pullback under @ of the
image in "\ D of a Noether-Lefschetz locus is an object of classical and
continuing algebro-geometric interest. The quantity on both sides of
(IV.A.3) gives an upper bound which, except in the classical case, is way
off. A first correction comes from the 1% order information in the differ-
ential constraints given by the infinitesimal period relation. For example, in
case I** is effectively generated by the polarization and a single Hodge
class { € V*, the quantity (IV.A.4) is replaced by 2"*1"~1, When the sec-
ond order, or integrability conditions, are taken into account a further
decrease occurs. This is explained in section (IL.F) of [GGK] (cf. Theorem
(I1.F.5)), where the estimate given there is shown by example to in general
be sharp.

IV.B — Arithmetic properties of Noether-Lefschetz loci.

For simplicity of exposition, in this section we will assume that Hodge
structures V, are simple, i.e. have no non-trivial sub-Hodge structures.® Then

(®) Effective generator means a generator in HgZ’b of the algebra such that adding it to
the algebra generated by the tensors in ngl‘b’ for all @/, b’ with o/ + b’ < a + b decreases
the corresponding locus, either by decreasing the dimension or by eliminating one or more
components.

(%) The general case is treated in detail in sections III and IV of [GGK].



MUMFORD-TATE DOMAINS 305

the endomorphism algebra

z a:V — V with
" a(Vpn Cvpa
is a division ring over Q.

One extreme of Mumford-Tate domains occurs when Dy, = D;ie. M, = G.
The other extreme is when Dy, is a point. We recall that a CM-field is a totally
imaginary extension L of Q having a totally real subfield K with [L : K] =

(IV.B.1) PropoSITION. — The following are equivalent:

(i) Du, is a point;
(i) M, is an algebraic torus T,;
(ili) E, is a CM-field of degree dim (V) over Q.

SKETCH OF THE PROOF. — (i) = (ii) If Dy, = M,(R).¢ is just the point {¢}, then
M, is contained in the isotropy group’ H,. Now H,(Q) is equal to Aut(V,Q,) =
E,NG(Q) and thus

M,(Q) CE,.

But M, always commutes with £, so here it commutes with M,(Q). Since M,, is
defined over O, M,(Q) is Q-Zariski dense in M,, and thus M, is abelian and is an
algebraic torus.

(ii) = (iii) This is a standard argument in the literature (cf. [Mo] and [GGK]).

(iii) = (i) The assumption that E, is a ﬁeld of deg’ree dim (V) implies that
E* are the Q-points of a maximal torus T (defined over Q) of GL(V) which
dlagonallzes with respect to some Hodge basis. Therefore T(R) »(S(R)),
which implies M ¢ T NG. Moreover, since TNG c H,, M, C H, so that
M,(R).0 = {g}. O

In section ITI of [GGK] there is a detailed analysis and numerous examples of
CM-Hodge structures. There it is also shown that the CM-Hodge structures are
topologically dense in NLj,;. There also the following result of Abdulali [Ab] is
discussed:

A CM-Hodge structure is motivic.

This is the only result we know, aside from the classical case, where sufficient
conditions are given to ensure that an abstract Hodge-theoretic object is motivie.

(") In this proof, H, ,» is treated (notationally) as an algebraic group rather than as areal
Lie group.
(®) Note that we do not need to use the fact that E, is a CM-field.
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In this regard, we know no example of an explicitly given Hodge structure that is
not motivic.

As mentioned above, N/LM is in general not irreducible and NLj; = I\\I/LM nD
is not connected. For example, there may be several CM-Hodge structures
corresponding to a fixed CM-field E. It is interesting to know the answer to
questions such as:

(i) What is the largest subgroup of G(R) stabilizing NLj,?
(@ii) Does this group transitively permute the components of NL M?v
(iii) What is the field of definition of the irreducible components of NLj,?

Regarding (i) one has the

(IV.B.2) THEOREM. — The largest subgroup of G(R) stabilizing NLy s the
normalizer No(M, R) of M(R) in G(R). A similar result holds regarding NLy,
and Ng(M, C).

Regarding (ii), we first note that in the classical case, NLj, is a single M(RR)-
orbit, whereas this is definitely 7ot so in the non-classical case.

(IV.B.3) PROPOSITION. — Let T' C G be a maximal anisotropic real torus which is
defined over Q. Then the Weyl group We(T, R) of T(R) in G(R) acts transitively
on the components of NLyp. There is a similar statement for Wq(T, C) and the
components of I\\I/LT.

Turning to (iii), we say that a Hodge structure ¢ is non-degenerate if Hgy* is
effectively generated by Hg(},’0 and Hg;’l. For example, in the situation where the
equivalent conditions of (IV.B.1) hold, V, is nondegenerate if and only if T, is a
maximal torus in G.

Let ¢, be a non-degenerate CM-Hodge structure of odd weight and
L c End(V,,) its CM-field (assumed Galois). Using the non-degeneracy as-
sumption, it follows that the Mumford-Tate group 7'y, is just the commutator of L
in G, written T = G~. Letting K C L be a normal subfield we have the

(IV.B.4) THEOREM. — For M = GX, the permutation action of

N Ne(T
WMD) Ga]wviwrzT)G()

on the components of NLy reproduces that of Gal(C/Q). In particular, the
orbits of We(M) acting on components are defined over Q, and individual
components of NLy, are defined over K.
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