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On Homogeneous and Symmetric CR Manifolds

ANDREA ALTOMANI - COSTANTINO MEDORI - MAURO NACINOVICH

Dedicated to the memory of Professor Aldo Andreotti
on the 30th anniversary of his death.

Abstract. — We consider canonical fibrations and algebraic geometric structures on
homogeneous CR manifolds, in connection with the notion of CR algebra. We give
applications to the classifications of left invariant CR structures on semisimple Lie
groups and of CR-symmetric structures on complete flag varieties.

Introduction.

In this paper we discuss some topics about the CR geometry of homogeneous
manifolds. Our main tool are CR algebras, introduced in [28] to parametrize
homogeneous partial complex structures. If M is a Gy-homogeneous CR-mani-
fold, we associate to each point py of M a pair (g, q), consisting of the Lie algebra
ao of Gy and of a complex Lie subalgebra of its complexification g. If p = g-po,
with g € Gy, is another point of M, the CR algebra of M at p is (g,, Ad(g)(q)), so
that q is determined by M modulo Gy-equivalence. Several questions about the
CR geometry of M can be conveniently reduced to Lie-algebraic questions about
the pair (g, q). This program has already been started and carried on in several
papers, see e.g. [1, 2, 23, 24], where the investigation focused on different special
classes of homogeneous CR manifolds. In [20], W. Kaup and D. Zaitsev in-
troduced the notion of CR-symmetry, generalizing at the same time the
Riemannian and Hermitian cases, and showing that CR-symmetric manifolds are
CR-homogeneous.

In [23, 24] one of the Authors, in collaboration with A. Lotta, classified
and investigated some classes of CR-symmetric manifolds. A key point was
the possibility of representing the partial complex structure of M by an
inner derivation J of g,. The existence of such a J was a crucial step in the
classification of semisimple Levi-Tanaka algebras in [25], and in establishing
the structure of standard CR manifolds, which are homogeneous CR mani-
folds with maximal CR-automorphisms groups (see [26, 28]). In this paper
we will delve further into the relationship between the existence of J, ca-
nonical CR fibrations, and CR-symmetry.
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In the first section we survey the basic notions of CR and homogeneous CR
manifolds, including the J-property, CR-symmetry, and explaining their re-
lationship.

In § 2, we discuss the existence of Levi-Malcev and Jordan-Chevalley fibra-
tions, and the existence of suitable homogeneous CR structures on their total
spaces, bases and fibers. These fibrations, interwoven with canonical decomposi-
tions of the CR algebras, were largely employed in [26, 27], and also in [1, 2] in the
context of parabolic CR manifolds. Here they are considered in full generality.

In §3 we study the inverse problem of constructing a Go-homogeneous CR
manifold starting from an abstractly given CR algebra (g, q). This is not always
possible, and the question arises to describe natural modifications of (g, ) leading
to new Gy-homogeneous CR manifolds. These are described in § 3.2, § 4.4, §4.5.

The construction of § 4.5 was employed in [4, 15] and, like the one of § 4.4, has
a distinct algebraic geometrical flavor. Besides, algebraic groups played a cen-
tral role in the study of parabolic CR manifolds in [1, 2]. Thus we consider CR
manifolds in an algebraic geometric context in § 4. We show that algebraic CR
manifolds canonically embed into the set of regular points of complex algebraic
varieties. An important distinction arises between algebraic and weakly-alge-
braic CR manifolds, the latter admitting analytic, but not algebraic, embeddings.

In the two final sections we deal with special applications. In § 5 we extend to
noncompact Lie groups some results of [9], classifying the regular left invariant
maximal CR structures on semisimple real Lie groups. In §6, we consider
symmetric CR structures on full flags of complex Lie groups. They had been
considered in [14] in a slightly different context. In our treatment we use the CR
algebras approach and we are especially interested in the relationship between
CR-symmetry and the J-property. All the CR-symmetric manifolds of [23, 24]
also enjoyed the J-property. We are in the same situation when we consider the
complete flags of the classical groups. On the complete flags of the exceptional
groups we found examples of CR-symmetric structures which do not enjoy even
a weaker version of the J-property, and also examples of CR-structures enjoying
the weak-J-property, but not the J-property.

1. — CR manifolds, CR algebras, J-property, CR-symmetry.
1.1 — CR manifolds.

Let M be a smooth real manifold. A CR structure on M is the datum of an
almost Lagrangian formally integrable smooth complex subbundle 7°1M of the
complexified tangent bundle 7° M. The subbundle T%1M is required to satisfy:
(1.1) T M NTOIM =0,

(1.2) Lr(M, T"*M), (M, T**M)] ¢ (M, T"*M).
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The rank n of T%'M is the CR-dimension, and k = dimgM — 2n the CR-codi-
mension of M. If n = 0, we say that M is totally real; if k = 0, M is a complex
manifold in view of the Newlander-Nirenberg theorem.

When M is a real submanifold of a complex manifold X, for every p € M we can
consider the C-vector space T0'M = T)'X N T;;'M of the anti-holomorphic com-
plex tangent vectors on X which are tangent to M at p. If the dimension of Tg=1M is

independent of p € M, then T*'M = J Tp'M is an almost Lagrangian formally
peM

integrable complex subbundle of 7°M, defining on M the structure of a CR
submanifold of X. If the complex dimension of X is the sum of the CR-dimension
and the CR-codimension of M, the embedding M — X is called CR-generic.

A smooth map f: M — M is CR if M and M’ are CR manifolds, and
df(T°1M") c T*' M. The notions of CR immersion, submersion, diffeomorphism
and automorphism are defined in an obvious way. The set of all CR auto-
morphisms of a CR manifold M is a group that we denote by Autgr(M).

DEFINITION 1.1 (Characteristic bundle and Levi forms). — Let HM be the
subbundle of TM consisting of the real parts of the elements of T M. Its anni-
hilator bundle H'M C T*M is called the characteristic bundle of M. We have

0 * 0,1
(18)  HM ={¢eTiM | &) =0, vz € T%'M}, for all p € M.

If Z1,Zs are smooth sections of T*'M, and E a smooth section of H'M, all
defined on an open neighborhood of p in M, with Z;(p) = z; and Z(p) = & then
we set

(1.4) L:(z1,22) = 1dE(21,22) = —1E(Z1, Z2)).

In this way we define a Hermitian symmetric form Lz on Tg‘rlM, which is called
the scalar Levi form at & € H'M.

If Z is a smooth section of T®'M defined on a neighborhood of p € M, with
Z(p) = z, we define

(1.5) (@) = w,(ilZ, Z1y),

where wy : TyM — T,M/H,M 1is the projection into the quotient.

This map L, : Ty'M — T,M/H,M is the vector valued Levi form of M at p.
1.2 — Homogeneous CR manifolds.

Let M be a smooth CR manifold and Gy a Lie group.

DEFINITION 1.2. — We say that M is a Gy-homogeneous CR manifold if Gy
acts transitively on M by CR diffeomorphisms.
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Let M be a Gy-homogeneous CR manifold. Fix py e M, let I, =
{9 €Go|g-py=po} be the isotropy subgroup, and = : Gy — M ~ Gy /I, the
associated principal Iy-bundle. Denote by 3(Gy) the space of smooth sections of
the pullback 7*T%M of T%'M to G:

(1.6) 3Go) =1{Z € X' (Go) | n.Z, € Ty M, Vg € Gy},

where X" (Gy) is the space complex valued smooth vector fields on Go. By (1.2),
the complex system 3(Gy) is formally integrable, i.e.

(1.7) [3(Go), 3(Go)] C 3(Go).

Moreover, 3(Gy) is invariant by left translations, and therefore is generated, as a
left C*°(Gy, C)-module, by its left invariant vector fields.

Let g, be the Lie algebra of Gy and g its complexification. By (1.7), the left in-
variant elements of 3(G) define a complex Ad,(Z)-invariant Lie subalgebra q of g,
given by

(1.8) q=mTy'M) C g~T,G.

We can summarize these observations by

PROPOSITION 1.3. — Let Gy be a Lie group, Iy a closed subgroup of G,
ao = Lie(Gy) and iy = LieIy) their Lie algebras. Then (1.8) establishes a one-
to-one correspondence between Go-homogeneous CR structures on M = Gy/I
and complex AdyIy)-invariant Lie subalgebras q of g with g N gy = 1o. O

This lead us to introduce the notion of a CR algebra in [28].

DEFINITION 1.4. — A CR algebra is a pair (qy, q), consisting of a real Lie al-
gebra gy and of a complex Lie subalgebra q of its complexification g, such that the
quotient g,/(q N Q) s finite dimensional. The real Lie subalgebra iy = q N qg s
called the isotropy subalgebra of (g, ).

If M is a Gy-homogeneous CR manifold and q is defined by (1.8), we say that
the CR algebra (g, q) is associated with M.

REMARK 1.5. — The CR-dimension and CR-codimension of M can be computed
in terms of its associated CR algebra (g, q). We have indeed
(1.9) CR-dim M = dimcq — dimc(q N @),
(1.10) CR-codim M = dimcg — dimc(q + q).
The CR algebra (g, q), is totally real when CR-dim M = 0, totally complex when
CR-codimM = 0.

The scalar and vector valued Levi forms of a Gy-homogeneous CR manifolds
can be computed in terms of the Lie product of g, by using Gy-left-invariant
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vector fields. Indeed, for p € M, & € HgM , we have
(L11)  Leler,20) = —in" (25, Z3) i Z1,Ze € g, and n.(Z}), = 2,
(1.12) Ly = wy(n([Z*,Z*)) if Z € q, and n.(Z"), =z,
for z,21,20 € T%lM, e H;),M;
here Z*, Z7, Z; are the left invariant vector fields of Z,Z;,Z5 € q.

The natural isomorphism between 7, M/HpM and the quotient ¢ =
ao/{a + g} N gy makes £,,(z) correspond to the projection of i[Z, Z] into e.

DEFINITION 1.6. — Consider a CR algebra (g, q). Let Liec(q) be the set of
complex Lie subalgebras of . We recall that (g, q) is called:

fundamental if ¢ € Qiec(g), g+qCqd =49 =g,
weakly nondegenerate if ¢ € Qiec(g), aCqd Ca+d=4q =q,
Levi-nondegenerate if {ZecqladZ) @) Ca+q}=qnNaq,
effective  if no nontrivial ideal of g, is contained in iy.

If M is a Gy-homogeneous CR manifold with associated CR algebra (g, q),
the above properties are related to the CR geometry of M (see e.g. [1]) by:

1) (gg, q)is fundamental if and only if M is of finite type in the sense of Bloom
and Graham (see [6]).

(2) (gp, q) is Levi-nondegenerate if and only if the vector valued Levi form of
M is nondegenerate. Levi-nondegeneracy implies weak nondegeneracy.

3) (gg, q)is fundamental and weakly nondegenerate if and only if the group of
germs of CR diffeomorphisms at py, € M stabilizing py is a finite dimensional Lie
group, i.e. if and only if M is holomorphically nondegenerate (see e.g. [5], [13]).

(4) A fundamental (g, q) is weakly degenerate if and only if there exists a
local Go-equivariant CR fibration M — M', with nontrivial complex fibers.

(5) Effectiveness means that the normal subgroups of Gy contained in the
isotropy I, are discrete.

Let gy, a; be real Lie algebras and q,q’ complex Lie subalgebras of their
complexifications g, ¢’. A Lie algebra homomorphism ¢, : gy — g, is a CR alge-
bra morphism from (g, q) to (g;, q') if the complexification ¢ of ¢, transforms q
into a subalgebra of q'. The pair (¢, ¢) is

a CR algebra immersion if ¢ (o' N§)=qNa, ¢ (q)=aq,
a CR algebra submersion if ¢(@)+a'Ng’ =q', d@)+a' Nna =4,
a CR algebra local isomorphism if it is at the same time

a CR algebra immersion and submersion.
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The CR algebra (g}, ¢") with g = ¢,"(q’ N gp) and q” = g N ¢ (9’ N §') is the
fiber of (¢, ®) : (89, 0) — (a5, ).

When g, = g;, g C q', and ¢, is the identity, the corresponding morphism
(a9, ) — (a9, q") is said to be gy-equivariant (see [28]).

If M and M’ are homogeneous CR manifolds with associated CR algebras
(g0, 9), (gg,a"), local CR maps that are local CR immersions, submersions or
diffeomorphisms, correspond to algebraic CR morphisms of their CR algebras
that are CR algebras immersions, submersions, or local isomorphisms, respec-
tively, and vice versa.

For later reference, it is convenient to restate [28, Lemma 5.1] in the fol-
lowing form.

PROPOSITION 1.7. — Let Iy C I}, be closed subgroups of a Lie group Gy. Let
i, 1y, Qo be the Lie algebras of Iy, I, Gy, and 1,1, g their complexifications,
respectively. Let (qy,q) be a CR algebra, defining a Go-tnvariant CR structure
on M = Gy/Iy. Then a necessary and sufficient condition for the existence of a
Go-invariant CR structure on M' = Go/I, making the Gy-equivariant map
n: M — M a CR submersion is that:

(1.13) q =q+1i isaLie algebra, and q' Ngg =i,

When (1.13) holds, it defines the CR algebra (q, ") at py = (] which defines
the unique Gy-homogeneous CR structure on M' for which M = M' is a CR
submersion.

1.3 — The J-property.

Let M be a CR manifold. Its partial complex structure is the vector bundle
isomorphism J : HM — HM that associates to X, € H,M the vector JX, € H,M
for which X, + iJX, € T)' M.

Let M be a Gy-homogeneous CR manifold, with CR algebra (g, q) at p € M,
and set By = {ReZ | Z € q}. The partial complex structure of M yields a com-
plex structure on By /iy, via its canonical identification with H, M. This is the
partial complex structure of (qy, Q).

DEFINITION 1.8. — We say that (gy, ) has the J-property if J € Der(g,) can be
chosen in such a way that
(1.14) J@Go) Cipy, X+iJX)eq, VX e,

We say that a CR algebra (gy,q) has the weak-J-property if there is
J € Der(qy) such that, for Y = Ad(exp (nJ /2)),

(1.15) YGo) =1, X +iYX)ecq, VX e Do
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If J € Der(qy) satisfies (1.14), then Y =Ad(exp (nJ /2)) satisfies (1.15). Hence
the first condition is stronger than the second.

REMARK 1.9. — Conditions (1.14) and (1.15) can also be expressed in terms of
the complexifications of J, Y. Namely, denoting by the same letter also their
complexifications, they are equivalent to

(1.14) Jwca, Z-iJZ)eaqnq, VZenq,
(1.15Y Y@ =q, Z-1YZ)eqna, VZe€aq.

For a map A € gl(g,), we denote by As and A,, its semisimple and nilpotent
parts, respectively. If A € Der(qy), then also A; and A,, are derivations of g, (see
e.g [19, §4.2, Lemma b]).

ProposiTioN 1.10. — Let (gy,q) be a CR algebra, and J € Der(q,). If J
satisfies (1.14), then also Js satisfies (1.14). If Y = Ad(exp (nJ/2)) satisfies
(1.15), then also Y's = Ad(exp (nJs/2)) satisfies (1.15).

Proor. — Indeed, Ad(J;/2) is the semisimple part of Ad(zJ//2). Since J; and
Y; are polynomials of J, Y, respectively, (1.14) for J implies (1.14)" for J;, and
likewise (1.15)" for Y implies (1.15) for Y. O

As a consequence, we can always assume in Definition 1.8 that J be a semi-
simple derivation of g.

1.4 — Symmetric CR manifolds.

Let M be a CR manifold, with partial complex structure J. A Riemannian
metric g on M is CR-compatible if g(JX,,JX,) = 9(X,, X)) for all p € M and
X, € H,M. Let O(M) be the Lie algebra of real vector fields generated by
I'(M,HM) and ©,M = {X, | X € ©M)}. Note that ®,M = T,M when M is of
finite type in the sense of Bloom and Graham. Denote by @;M the orthogonal of
©,M in T,M for the Riemannian metric g.

DEFINITION 1.11 (see [20]). — Let M be a. CR manifold, with a CR-compatible
Riemannian structure. We say that M is CR-symmetric if, for each p € M, there
s an isometry o, : M — M that fixes p, is a CR map, and whose differential
restricts to —1d on H,M & 0, M.

In [20, Proposition 3.6] the CR-isometries of a symmetric CR-manifold M are
proved to form a transitive group Gy of transformations of M.
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Given a CR algebra (g, ), let q° be the Lie subalgebra of g generated
by q+g.

We recall that a subalgebra fy of g, is compact if the Killing form of g, is
negative definite on f;. We say that a subalgebra iy of g, is almost compact if
there exists a decomposition iy = f, & t, with fy compact in g, and t, contained in
the kernel of the Killing form of g,.

DEFINITION 1.12. — We say that (g, q) is CR-symmetric if ip = q N g, 1s al-
most compact in qo, and there exists an mvolution 1 of g with

Mgo) = G, ker(ld—7) C ¢%,  Aq) =aq,
Z+MZL)eqngq, VZ €q.
Conditions (1.16) imply that
(1.17) [Z1,Z2] € anq, VZi,Z3 € q.

(1.16)

The involution A is equivalent to the datum of a Ze-gradation
(1.18) 9=80 290, [8a),3p] C S,
where () denotes the congruence class of © € 7 in 7z, compatible with (g, q).
Compatibility means that:
go) C 0%, aNge Cand,
(1.19) a=(@nNgq) ®@Nggq),
a0 = (3o N G @ (3o N 1))
The involution A and the Zy-gradation (1.18) are related by
(1.20) Qo =1Z€gl D=2}, an=1{Zecqa| i) =-2},

and (1.16), (1.19) are equivalent to define the CR-symmetry of (g, q).

ProposITION 1.13. — Let (g, q) be a fundamental CR algebra with iy almost
compact, and having the weak-J-property. If J(iy) =0, then (gy,q) is CR-
symmetric.

ProOOF. — Indeed, by the assumptions, the automorphism 1 = Ad(exp (zJ)) is
an involution of g that satisfies (1.16). |

PROPOSITION 1.14. — Let M be a CR-manifold. Assume that M is CR-sym-
metric for a CR-compatible Riemannian structure. Let Gy be the transitive
group of CR-isometries of M, and (g, q) the corresponding CR algebra of M at
po € M. Then (qy, q) is CR-symmetric.
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Vice versa, if M is a Gy-homogeneous CR manifold, having at a point py € M
a CR algebra (g, q) which is CR-symmetric, and the analytic subgroup tangent
to i ts compact, then there is a compatible Riemannian metric on M for which
M s CR-symmetric. O

2. — Levi-Malcev and Jordan-Chevalley fibrations.
2.1 — Ay-fibrations.

Let Gy be a Lie group, q its Lie algebra, ay an ideal of g,, and 4y the cor-
responding analytic normal subgroup of Gy.

DEFINITION 2.1. — Let M = Gy /1 be a homogeneous space of Gy. If the sub-
group Aol is closed i Gy, we call the Gy-equivariant fibration

(2.1) M = Go/Iy = M' = Gy/(AIy)
the Ao-fibration of M.

Assuming that M admits an A(-fibration (2.1), we will discuss the existence of
compatible Gy-homogeneous CR structures on M = Gy/Iy and M' = Gy /(Ao Ly).
Denote by a the complexification of ag.

PROPOSITION 2.2. — Let (g, q), with q N gy = 19, be a CR algebra defining a Go-
homogeneous CR structure on M, and assume that the subgroup Ayl is closed.
A necessary and sufficient condition for the existence of a Gy-homogeneous
CR structure on M' = G /(Aoly), making the A-fibration (2.1) a CR map is that:

(2.2) anad+a=(@+a)n(@+a).

Assume that (2.2) is satisfied and define the CR structure on M’ by (gy,q),
with ' = q + a. Then:

1) 2.1) is a Gy-equivariant CR fibration.
(2) Its typical fiber F is the Ay-homogeneous manifold Ay/(Ay N 1), having
an Ag-homogeneous CR structure defined by the CR algebra (ag, q N a).

Proor. — By Proposition 1.3, the Gy-homogeneous CR structures on M’ are
in one-to-one correspondence with the CR algebras (gg,q’), with isotropy
iy =a'Ngy equal to (ip+ ap). The map n: M — M’ is CR if q C ¢’. Thus
fo+a) CanNng+a)cq’, and g+acq. By Proposition 1.7, the map
n:M — M is a CR submersion if and only if the last inclusion is an equality.
Finally (1) and (2) follow by [28, § 5]. O
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PROPOSITION 2.3. — We keep the notation above. Assume that (g, q) has the
weak-J-property and that ag s Y-invariant. Then:

1) Condaition (2.2) is satisfied.
(2) The basis (gy, q + a) and the fiber (ag, a N q) of the Ay-fibration enjoy the
weak-J-property.

If we assume that (ay, q) has the J-property, then both the basis and the fiber of
the Ay-fibration enjoy the J-property.

Proor. — Let J € Der(g,) be such that Y'=Ad(exp (nJ/2)) satisfies (1.15).

(1) We only need to prove the inclusion (q + a) N g, C ip + a¢. An element A
of (+a)NgpisasumA =X +1Y)+ U —Y), with X, Y, U € gp, X +1Y € g
and U,Y € ag. Since both ¥ —4X and Y +¢Y(Y) belong to g, we obtain that
X+ YY) e gngy =1ip. Moreover, Y(Y) € ag, because ay is Y-invariant. Hence
A=X+YY)+ U - YY) € ip+ ap.

(2) The subalgebras g+ a and (qN @)+ a are Y-invariant. Thus Y yields
multiplication by ¢ on the quotient (q + a)/((q N ) + a). This proves the state-
ment for the base. The statement for the fiber is trivial.

The last statement can be obtained by repeating with minor changes the
arguments used above for the proof of (2). O

We will apply the results above to the cases where qy is either the radical or
the nilpotent radical of g,.

2.2 — The Levi-Malcev fibration.

Let g, be areal Lie algebra and 1 its radical. The Levi-Malcev decomposition
of g, has the form
(23) gO = rO @ é07

where 3 is a semisimple Levi factor of gy, i.e. a Lie subalgebra of g, isomorphic
to the quotient g, /vo.

Let G be a Lie group with Lie algebra g,. Its radical Ry is its maximal
connected solvable subgroup, and equals its analytic Lie subgroup with Lie al-
gebra x.

DEFINITION 2.4. — Let M = Gy /I be a homogeneous space of Gy. If Ryl is
a closed subgroup of Gy, we call the Go-equivariant fibration

(2.4) M = Go/Iy = M' = Go/Ry1,
the Levi-Malcev fibration of M.



ON HOMOGENEOUS AND SYMMETRIC CR MANIFOLDS 231

ExampLE 2.5. — Not all homogeneous spaces admit a Levi-Malcev fibration.
Take, for instance, Gy =SU(@B) x R* and I, = {(exp(tX),e') |t € R} for
X =idiag(a, f,y), with a,f,7 € R, a+ f+y =0, and «a, f linearly independent
over Q. Let R, be the radical of Gy. Then I, is closed, but Ryl =
{(exp (tX),e*) | t,s € R} is not closed in G.

ExXAMPLE 2.6. — Let 3y be a semisimple real Lie algebra and V; a nontrivial
real irreducible 3p-module. Let g, = 39 ® V be the Abelian extension of 3¢ by Vj.
Its Lie algebra structure is defined by

X1+ v, Xo +v2] = [X1, Xo] + X7 - v2 — Xo - 01
for Xl,Xz € 3¢, V1,V2 € Vo.

Radical and nilradical of g, are both equal to Vy ~ 0® Vy, and 39 ~ 39 & 0 C g,
is a Levi subalgebra and a reductive component of g,. Then g, = 3@ Vy is a
Jordan-Chevalley and a Levi decomposition of g, at the same time.

Fix a connected semisimple Lie group Sy with Lie algebra 3, to which the
representation of 3y on V) lifts. The product

(g1,1) - (g2,v2) = (g192, 1 + 91(v2)), for g1,92 € So, v1,v2 € V,

defines on Gy = Sy x Vy the structure of a Lie group with Lie algebra g, and
radical Ry = {eg,} x Vb.

Let 3 and V be the complexifications of 3y and Vj, respectively, so that
q =5 ® V is the complexification of g.

Fix a closed subgroup Ay of Sy, with Lie algebra ay. The stabilizer I, of any
vector vy € Vy in Ay is a closed subgroup of Sy and hence of Gy. Let M =
Go/ly ~ (So/1y) x Vi be endowed with the Gyp-homogeneous CR structure de-
fined by (g, q), for

q=C-{X+iX v |Xeca} Cag.

With a equal to the complexification of ay, we have:

iozqﬂgo:qﬂégz{Xeao|X-v0:O},

g+V=aaV,

a+a=a® (a-v).
Hence the CR algebra (gy, q + V), corresponding to the basis of the Gy-equiv-
ariant map M — N = Gy /(Ap x Vp), is totally real and locally CR isomorphic to
(80, a). The fiber F' is an (4¢ x Vy)-homogeneous CR manifold, with CR algebra
(g ® Vy,q). Thus, if ag # 19, there is no Gy-homogeneous CR structure on

M' = Gy/Ry1, such that the fibration M — M’ is an equivariant CR submersion.
The Levi subalgebras of g, are parametrized by the elements of Vj:

sV ={X+X-v|Xes}, for veV,.
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We have
5N ={X € 5 | X(vy) = 0, X(v) = 0} C iy,

so that, for every choice of v € V, the CR algebra (3, q N 3") is totally real.
Thus, if ag # 19, there is no Levi factor 5{” in g, such that (3}”,(q N 3®)) =
(@, a + V).

In [27] the homogeneous CR manifolds M with (g, q) of Levi-Tanaka type
were shown to admit a Levi-Malcev fibration; (2.4) is in this case a CR sub-
mersion with basis and fiber having both CR structures of Levi-Tanaka type.
Example 2.6 shows that, even when it does exist, we cannot expect to find, on the
basis M’ of the Levi-Malcev fibration (2.4) of a Gy-homogeneous CR manifold M,
a Go-homogeneous CR structure that makes (2.4) a CR map. We have, by
Proposition 2.2:

COROLLARY 2.7. — Assume that the Go-homogeneous CR structure of
M = Gy/I is described by the CR algebra (gy, q) and that M admits the Levi-
Malcev fibration (2.4). Then a mecessary and sufficient condition for the
existence of a Go-homogeneous CR structure on M', making (2.4) a CR map,
1s that

(2.5) gNG+r=(q+1)N@+1).

Moreover we obtain:

THEOREM 2.8. — Suppose that (2.5) is valid, and consider on the basis M’ of the
Levi-Malcev fibration (2.4) the Gy-homogeneous CR structure defined by (g, '),
with ' = q + . Then:

1) M' is an Sp-homogeneous CR manifold M' ~ Sy/(So N Ryly), with CR
algebra (39,5 N q').

(2) The fiber of (2.4) is the solvmanifold F ~ Ry/(Ry N 1y), with Ry-homo-
geneous CR structure defined by (ro,r N q).

If (a9, q) has the weak-J-property (resp. the J-property) then:

3) Condition (2.5) is satisfied.
(4) Both the basis M' and the fiber F' of the Levi-Malcev fibration enjoy the
weak-J-property (resp. the J-property).

ProoF. — The result follows from Propositions 2.2 and 2.3, after noticing that
Ty is a characteristic ideal, hence J-invariant. O



ON HOMOGENEOUS AND SYMMETRIC CR MANIFOLDS 233

2.3 — The Jordan-Chevalley fibration.

An algebraic group G over a field k always contains a maximal normal solvable
subgroup R*. The connected component R of the identity in R* is the radical of
G. The set NV of unipotent elements of R is a connected normal subgroup of G,
called the unipotent radical of G. The algebraic group G is reductive when its
unipotent radical is trivial.

If the field L is perfect (*), any algebraic group G over k admits a Jordan-
Chevalley decomposition (see e.g. [7, 12, 29]), i.e. there is a maximal reductive
subgroup L of G such that

(2.6) G=NxL.
For the proof of the following Lemma, see e.g. [18, Ch. VII, Lemma 1.4].

LEMMA 2.9. — Let g C gl(n, k) be a linear Lie algebra, n an ideal and a a
subalgebra of g. If all the elements of 1 U a are nilpotent, then all the elements of
a + n are nilpotent. O

ProrosiTION 2.10. — Let G be an algebraic group over a perfect field k and N
its unipotent radical. If I is an algebraic subgroup of G, then also NI is an
algebraic subgroup of G.

PrOOF. — Let 1 and i be the Lie algebras of N and I, respectively. Let U be
the unipotent radical of I and u its Lie algebra. By Lemma 2.9, the sum
n’ =1+ 1 is a nilpotent subalgebra of g. The set

2.7 G ={geG|Adlgp))=n'}

is an algebraic subgroup of G containing I. Let g” be its Lie algebra and n”,
which is contained in g”, that of the unipotent radical N” of G”. The analytic
subgroup N’ corresponding to 1’ is a normal subgroup of G” consisting of
unipotent elements. Hence N’ C N”, and therefore N’ is Zariski-closed and
algebraic in both ¢” and G.

If I =L'x U is a Jordan-Chevalley decomposition of I, then we obtain a
decomposition NI = L' x N'. Hence N I is algebraic, being a semidirect product
of algebraic subgroups of G. O

DEFINITION 2.11. — Let Gg be a real algebraic group, with unipotent radical
Ny. If Iy is an algebraic subgroup of Gg, then by Proposition 2.10 also Nyl is

(%) This means that all algebraic extensions of k are separable. This is equivalent to the
fact that either k has characteristic 0, or, having positive characteristic p, every element of
Ik admits a p-th root in .
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algebraic. The Gy-equivariant fibration
(28) M:Go/lo —>M,:G0/N010
1s called the Jordan-Chevalley fibration of M.

In this setting, Propositions 2.2 and 2.3 yield the following result.

THEOREM 2.12. — Let Gy be a real linear algebraic group and Ny its uni-
potent radical. We denote by q,, Ny the Lie algebras of Gy, Ny, and by g, n
their complexifications, respectively.

Let M = Gy/Iy, for an algebraic subgroup Iy, have a Go-invariant CR
structure defined by the CR algebra (g, q).

A necessary and sufficient condition in order that there exists a Gy-homo-
geneous CR structure on the basis M' = G/Nyly of the Jordan-Chevalley fi-
bration, making (2.8) a CR map is that:

(2.9) ana+n=(q+n)N(q+n).

Asswme that (2.9) is satisfied and consider on M' the CR structure defined by
(80, 0") with q' = q + 1. Then:

1) (2.8) is a CR fibration.

(2) Its typical fiber F is the nilmanifold No/(Nog N 1y), with an Ny-homo-
geneous CR structure defined by the CR algebra (19, q N ).

3) The basis M' = Gy/Noly is an Ly-homogeneous CR manifold, associated
with the CR algebra (o, L N (q + 1)), where Ly is a maximal reductive subgroup
of Gy, Ly its Lie algebra, and [ its complexification.

If (a9, q) has the weak-J-property (resp. the J-property), then:

(4) Condation (2.9) is satisfied.
(5) Both the basis M' and the fiber F of (2.8) enjoy the weak-J-property
(resp. the J-property).

ProOF. — The first part of the statement is a consequence of Proposition 2.2.
Finally, (1), (2), (3) follow by [28, § 5], and (4), (5) because 1 is a characteristic
ideal. O

3. — Attaching homogeneous CR manifolds to CR algebras.

3.1 — CR manifolds associated to a CR algebra.

Let us consider the question of the existence of homogeneous CR manifolds
associated with a given CR algebra (g, 9).
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DEFINITION 3.1. — A CR algebra (g, q) is factual if there exists a real Lie
group Gy with Lie algebra qo, and a closed subgroup Iy of Gy with Lie algebra
o =ang

We have:

THEOREM 3.2. — Let (gy,q) be a CR algebm,ﬁg a connected and simply con-
nected real Lie group with Lie algebra gy, and I its analytic subgroup with Lie
algebra 19 = q N g Then (g, q) is factual if, and only if, Iy is closed in Gy.

Proor. — The statement is a special case of a general fact, only involving
homogeneous spaces. If Gy is any connected Lie group with Lie algebra gy,
containing a closed subgroup I with Lie algebra iy, then the universal covering M
of the homogeneous manifold M = Go /Iy is Go—homogeneous and is of the form
Go/I,, for the analytic Lie subgroup I of Gy corresponding to the Lie subalgebra
ip. The subgroup I, is the connected component of the identity of the inverse
image of I for the covering map (}0 — (9, hence closed when I is closed. O

ExamMpLE 3.3. — Let Gy be a connected compact Lie group, with a simple Lie
algebra g, of rank ¢ > 2. Fix a Cartan subalgebra 0, of g, and let R be the
corresponding root system for the complexification g of g,. Fix a lexicographic
order “<” of R and let ay,...,a, be the basis of positive simple roots, and
H,.,...,H, the corresponding elements of if),. Fix ci,...,c; € R, linearly
independent over the field Q of rational numbers. Set H = ¢1H,, + - - - + ¢/H,y,,
and take q = C - H + ) g% where g* C g is the root space of a € R. Then (g, q)

is fundamental and ai?evi—nondegenerate, but the analytic subgroup Iy =
{exp (itH)|t € R} of Gy, corresponding to iy = g N gy =R - H, is not closed. Its
closure coincides with the Cartan subgroup H of G with Lie algebra [),. We note
that its Go-closure (see §3.2) is % = q + C§,. It is a Borel subalgebra of g, and
(@9, 9%) is the totally complex CR algebra of a complex flag manifold.

3.2 — The Gy-closure of a CR algebra.
We may canonically associate to every CR algebra a factual CR algebra.

ProrosiTION 3.4. — Let Gy be a Lie group with Lie algebra g, and (g, q) @
CR algebra. Let 18 C Gy be the analytic subgroup of iy = q N g,. Denote by I 8 the
closure of I) in Gy, by i% c q, the Lie algebra of I) and by i its complea-
ification. Then:

1) g% =q+ i%isa complex Lie subalgebra of the complexification g of g,
which contains g as an ideal. The quotient q% /q is Abelian.



236 ANDREA ALTOMANTI - COSTANTINO MEDORI - MAURO NACINOVICH

@) If 1y is any real linear subspace of gy with iy C iy C 15, and i its com-
plexification, then g = q+1 is a complex Lie subalgebra of g and the g,-
equivariant map (gy, q) — (Qo, 9') s an algebraic CR submersion, with Levi-flat
fibers.

3) If (gy, ) is fundamental, and q' is as in (2), then also (g, q’) is funda-
mental.

PRrOOF. — Since Ad(g)(q) =q for all g € Ig, we also have Ad(g)(q) = q for all
g € I}, This implies that ad(X)(q) C q for all X € i, hence q% = q +i% is a
complex Lie subalgebra. Clearly q is an ideal in g% and g% /q is Abelian. Indeed
the equality [ig",ioa] = [ig, o] C 1o (see e.g. [30, Chap. 2 §5.2]) implies that
[q%, q%] = q. Hence, if 1y C i), C i, we obtain [i), i§] C 1. Therefore o' defined
in (2) is a complex Lie subalgebra of g“, and the g-equivariant map (g, q) —
(a9, 9") is an algebraic CR submersion, with Levi-flat fibers. Finally, (3) is obvious
from the inclusion g C ¢’. O

Keeping the notation of Proposition 3.4, we give the following:

DEFINITION 3.5. — Let (qy, q) be a CR algebra and Gy a Lie group with Lie
algebra gy The CR algebra (gy, %) is called the Go-closure of (q,, ) (cf [30, pp.
53-54], where iOG“ s called the Malcev-closure of ig).

PROPOSITION 3.6. — Let (g, q) be a weakly nondegenerate CR algebra, iy any
real linear subspace of q, with iy C iy C ig“, and denote by i its complex-
ification. Set o' = q+1. Then the gy-equivariant algebraic-CR submersion
(a0, 0) — (a9, a") has totally real fibers.

Proor. — Indeed, the intersection ay = i[) N (q + ) is a real Lie subalgebra
that normalizes q, hence q” = q + a, where a is the complexification of ay, is a
complex Lie subalgebra of g. Since q C q” C q + @, the assumption that (g, q)
is weakly nondegenerate implies that q” = q. Then ay C q and qq C 1y, and the
fiber of the gy-equivariant CR map (g, q) — (g9, ") is (iy,a N q) = (ip, @), thus
totally real. O

4. — Real analytic and algebraic CR manifolds.
4.1 — CR submanifolds of analytic spaces.
A Gy-homogeneous CR manifold is real analytic, hence it can be realized as a

generic CR submanifold of a complex manifold (see e.g. [3, 31]). Let us consider,
in general, the embedding of a real analytic CR manifold into a complex space.
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DEFINITION 4.1. — Let M be a real analytic CR manifold, N a complex space,
and ¢ : M — N a real analytic map. The structure sheaf Oy of germs of holo-
morphic functions on N pulls back to a subsheaf ¢*(Oy) of the sheaf Ay of germs
of complex valued real analytic functions on M. Let Oy be the sheaf of germs of
real analytic CR functions on M. We say that ¢ is

1) a CR map if $*(Oy) is contained in O,
(2) a CR immersion if ¢"(Oy) = Oy,
3) a generic CR immersion if moreover the composition

¢ H(On) — ¢"(On) — Oy

defines an isomorphism of the inverse image sheaf ¢ (Oy) onto Oyy.

A CR immersion ¢ that is also a topological embedding will be called a CR
embedding.

If N is a smooth complex manifold, these notions coincide with the classic
definitions in § 1.1.

LEMMA 4.2. — Let M be a real analytic CR manifold, generically embedded
mto a complex space N. Then M is contained in the set N™€ of non singular
points of N.

Proor. — Indeed, the fact that M is real analytic implies that for each p € M
the local ring Oy, is regular. Hence Oy, being isomorphic to a regular local
ring, is also regular. O

4.2 — Algebraic and weakly-algebraic CR manifolds.
We consider now CR structures on real algebraic manifolds.

DEFINITION 4.3. — An affine CR submanifold of C" is a smooth real alge-
braic subvariety M of C" that is also a CR submanifold.

An affine CR manifold is a smooth real algebraic variety, endowed with a CR
structure, and CR-isomorphic, by a smooth birational correspondence, with an
affine CR submanifold of some C".

An algebraic CR manifold is a smooth real algebraic variety, endowed with a
CR structure, in which each point has a Zariski open neighborhood that s an
affine CR manifold.

An algebraic CR submanifold M of an algebraic complex variety N is a
smooth real algebraic subvariety of N, embedded as a CR submanifold in the
set N™8 of its reqular points.

Likewise, we can define semialgebraic CR manifolds and submanifolds.
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A weakly-algebraic CR manifold M is a smooth real algebraic variety en-
dowed with an algebraic formally integrable partial complex structure. This is
given by a formally integrable smooth complex valued algebraic distribution
TOM  TM, with T M N TOLM = 0y,

We observe that an irreducible real algebraic subvariety M’ of an irreducible
complex algebraic variety N contains a maximal Zariski open subset M that is a
real algebraic CR submanifold of a Zariski open subset of N.

An algebraic (respectively, semialgebraic) CR submanifold of a complex
algebraic variety naturally is an algebraic (respectively, semialgebraic) CR
manifold.

REMARK 4.4. — Since neither the complex nor the real Frobenius theorems are
valid in the algebraic category, weakly-algebraic CR manifolds may not be al-
gebraic CR manifolds. For instance, consider the complex structure on Riy de-

2
fined by J,, = (—xl 1 —_1—950 > This structure is weakly-algebraic, but not al-

gebraic, because any rational function in C(x, y), holomorphic for this structure
near a point of R, is constant.

PROPOSITION 4.5. — Let M be an algebraic CR manifold. Then M has a real
algebraic embedding into a complex variety N, that is also a generic CR-
embedding 1nto the set N™8 of its reqular points.

ProOF. — We first consider the case where M is an affine CR manifold, of CR
dimension 7, and CR codimension k, of a Euclidean complex space C‘. Denote by
Z the ideal of polynomials P € Cl[zy,...,z,] vanishing on M. We claim that
N = V(Z) has the properties requested in the statement. To this aim, let us fix a
point z° € M. We can assume that the restrictions to M of dz1,...,dz, ., are
linearly independent in a neighborhood of 2° in M, and that Re 21, . . ., Re 2,,,; and
Imzy,...,Imz, define a system of coordinates in a neighborhood of z( for the real
analytic structure of M. The restrictions to M of the polynomials in P €
Cley,...,2¢,21,...,%/] form a ring which is an algebraic extension of the ring of
the restrictions to M of polynomials in Clzy,...,2,.%,21,...,2,]. Let we
Clz1,...,z¢]. Then there is a smallest integer d > 1 such that w satisfies a monic
equation:

w + a1, AW+ +ag@,Z)=0 onM,

where a;(2',z') are rational functions of z1,...,2y4%,21,...,2,, for j=1,....d.
Eliminating denominators, we obtain an equation:

(4.1) bo@, 2w + by (@, 2w + - 4 bg(,Z) =0 on M,
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with b; polynomials in C[z1,...,2,4%,21,.-.,2,). Moreover, we can assume
that by € Clzy, ... %1%, 21,---,2,] has minimal total degree among the by’s
of the non zero polynomial vectors (by,...,bs) that satisfy (4.1). For
beCle,..., %040k 21,---,2,] the anti-holomorphic differential db is a linear
combination of the differentials dzi,...,dz, and me may identify Oyb to
the restriction of 9b to M. The pull-backs to M of the differentials dzi, ...,
dz, are linearly independent on a neighborhood of z;. Taking 9y of both
sides of (4.1), we obtain:

wd5b0 + wd715b1 +---+ wébd,l + 5bd =0 onM.
By our choice of by, this implies that dby = 0 on M, hence that:
w1by + -+ by =0 on M.

This is a system of polynomial equations with polynomial coefficients on M, thus,
by our choice of d, we obtain that all 0b,’s are zero on M, consequently zero
because they only depend on zi,...,2,%,21,- -, 254k Hence the b]’»s are holo-
morphic, and a; = a;(z') € C(z1,. .., 2 11).

Let A be the ring of the restrictions to M of the elements of C[zy, ..., 2], and
B the integral closure in A of the ring of the restrictions to M of the elements of
Cl#z1,...,2u1]). We proved that A is contained in the integral closure of the field
of fractions of B. By the theorem of the primitive element, we can find an element
w € Clzy,...,2¢], a polynomial P € Clzy,...,%,k, w], monic with respect to w,
such that, if A4(z’) is the discriminant of P with respect to w:

(4.2) P w) =u +a; @'+t ag@) el

Vi=n+k+1,...,¢ there exists p; € Clz1,..., 2k, w]

4.3
(43) such that A(z")z; — p;@’,w) € .

This shows that N = V(Z) is a complex algebraic subvariety of C*, of pure di-
mension 7 + k. The statement follows, because the points of M are contained in
N*€ by Lemma 4.2.

The proof in the general case is obtained by patching together a finite atlas of
affine charts of M by birational equivalence. O

4.3 — Homogeneous algebraic CR manifolds.

Let g, be a finite dimensional real Lie algebra and g its complexification. We
recall that g, (and q) are algebraic Lie algebras if any of the three equivalent
conditions below is satisfied (see [10] for the definition of replica, [11], [16] for the
equivalence of the conditions):
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(1) there exists a real linear algebraic group G, with Lie algebra g;

(2) there exists an algebraic subgroup of Aut(g,) with Lie algebra ad(g);

(3) for every X in g, the subalgebra ad(g,) of glz(g,) contains all replicas of
ad(X).

Moreover, g, is areal algebraic Lie algebra if and only if its complexification g
is a complex algebraic Lie algebra, and the characterization of complex algebraic
Lie algebras is given by conditions that are completely analogous to the ones
listed above.

When g, is an algebraic Lie subalgebra of some gl(n, R), the semisimple and
nilpotent components X, and X, of an element X of g, are replicas of X. Thus, in
particular, an algebraic Lie algebra g, is ad-splittable: this means that, for every
X € qg, also X;, X, € go. Moreover, ad(X;) = [ad(X)]; and ad(X,,) = [ad(X)],, are
the semisimple and the nilpotent components of ad(X), respectively.

LEMMA 4.6. — Let Gy be a real linear algebraic group. If M is a Gy-homo-
geneous real algebraic manifold and a smooth Gy-homogeneous CR-manifold,
then M is a weakly-algebraic CR manifold.

ProoF. — Fix pg € M and let (g, ) be the CR algebra of M at py. The com-
plexification 7" Gy of the tangent space of Gy is algebraic and can be identified with
the Cartesian product Gy x g, the left action of Gy on Gy x g being defined by:

h-(9,2) = (hg, Ady)Z) = (hog,ho Zoh™).
The set
T={@.2eGxg|g'oZogeq}

is algebraic. The set T%'M is the image of T by the differential of the map
Gy > g — g-py € M, hence algebraic. This proves that the Go-homogeneous CR
structure of M defined by (qy, q) is weakly-algebraic. O

From Lemma 4.6 we obtain:

THEOREM 4.7. — Let g, be an algebraic Lie algebra. A necessary and sufficient
condition for the existence of a homogeneous weakly-algebraic CR manifold M
with CR algebra (g, q) is that

(4.4) VX eig=qgngy all replicas of ad(X) belong to ad(ip).

ProoF. — Let 3, be the center of g,. By taking the quotient by the central
ideal iy N 39, we reduce to the case where 3, N1y = 0. Then we decompose iy
into the direct sum of an ad,y, -reductive subalgebra [y and an ideal ny consisting
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of ady, -nilpotent elements. We can consider a maximal reductive subalgebra [;
of ady,(gy) containing ady, (ly), and construct, as in [18, XVIII.1], an embedding
of g, as an algebraic subalgebra:

(4.5) $:q— ["xng C gln, R),

where 11 is the maximum nilpotent ideal of g, for which the corresponding
connected and simply connected Lie group has the structure of an algebraic
group, consisting of unipotent matrices. Since, by [17], $(X) is a nilpotent matrix
in gl(n, R) for all ad,,-nilpotent X in g, we obtain that the semisimple parts in
al(n, R) of the elements of ¢(ly) belong to ¢(ly), and ¢(ly) is an algebraic sub-
algebra of ¢(g,) by [11]. Finally, ¢(1ny) is algebraic because it is a subalgebra of
al(n, R) consisting of nilpotent matrices. Hence ¢(g,) = ¢(ly)x ¢(119) is an alge-
braic subalgebra of gl(n, R), and the statement follows from Lemma 4.6. O

ProposITION 4.8. — Let g, be an algebraic real Lie algebra and q an ideal of
its complexification g, defining a complex structure on g, This means that:

(4.6) a=q®q (direct sum of ideals).

Then we can find a complex algebraic group Gy with associated CR algebra
(g()a Q)

Proor. — We prove that g is an algebraic Lie subalgebra of g. To this aim we
observe that [q, ] = 0. Hence the centralizer of § in g* is:

34(@) = a + 34(a).

This is an algebraic Lie subalgebra of g and therefore ady(q) = ady(3,(q)) is al-
gebraic in gl-(g). By the same argument of Theorem 4.7, we obtain that there
exists a complex algebraic group G and a complex algebraic normal subgroup @
with Lie algebra q. Then Gy = G/Q is a complex algebraic group satisfying the
conditions of the statement. O

ExamPLE 4.9. — Let g, = 3[(2m, R), with m > 2. Consider a Borel subalgebra
b of g ~ 3[(2m, C) such that h = b N b is a Cartan subalgebra of g. Then § is the
complexification of a maximally compact Cartan subalgebra {), of g,. Let n = [b, b]
be the nilpotent ideal of b. Fix an element H € [ \ §),, such that exp (R H) is not
closed in SL(2m, C). We choose g = n® CH. Since g N q = 0, the complex Lie
subalgebra q defines a left homogeneous CR structure on SL(2m, R). However,
in this case there is no semialgebraic Gy-equivariant CR embedding of
Gy ~ SL(@2m, R) into an SL(2m, C)-homogeneous complex manifold.

ExAMPLE 4.10. — Let g = 3[(2m — 1, C), with m > 2. Define the conjugation:

A = (@i i<ij<om—1 — A = (Qom—i2m—j1<i j<em-1-
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Consider the real form g,={A :A} ~3[@2m—1,R) of g, and let Gy~
SL@2m — 1,R) be the analytic Lie subgroup of SL(n,C) with Lie algebra g.
Define:

qg={A=(a;;) € 3l@m —1,C) | a;; =0fors>jand for i =7 > m}.

Since N g =0 and g + q = 3[2m — 1, C), the datum of the CR algebra (g, q)
yields on G a complex structure, which is only left Gy-invariant. Note that, being
SL(@2m — 1,R) a simple real Lie group corresponding to a connected Satake
diagram, it cannot carry the structure of either a complex Lie group, or a
complex algebraic group. However, it is a quasi-projective smooth complex
variety, open in SL@2m —1,C)/@Q, where @ is the algebraic subgroup of
SL2m — 1, C) corresponding to the solvable Lie subalgebra q.

ExampLE 4.11. — Let us take g, and Gy as in Example 4.10, with m = 2, and

define:
a1 Q12 13
g=<K A= 0 a2 ags | €303,0)

0 0 ass

a1+ Aags = 0}7

for an irrational complex number /1, with |i| #1. We have qnq =0 and
q + q = 3[(3, C). Since the subalgebra ¢ is not algebraic, the complex structure
on Gy defined by (g, q) is weakly algebraic, but not algebraic.

THEOREM 4.12. — Let Gy be a real linear algebraic group. Let M be a real
algebraic manifold and a smooth CR manifold, on which Gy acts as a transitive
group of algebraic and CR transformations. Let (g, q) be the CR algebra of M at a
point py. Then:

1) q s an algebraic subalgebra of g. A
() There are a G-homogeneous complex algebraic manifold M and a Go-
equivariant CR generic algebraic embedding M — M.

Vice versa, if q is algebraic, then M is a Go-homogeneous algebraic CR manifold.

ProOF. — First assume that M is affine. By Proposition 4.5, there is a generic
CR-embedding M — N of M into the set of regular points of an affine complex
variety N < C', in such a way that the ring C[M] of regular CR functions on M
coincides with the ring C[N] of regular holomorphic functions on N.

Analogously, C[Gy] = C[G]. Let I, C Gy be the isotropy subgroup at
po € M and 7 : Gy — Go/Ip = M the natural projection. The subring 7*(C[M])
of C[Gy] = C[G] is Gy-invariant, hence also G-invariant. Thus it defines a G-
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homogeneous complex algebraic variety M, and the isotropy subgroup is an
algebraic subgroup @ with Lie algebra g. Indeed, in a Gy-equivariant way we
have C[M] = C[M], and we also obtain a generic algebraic CR embedding

Let us now turn to the general case. Let M — N™ be the embedding of
Proposition 4.5, and let Ry and Ry be the sheaves of germs of regular CR
functions on M and of regular holomorphic functions on N, respectively. Then
Ry and Ry are isomorphic, as, for every open U C N, the restriction map
Rn(U) — Ry (U N M) is an isomorphism. Then we apply the considerations of
the affine case to the subsheaf 771(Ry) of R¢, ~ Rg-

When q is algebraic, we consider the algebraic subgroup @ of G with Lie
algebra q and the natural Gy-equivariant embedding M — G/Q. d

4.4 — Algebraic closure of a CR algebra.

The considerations of § 3.2 can be adapted to the case of a real linear algebraic
group Gy. Indeed, if H is any subgroup of G, we can define its algebraic closure
H glg as the smallest algebraic subgroup of Gy containing Hy. It coincides with the
closure of H in the Zariski topology of Gy. When H), is the analytic subgroup of
G\ corresponding to a Lie subalgebra §, of its Lie algebra g,, we denote by I)glg

the Lie algebra of H glg. Also in this case we have (see [33, Theorem 6.2])
(47) [6o, 0o] = [65, 5351,

As in §3.2, we have:

ProposITION 4.18. — Let Gy be a real linear algebraic group, with Lie algebra
ag- Let (a9, ) be a CR algebra, and denote by iglg the algebraic closure of the
isotropy subalgebra iy = q N q,. Set g8 = q + C ®x iglg. Then g¥2 is a complex
Lie subalgebra of g, contained in the normalizer of q in g. The quotient g2 /q is
Abelian.

Fix any real linear subspace iy of gy with iy C iy C 2%

q+ C ®g 1. Then:

and define q' =

1) o' is a complex Lie subalgebra of g and the gy-equivariant map
(g9, 9) — (a9, q") is an algebraic CR submersion, with Levi-flat fibers.

2) If (ag, q) s fundamental, then also (g, q’) is fundamental.

3) If (g9, a) s weakly nondegenerate, then the fiber of the g,-equivariant
map (qg, 0) — (§g, ') 1s totally real. O

DEFINITION 4.14. — The CR algebra (,, 4*'2) is called the algebraic closure of
the CR algebra (g, q).
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4.5 — The Go- and the gy-anticanonical fibrations.

In this section we describe the anticanonical fibration of [4] and [15] in terms
of CR algebras.
Let Gy be a Lie group, g, its Lie algebra. Given a CR algebra (g, q), set:

(4.8) ap=Ng, (@) ={X € g |[X,q] Cq}
(4.9) qd=q+a with a=C®ga,
(4.10) Ap = Ng,(9) = {g € Go | Ad(g)(q) = q}.

PRrROPOSITION 4.15. — Keep the notation introduced above. Then:
1) o s the complex Lie subalgebra of g characterized by the properties:

{ch’, a’ N gy = ao,

4.11
( ) (@0, M) — (Q9, 9" is a gg-equivariant CR-submersion.

(2) o' is the smallest Lie subalgebra of g satisfying q + ap C q' C Ny(q).

3) The fiber (ap,an q) of the gy-equivariant CR fibration (g, q) — (g,q’) is
Levi-flat. Indeed ang=qnNq, and [gNq,gNnqglcgna.
Moreover:

@) If (gy, a") s totally real, then (qy, q) is Levi-flat, and [q,§] C g N §.

(5) Condaitions (1), (i1) and (111) below are equivalent and imply (1v):

Qg = gg <= q' =g < qis an ideal of § = ag is an ideal of g,.
SN—— S~——

(@) (17) (714) (i)

(6) Ay s a closed subgroup of Gy and hence (g, q') is factual.

(7) If ao is an algebraic Lie algebra, then also ay and a are algebraic. If Gy
s a real linear algebraic group, then M' = Gy/Ay is a weakly algebraic CR
manifold. If q is algebraic, then o' is algebraic too, and M’ is an algebraic CR
manifold.

PROOF. — Since iy =qnNgy, C a, by Proposition 1.7 (4.9) and (4.11) are
equivalent. This proves (1).

Indeed, any complex Lie subalgebra containing ay contains its complex-
ification a. Hence (2) is obvious.

By 4.8), we have [a,q]Cq and [a,q]C g, hence [ang,anqgl=
[ang,ang] C gnN g yields (3).

(4). When (g, q") is totally real, q§ C q’, hence [q,q] C [q,9'] C q. By con-
jugation, we obtain [q,q] C qN 4.

(5). We clearly have (¢) = (i7) = (111) = (¢) and (i41) = (iv).

(6) follows from (4.10), since ag is the Lie algebra of Ay, and (7) is a con-
sequence of Theorems 4.7 and 4.12. O
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5. — Left invariant CR structures on semisimple Lie groups.

In this and the following section, we shall discuss special examples of
homogeneous CR structures. We begin by investigating left-invariant CR
structures on real semisimple Lie groups (see e.g. [32]). Note that a Lie
group with a left and right invariant complex structure is in fact a complex
Lie group.

5.1 — Existence of maximal CR structures.

THEOREM 5.1. — Every semisimple real Lie group of even dimension admits a
left invariant complex structure.

Every semisimple real Lie group of odd dimension admits a left invariant
CR structure of hypersurface type.

Proor. — Let Gy be a simple real Lie group, with Lie algebra g,. Take a
maximally compact Cartan subalgebra ), of g,. The complexification g of g,
contains a Borel subalgebra b with b N b equal to the complexification §) of ;, (see
e.g. [21]). Let n=[b, b] be the nilpotent ideal of b.

If the dimension of g is even, then the dimension of ), is even too, and we can
find a complex structure J : h — 0. Then V = {X +iJX | X € §,} is a complex
subspace of §, with VNV = {0}. Hence ¢ = V @ n is a complex subalgebra of g,
with gng=0 and g = @ q. The CR algebra (g,,q) defines a left invariant
complex structure on Gy.

If g, has odd dimension, then [);, has odd dimension too. Fiix a hyperplane m,
of By, a complex structure J : ny — my, set V={X +4JX | X € my} and take
g=Ve&n Since qnqg=0and g+ qg=ndndm, the CR algebra (g,,q) de-
fines a left invariant CR structure of hypersurface type on G. O

ExAMPLE 5.2. — Let G = SL(n, C) and consider on its Lie algebra g = gl(n, C)
the conjugation A — A* defined by Af = (@pi1—imr1-h<ij<n fOr A = (@4 )i<i j<n-
Then gy ={X € g | X! =X} ~3[n,R) and Gy = {g € G | ¢ = g} ~SLn, R).
The diagonal matrices of g, are a maximally compact Cartan subalgebra f, of
ao. Let n = 2m + 1 be odd. Fix p with 1<p < m and define ¢’ as the complex
Lie subalgebra of g consisting of matrices (a;;)1<; <, With a;; =0 when
either p<i <n —pandj <1, ori>mn—p. Let a be a subspace of the Cartan
subalgebra f) of the diagonal matrices of g, with 4; = 4, for j > n — p, then
ana=0and a+ a=10. By setting g = ¢’ + a, we obtain a CR algebra (g,, q),
with a non solvable g, which defines a left invariant complex structure on
Gy ~ SL2m + 1, R).
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5.2 — Classification of the regular maximal CR structures.

We recall that a complex Lie subalgebra q of a complex semisimple Lie al-
gebra q is regular if its normalizer contains a Cartan subalgebra of g.

DEFINITION 5.3. — We say that a CR algebra (g, q) ts regular if q is nor-
malized by a Cartan subalgebra of the real Lie algebra q.

If Gy is a semisimple real Lie group with Lie algebra gy, a Go-invariant CR
structure on a Go-homogeneous CR manifold M is called regular if the asso-
ciated CR algebra (gy, q) is regular.

Fix a semisimple real Lie algebra g. Let [), be a Cartan subalgebra of g, and
'R the root system of its complexification f) in g. For each a € R we write g* for
the root space of a. The real form g, defines a conjugation in g, which by duality
gives an involution a — @ in R, with a(H) = a(H) for all H € ).

LEMMA 5.4. — Assume that there is a closed system of roots Q C R with
(5.1) 9NQ=0, QUO=R.
Then b, is maximally compact.

Set Q" ={acQ|—-aecQ}and Q" ={ac Q| —a¢ Q}. Then:

(1) Q"UQ and Q" U Q" are closed systems of roots;
(2) the two systems of roots Q" and Q" are strongly orthogonal;
(8) P = QU Q" is parabolic with P" :={a € P | —a ¢ P} = Q"

(4) there is a system of simple positive roots ay,...,a, of R with the prop-
erties:
ai,...,o0p € P,
ai,...,ap 1s a basis of Q'
(52) Upyly -5 0p—p € Qn7
a; <0 vi=1,...,¢,
0 =—ap1—; for 1=1,...,p.

ProoF. — By (5.1), a # a for all a € R, and this is equivalent to f, being
maximally compact (see e.g. [21, Ch. VI, § 6]).

The root system R is partitioned into minimal disjoint subsets, invariant by
addition of roots of Q". Since Q is a union of such Q"-invariant minimal subsets,
its complement Q is Q"-invariant, too. Likewise, Q is Q"-invariant. This implies
that Q" and Q" are strongly orthogonal. Indeed, assume by contradiction that
there are a, € Q" such that a + € R. Then a + € QN Q would give a con-
tradiction.
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Since Q" is Q"-invariant, then also Q" is Q"-invariant. This proves (1) and (2).

From (5.1) we also deduce that Q" is equal to {—a | a € Q"}, and this im-
plies (3).

To prove (4), we begin by fixing an element Ay € §; that defines the parabolic
set P:

P={aeR|aly > 0}.

Next we note that, since R does not contain any real root, there is a regular
element A; in b with A; = —A;, ie. with i4; € §,. Take & >0 with
la(A1)| <eta(Ap) for a € Q". Then A = Ay + &A; is regular and we shall take
B={ai,...,a¢} to be the simple roots of the system of positive roots
Rt ={aeR|a)>0}. Take {ai,...,0p} =BNQ" and {opi1,...,a,} =
BN Q". By our choice of ¢ and Ay, the set {ai,...,a,} is the set of the simple
positive roots in {a € Q"|a(4;) >0}. Likewise, the simple roots in
{a € Q" | a(4;) > 0} are contained in {ar—p+1,...,0¢} C B. Hence r = —p.
To conclude the proof of (4), it suffices to note that, since R =
R~ = {—a|a € R}, the conjugate of each simple root is a simple negative root.
Thus, by suitably labelling the roots in B, since by (5.1) we have a # —a for
a € Q", we also obtain the last line of (5.2). The proof is complete. O

PROPOSITION 5.5. — Let Gy be a real semisimple Lie group. Then any regqular
CR structure on Gy of maximal CR dimension is associated with a regular CR
algebra (qy, q), with a q that is normalized by a maximally compact Cartan
subalgebra Y, of qo, and is of the form:

(5.3) g=may g

acQ

Jfor a closed system of roots Q C R satisfying (5.1), and a complex subspace m of
the complexification Y of by, with the properties:

(54) dime-m = [g], snhcm, mnm={0}.

Here ( is the rank of the complexification g of g, and 3 is the Levi subalgebra of q
associated with the root system Q.

ProoF. — We note that (5.3), with a choice of Q and m satisfying (5.1) and (5.4),
has CR codimension equal to 0 or 1, according to whether g has even or odd rank,
respectively. Thus it yields a CR structure of maximal CR dimension. Let (g, q)
be a regular CR algebra, of codimension at most 1, and set mt = g N . Then m
must satisfy (5.4) by the codimension constraint, and the set Q of the roots a with
g% C q satisfies (5.1). O
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EXAMPLE 5.6. — Let g ~ 3[(3, R), consist of the matrices A = (a; ;) € 5((3,C)
that satisfy a; ; = a4—;4—j. Set

21 2?2 0
q= 22 21 0
23 24 —221

The CR algebra (gq,q) defines a left invariant complex structure on Gy ~
SL(3, R), because g N q = {0} and q + q = 3[(3, C). But (g, q) is not regular as a
CR algebra, since q is self-normalizing in 3((3, C), hence, in particular, is not
normalized by any Cartan subalgebra of g,.

In [9, 22] all complex structures on a compact semisimple Lie group of even
dimension are shown to be regular. According to the example above, in the cases
of non compact semisimple real Lie groups, a complete classification of left in-
variant maximal CR structures would require some extra consideration of non
regular structures.

21,%2,23,%4 € C}-

6. — Symmetric CR structures on complete flags.

Symmetric maximal almost-CR structures (i.e. formally integrability is not re-
quired) on complete flags were studied in [14]. Here we utilize CR algebras to study
their CR-symmetric (formally integrable) structures, that are also of finite type.

A complete flag is a homogeneous compact complex manifold, which is the
quotient M ~ G /B of a semisimple complex Lie group G by a Borel subgroup B.
A maximal compact subgroup U of G acts transitively on M, which is therefore
also a quotient M ~ U /T of U, with respect to a maximal torus 7.

Let g, b, 119, 1o be the Lie algebras of G, B, Uy, T, respectively. Then g is
complex semisimple and is the complexification of its compact form 1y. The
complexification § of ty is a Cartan subalgebra of g, contained in b.

6.1 — Homogeneous CR structures on complete flags.

We shall consider M as a real compact manifold, and discuss its Uy-homo-
geneous CR structures. By Proposition 1.3, having fixed the point o = [T] of M,
the Uy-homogeneous CR structures on M are in one-to-one correspondence with
the complex Lie subalgebras q of g satisfying q N1y = to. In particular, any such q
contains the Cartan subalgebra [), hence is regular. Denote by R the root system of
b in g, and let Q be the subset of R consisting of the roots a for which q* C g. Then

(6.1) qg=bhen, where n=> g"
aceQ



ON HOMOGENEOUS AND SYMMETRIC CR MANIFOLDS 249

Conjugation with respect to the real form 1y yields on R the involution
a — @ = —a. Thus, the assumption that ¢ N § = §is equivalent to @ N (— Q) = 0.
Hence q is solvable (see e.g. [33, Proposition 1.2, p. 183]), and

(6.2) Hhcgch.

We may consider the ordering of R for which the roots a with g C b are positive,
so that Q can be regarded as a closed set of positive roots.

ProposiTION 6.1. — Let M ~ G/B ~ Uy /T be a complete flag. We keep the
notation introduced above.

1) The Uy-homogeneous CR structures on M, modulo CR isomorphisms,
are in one-to-one correspondence with the set of solvable complex Lie sub-
algebras q of g satisfying (6.2), modulo automorphisms of § which preserve b.

2) The maximally complex CR structure of M 1s its standard complex
structure, corresponding to the choice q = b, while q = ) yields a totally real M.

We conclude this subsection by considering CR structures that are related to
parabolic subalgebras of g. Recall that a nilpotent subalgebra is horocyclic if it is
the nilradical of a parabolic subalgebra (cf. [34]).

ProposiTIiON 6.2. — Consider on M the CR structure defined by a CR algebra
(119, @), with q satisfying (6.2). Assume that the nilpotent Lie algebra n in (6.1) is
horocyclic and let g’ be the normalizer of nin g. Then g is parabolic and g’ N g’
is a reductive complement of n in q':

(6.3) qd=fen with §=q Ng§ reductive, n nilpotent.
The real Lie algebra T, = f N1y is reductive, and { is its complexification.

1) (ug,q") 1s the CR algebra of a complex flag manifold N.

@) There is a natural Uy-equivariant CR fibration M = N, with totally real
fibers. For every p € M, the vestriction of dr, defines a C-isomorphism of H,M
with Tn(p)N .

B) M is Uy-homogeneous CR-symmetric if and only if N is Hermitian
symmetric.

6.2 — Symmetric CR structures on complete flags.

The natural complex structure of the full flag M is not, in general, Hermitian
symmetric. We will seek for conditions on the set Q in (6.1) for which M is Uy-
CR-symmetric. We have
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LEMMA 6.3. — Let q be defined by (6.1), and asswme that (g, q) defines on
M =U,/T, a Uy-homogeneous CR-symmetric structure. Then:

(1) there exists an tnvolution J of g with
(6.4) A11g) = g, Ay = 1d, Ay = —1d;

(2) nis Abelian and n + 1 generates g, or, equivalently, O satisfies:
(6.5) 0€EQ= —a¢Q, a,fcQ=a+f¢R,
(6.6) R C 7[Ql.

ProoF. — By the assumption, there is an involution 4 of 11y satisfying (1.16). In
particular, A transforms t; into itself and equals minus the identity on
((q +aq)n 110) /to. Its complexification, that we still denote by 4, is an involution of
g leaving ) and n invariant, hence equal to minus the identity on n. Since
21, Z2]1 = M Z1, Z2])) = [M(Z1), MZ)] = [ — Z1, —Z2] = [Z1, Z2] for Z1,Z € 1,
we get [, 1] = {0}, which is equivalent to (6.5).

The conditions that q + q generates g, that (119, q) is fundamental, and that M
is of finite type are all equivalent (see § 1.2).

If n+n generates g, then so does g+ . Vice versa, assume that g+ q
generates g, and let a be the subalgebra of g generated by n+ n. From
[6, 1] = 11, we obtain that [§), a] = a. Hence a + §) = g. Containing all root spaces,
a contains also ) and thus equals g.

Condition (6.6) is obviously necessary for (i1g, ) to be fundamental. It is also
sufficient. Indeed, if f = 2(}: &ai, with ay,...,a, € Q and ¢ = +1, then, upon re-

=1 p
ordering, we can assume that > ga; is aroot forall 1 < h < £.
i=1

Leaving §) invariant, Z determines an involution 4* on R, which is the identity
on Q. Condition (6.6) implies that Q spans §*, hence A" is the identity on R, and
therefore /|, = Id. O

REMARK 6.4. — When all roots in R have the same length, orthogonal roots are
strongly orthogonal and (6.5) is equivalent to

(6.7) @p) >0, Va,pe Q.

According to [14], a Uy-CR-symmetric structure on M is extrinsic symmetric
if there is an isometric embedding of M into a Euclidean space V, and, for every
x € M, an isometry of V that restricts to a symmetry of M at x and to the identity
on the normal bundle of M at .

The opposite of the Killing form defines a scalar product on 11y, which is in-
variant for the adjoint action of Uy. The stabilizer of a regular element X of t; in
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U, is the Cartan subalgebra T, so that the orbit Ad(U)(X) is an embedding of
M. The induced metric is Uy-invariant.

The tangent space of M at X is identified, via the differential of the action at
the identity, to uo/to ~ > 1o N(g*+ g~ *). Under this identification, the sub-

space 1y N (g% + g~%) is mgpped onto itself, and 1y is its orthogonal complement
in Ugp.

The involution A of Lemma 6.3 is then an extrinsic symmetry at x. We have
proved:

ProposITION 6.5. — If M = Uy /T, endowed with the CR structure defined by
the CR algebra (19, q), where q is given by (6.1), is of finite type and Uy-CR-
symmetric, then it is extrinsic CR-symmetric. O

6.3 — CR symmetries, J-properties, and gradings.

By Lemma 6.3 the involution A in (6.4) is inner. In fact, (6.4) implies that
/= Ad(exp (ink)) for an element

EcR* ={He)|aH) €7, VaeR}
such that
(6.8) aB)=1 mod2, VaecQ.

The weak-J-property for (119, q) will then be equivalent to the possibility of
choosing this £ € R* in such a way that

(6.9) aB)=1 mod 4, Vaec Q.

Indeed, the element J in Definition 1.8 will be equal to iE € ty.
To discuss the symmetric CR structures on complete flags in terms of the sets
of roots Q, it is convenient to introduce some notation.

DEFINITION 6.6. — If S C R, we shall indicate by 2(S) the set of all Q C S
which satisfy (6.5) and (6.6). We set Q4(S) (resp. Qo(S), Qy(S)) for the subset of
US) consisting of those Q C S for which the (11g, q) with q given by (6.1) is CR-
symmetric (resp. has the J-property, has the weak-J-property). We will also say
that Q itself is CR-symmetric, or has the J or the weak-J-property when it holds
for (g, q). Clearly 2o(S) C Q1(S) C L5(S) € L(S).

We indicate by 2/(S) the sets Q C S which satisfy (6.5).

REMARK 6.7. - For EeR", Qa]|a®)=1mod2}) CLQy(R) and
Qa | a(E) =1 mod 4}) C Q) (R).
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Given Q C R, let us define

(6.10) Oy ={+(f1 —fo) € R | f1, /> € Q},

611)  Q :{Z kifi e R

Bi € Q, kiezvzki:h}, he?.

We have Q C 97, QTJ C Qp,and Q7 = —Q; for all & € Z. Moreover, Qj is the
root system of the reductive complex Lie subalgebra of g

(6.12) a@=9® > ¢  and, with
aeQy
(6.13) g = Z g* forh e 7\ {0}, we have
aeQ;
(6.14) (™, ] C q+b.

We have g = > q® if, and only if, R C Z[Q].
he7,

LEMMA 6.8. — If Q € Q(R) and QU (—Q) # R, then Qﬂl‘,l # (). Moreover,
ho € Z\{0} and Q; N Q) =0 = QN Q;,,, =0,V e Z.

PROOF. — Assume that Q € Q(R) and that Q U (— Q) # R. Pick a € R with
¢

ta¢ Q. By (6.6), we get a =5 ¢&f;, with £ >2 and ¢ ==+1, p;, € Q for all
i—1

1<i1</{ and > gf; € R for all 1 <h < {. By (6.5) we have & + ¢ =0, and

i<h
hence &1, + &2, € Q11 # 0.
Assume that, for a pair of integers & # k, the intersection Q; N O}, contains a
root a. Then we can find roots f;, 7 € Q, and numbers ¢&;, nj==+ 1,forl <</,
1 <j <4y, with Y ¢; = h, ) _5; = k, such that

k
ZsiﬁiER for k<,

=1
Zelﬁz me,, with ¢
=1 anyj eR for k<dts.
J=1

We can assume that & # 1. Then {1 > 2, 18 + 28, € Q) ; and, with kg = h — k,
we obtain

ey +efy = Z'?JV; Zﬁzﬁi €Q11NQy,- u

=3
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From (6.6), we obtain
(6.15) g=> a», for Qe QR).
he?Z,

Thus Lemma 6.8 and Remark 6.7 yield criteria for Q either to be symmetric or to
have the J or weak-J-property.

THEOREM 6.9. — Let M = Uy /T be a complete flag, with CR structure defined
by (g, q), for a q giwven by (6.1), with Q € Q(R). Then

1) M is Uy-CR-symmetric if, and only if,
(6.16) Q11N =0, forallhe .

(2) The CR algebra (119, q) has the weak-J-property if and only if
(6.17) Q1N =0 and Q1 1NQy =10, forallhe?.

3) The CR algebra (g, q) has the J-property if and only if (6.15) is a 7-
gradation of g.

Proor. — By Lemma 6.8, conditions (6.16) (resp. (6.17)) implies that g admits a
7z-gradation (resp. a 74-gradation) with §) C gj; and n C g3, where [a] means
the congruence class of @ € Z modulo 2 (resp. modulo 4). Since this gradation is
inner, we obtain (1) (resp. (2)).

Finally, if (119, q) has the J-property, and (1.15) is valid, then £ =1J € R*
and [E,Z] = Z for all Z € n. By (6.6) we get ¢ = {Z c q | [E,Z] = hZ}, and
(6.15) is a direct sum decomposition, yielding a Z-gradation of g. Vice versa, if
E € R* defines a Z-gradation with a(£) = 1 for all « € Q, we can take J = —1F
to obtain (1.15). O

6.4 — Complete flags of the classical groups.

In this section we classify the symmetric CR structures on the complete flags
of the classical groups.
To fix notation, in the following we shall consider root systems R C R", of the
types A,_1, By, Cy, Dy explicitly described, according to [8], respectively, by:
An-1) R ={£(e; —¢) | 1<icj<u} C R",
(Bn) R = {:l: e; | 1§i§n} U {:t (ei + 6]') | 1§i<j§n},
(Cp) R = {:l: 2e; | 1§i§n} U {:l: (e; = ej) ‘ 1§1Z<j§n}7
(Dn) R = {:l: (ei + 67) | 1§i<j§n}.
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6.4.1 — Maximal Q € Q(R).

We have:

PROPOSITION 6.10. — Let R be an irreducible root system of one of the types
Ay 1,Bn, Cy, Dy, Then, modulo equivalence by the Weyl group W of R, the
maximal @ € Q(R) are equivalent to one of the following:

(An—l) Q]J = {ei — € | 1§i§p<j§n}, P = 17 s 7n_15

Qio.p,ql,”..qs = {eio} U {ei+ej | 1§i<.f§1’}
s

U

(Bn) 1

1<p<n, 1<s<p, qo=p<q1<-<qs=n, ¢i+2q;_9<q; y, for 2<i<s,

{ei *e; | gi-1 <.f§0i}

P=2=rs=2,  Qiy+dij-2<Gqiy—1 ¥ ©0=>2.

(Cn) Qo ={2¢ | 1zi<n} U {e;+e; | 1<i<j<n},

S
Qpgr..qe = {eit+ej | 1<i<i<p} U Jei + ¢ | g <i<a},
i1
)

Q_, = {61; + €; | 1§i<j§n—1} U {ei — €y | lgign—l}.

PROOF. — (A,_1). For R of type A,_1 and Q € Q(R), the sets
I={i|3jst.ei—ecQ} and I'={j|Iist.e—e cQ}

are disjoint by (6.5), and by (6.6) they form a partition of {1,2,...,%}. Then
Qc{ei—ej|iel, jeI'}, and a permutation of {1,2,...,n}, which corre-
sponds to an element of the Weyl group W, transforms Q into Q,, for some p
withl<p<n-1

We consider now the case where R is of one of the types B,, C,, D,. Each
Q € Q(R) is equivalent, modulo the group A of the isometries of R, to a new Q
with

(6.18) sup(fle;) >0  for i=1,...,n.
peQ
Indeed A contains all symmetries s, fori=1,...,n%.

Let us single out first the case of C,. Since Q cannot contain both e; + ¢; and
ey, — ¢j, condition (6.18) implies that Q is contained in Qj.

Let us turn now to B, and D,,, and assume that Q is maximal in Q(R). Using
conjugation by the Weyl group W to reorder the indices 1, ..., n, we can assume
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that for some integer p > 1 we have

(6.19) inf (fle)) > 0if 1 <i<p, inf(fle;)<0if p<i<n.
peQ peQ

Condition (6.18) implies that e; +¢; € Q for all 1 <i<j<p. By (6.5), if
e;i+ej,e, —e € Q, then i =h. Hence, for every j > p, there is a unique
t=/A(J) <p such that e; —e¢; € Q. By reordering, we can assume that
Mp+1,...,m}) ={1,...,s}, that 1 is nondecreasing, and that #i '(i) >
#/l_l(i +1) for 1 <i<s < p. By maximality, s =2 for p = 2. This yields the
lists above for (By), (Cy,), (Dy), where we needed to add Q_,, to the list of non
equivalent maximal elements for type D,, because the group A equals W for
B, and C,, but contains W as a proper normal subgroup for D,. O

6.4.2 — Maximal Q € Q,(R).

Using the results of Proposition 6.10 we characterize, modulo equivalence, all
maximal Q € £4(R), for R irreducible of one of the types A, B, C, D.

THEOREM 6.11. — If R is an trreducible root system of one of the classical
types Ap_1, By, Cp, Dy, then Q5(R) = £0(R), t.e. all CR-symmetric (11, q) have
the J-property. Modulo equivalence w.r.t. the Weyl group W of R, the maximal
Q € Q(R) are classified by:

(A—1) QR) = Q(R) and all Q € QUR) are maximal.
(B,) Each maximal Q € Q4(R) is equivalent, modulo W, to one of the fol-
lowing sets:

Q;mP.,IIL,u-,Qs = {e;,} U {ei + ¢j | 1<i<s, st1<j<p}

s
U U{ez T | gia <.i§%‘}a
i=1
1<p<n, 1<s<p, q=p<q<--<@s=n, q;i+2¢;_2<q; 1, for 2<i<s,
Pp=2=s=2, iyt 0iy-2<iy-1 ¥ 10>2.

(Cn) 6:)9(7?') = D(R)
D,) Any maximal Q € Qs(R) is isomorphic, modulo W, to one of the
following sets:
(oM 2{67‘, +¢; | 1§i<j§n},
Q_, ={ei+e|1<i<j<n} U{e; — e, | 1<i<n},

S
o =16+ e | 1iss<jsp} U U{ei + ¢ | gi<i<ai},

i=1

1<p<n, 1<s<p, qQ=p<q<-<q=n, q+2q;_<q;_;, for 2<i<s, p=2=>s=2.
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Proor. — (A) With the Q, defined above, define J € ty by setting e;(J) =
N —p
)
n

forlgigpandei(J):fi%forp<i§n.

(B) Let E € 1) define a Zg-gradation of g, yielding a CR-symmetry of (119, ).
Assume that Q C Qj; p.4,....q,- Since e; () = 1mod 2, then ¢;(£) = 0 mod 2 for all
J for which either e¢; +e¢; € Q, or ¢, —e; € Q. In particular, when s =0,
Q1 = {e1} U{er +e; | 2<i<n} is contained in Q) ;, = {e1} U {e1 + ¢; | 2<i<n} and
hence is not maximal. Assume therefore that s > 1. If 1<i< 7 <mn and
e; + ej € Q, then ¢;(F) =1, ¢j(E) =0mod 2. Thus e; +¢; ¢ Q for 1 <i<j <s.
Hence we obtain that a maximal Q € £,(R) is equivalent to one of the sets listed
above. We define the element J € t; by setting e¢,(J) =1 for 1 <h <s, and
en()) =0 for s<j < n.

(C) With Q defined in Proposition 6.10, we define ¢;(J) = i/2for 1 < h < n.
Then the corresponding (119, ) has the J-property.

(D) We can repeat the argument of (B), to conclude that all maximal
Q € LQ4(R) are described, modulo equivalence, by the list in (D,) above. For
Q = Q,, we define J € ty by e,(J) =i/2for all 1 <h <n.For Q =Q_, we set
ei(J) =1/2for1 <i<mande,(J) = —i/2. For Q = Q;,,qlqu, we set ¢, (J) = 1 for
1<h<s, and e,(J) =0 for s<h < n. In this way we verify that all maximal
Q € Q4(R), hence all Q in Q5(R), have the J-property. O

COROLLARY 6.12. — All CR symmetric Q contained in a root system of one of
the types A, B, C, D hawve the J property. O

6.5 — Complete flags of the exceptional groups.

We turn finally to the complete flags of the exceptional groups.

6.5.1 — Type Gs.
The root system is
R={x(—¢)|1<1<j<3}U{xQ2e;—e; —ep) | (t],k) €83}

According to [33, Theorem 3.11] there is, modulo automorphisms, a unique Zs-
grading of g, with

ST ={£(e1 —e3),£(e2 — €3)} U {£(2e1 — €2 — €3), + (22 — €1 — €3)},
Ri ={£(e1 —e2)} U{£Re3 — €1 — e2)}.

The sum of two short roots is always a root, while the sum of two long roots, if it is
a root, is long. Hence a Q € {(R) contains exactly one short root. Modulo iso-
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morphisms, we can assume that (e;—e3) € Q. Then O C {e;—es,2¢; —e2—es,
+ (2ea—e1—e3),e1+e2—2e3}. The symmetry with respect to 2e;—e; —es leaves
e1—es invariant and interchanges 2e¢;—e;—e3 and e;+e2—2e3. Moreover,
(2e1—e2—e3) + (2es—e1—e3) € R and (e; + es —2e3)—(2e2—e1—e3) € R. Hence,
modulo isomorphisms, there are two non equivalent maximal Q € Q(R):

4
Q7 ={e1—e3,2e1—e2—e3,61 + e3—2e3},
4
Q; ={e1—e3,2e1—ea—e3, 1 + e2—2e3}.
Thus we obtain

PROPOSITION 6.13. — Let R be simple of type Geo. Then:

1) Any maximal Q € (R) is isomorphic either to Q‘l1 or to Q‘zl.

@) Qf € Qu(R), and QEQ(R).
B) Qy(R) = Qo(R) and all Q € Qv (R) are isomorphic to

Qy = {e1—e3,2e1—e2—e3}.

6.5.2 — Type Fy.
We split the root system of type Fy into two parts, by setting
Ry = {*e; | 1<i<a} U {xe; £ ¢ | 1<i<j<a},

1
Séll = {i§(61 + eyt e3 64)},

R =RjUST.

For the roots of S; we introduce the notation
1 ..
fo = é((ﬁ +ex+e3t+es), fi=Py—ei, Bi; =Py —ei—e¢, fori,j=1,234.

The set ’R‘ll is a root system of type B4. By Proposition 6.10, modulo equivalence,
there are five maximal sets in Q(R}), namely:

Q(fi ={e1} U{e; +e¢j | 1<i<j<a},
Q(ff%A ={e1} U{e; +¢; | 1<i<j<s} U {e; & e4},
9(24:);4 ={e2} U {e; +¢j | 1<i<j<3} U {e1 & e4},
Q%%,M ={e1} U{e1 +e2} U{er = e} U{ea £ eq},
o), ={er} U{er £ ¢ | 2<j<a}.

Thus we obtain
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PROPOSITION 6.14. — Modulo equivalence, there are five classes of mon
equivalent maximal elements of Q(R), corresponding to the terms of the
Sfollowing list:

Q14 = (4) 1Y {Bo. Bat
Qlgy= Q1,3,4 U {Bo: Bs},
Qz 34 = 9(2%4 U{Bo, Ba}

Q254 = Q234U B0, B}
Q1= (14i4U{ﬁOaﬁ4}

PRrROOF. — For any choice of three distinct roots in S}, two of them sum to a
root. Then a Q € Q(R) contains at most two roots of S‘f. The sets in the list are
obtained by adding a couple of roots of St to each maximal set in Q(R}). Thus they
are maximal. The fact that they exhaust the list of maximal elements of £(R)
modulo equivalence is proved by considering the set of all roots in S‘ll that may be
added to a fo) without contradicting (6.5). O

Modulo equivalence, the maximal elements of QS(R‘I‘) are

Ql1,1,4 ={e1} U{es £ ¢; | 2<i<4},
Ql1.2,3,4 ={e1}U{e1 £ e3} U{ea £ eq}.

Thus we obtain

PROPOSITION 6.15. — We have O5(R) = 2y (R) = 20(R), and the maximal
elements of Qs(R) are all equivalent to

91234 = {e1, B0, By, €1 £ e3,62 £ e4}.

PRrROOF. — Infact amaximal Q € £,(R) must contain two short roots. Hence, if
E € b has integral values on R and defines a Zs-gradation with a(¥) odd for
a € 9, then there are two even and two odd e;(¥)’s. This implies that all maximal
elements of £4(R) are equivalent to 9411:2_344 = Q934U {fo, f1}. We observe that,
with e1(F) =1, ea(E) =1, es(K) =0, e4(E’) =0 we obtain that a(E) =1 for all
a € Q. Hence Q‘ll:2$374 € Q(R). d

6.5.3 — Type E()‘, E77 Eg

We will write &, for the root system of type E,, and we will use an explicit
description of [8], with & C &7 C &g C RS,

8
> &e;, where ey, ..., eg is the ca-

It is convenient to use the notation f, = 5
i=1
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8
nonical basis of RS, and ¢ = (e, . .. ,e8), with &; = 1 and [] &; = 1. We shall write
sometimes VU7 = eg—en, Vg = €g—€7—E4. =1

For the roots of Séf, we shall also employ the simplified notation:

138
~3 Z Bij=PBo—(ei+e), Pijnr=>Pi;— (en+er)
i—1
for 1<1,5,hk <8 and pairwise distinct.
Then

E6 = {Fe; e |1<i<j<s} U{P, | s=er=—ss},
Er={xei £ ¢ | 1<i<js6} U{x(er—eg)} U{p, | a=—ss},
Eg={te ¢ | 1<i<j<s} U {B,},
Utilizing [33, Chap. 3, § 3.7], we list below the inequivalent Zs-gradings of the
simple complex Lie algebras of type E,.
Set & = {(¢,1) | -=6,78,i=12} U {(7,3)}.
For (¢,7) € Z we denote by Rf and Sf, the set of roots a € £ with g* C g and
g% C @), respectively, and we label the grading by the type of R;. We added in a
third line the definition of an element £ = E,; € [ yielding the corresponding

inner Zy-gradation.
Ri={*e; * ¢ | 1zi<jss},

Ds) 0 81 = {8, | w—sr—ss},
E¢1=E with e;(E)=--=e5(E)=0, vs(£)=2,

Ry = {£fs7} U{EB;s, tlei—g)) | 1<iss.i<j<s},

Sg = U{x(e;+e¢)), iﬁij67,| 1<i<j<5},
Esp=E with  e;(B)==e5(E)=}, vs(B)=}

R} = {£e; + ¢ | 1=i<j<6} U {E w7},
81 = {B, | r=-s},

E71=E with e (E)=-=es(E)=0, v7(E)=2,

(A7) | 8= {i(ei+ej)aﬁijh7v/))ijh8 | 1<i<j<6.j<h<6},
Bro=E  with e (E)=—eo(B)=L, vi()=2,
7 i<5,
Ry ={Bs} U {iﬁi,Svﬂi,j,h,Svﬁi.,j,ﬁ.% e+ ¢ 550}
(E¢)

{ R = {£vr} U{E(ei—¢), £B;7, tPig | 1<i<6.i<j<6},

7 i<5,
83 = {:|:1)7, iﬂG,S} U {iei + es, :I:ﬁiﬂ’ﬁi,j,h,'ﬁﬁi,j,ﬁ,S|i,<ji§._7$<hg5}
Eq3=E with e(E)=--=e5(E)=0, es(E)=1, v7(E)=1,
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RY = {+e; £ ¢ | 1<i<j<s},

8
Ds) 4 8= {p, e R},
Eg1=E with e;(E)=--=e7(E)=0, eg(E)=2,

Rg = {j:(e,-—ej),ﬁmyh’k | 1§i<j§8,j<h<k§8} U {:tﬂo}
(E7xAy) S5 = {£(ei+e)) | 1<i<j<s} U {£h; | 1<i<j<s}
Eg_zZE with el(E):“':eg(E):é

We denote by Wf the Weyl group of Rf. For (¢,7) € £\ {(7,3)}, it coincides
with the Weyl group of Rf The Weyl group of Rg is a normal subgroup of
index two of W2,

EXAMPLE 6.16. — Consider the set
Q= {ﬁ07ﬁ1,27ﬂ1,37ﬁ2.3uﬁ4,5} U {ﬁj,hvﬁh,k | =455, 6<h<8, h<k<8}.
One can show that Q € (&) \ L(Es), but is not maximal in ().
LEMMA 6.17. — (1) Let ¢ € {6,7,8}. For every a € Q € Q(E)) we can find

B € Q B+#a with (alf) > 0.
(2) Let (¢,9) € Z, and a9, a1, 0z € S, then

(620) ((10|(11) > 0, ((10‘(12) >0 = a1+ a2¢7?,.

3) For(¢,1) € 2\ {(6,1),(7,3)} the group Wf 18 transitive on Sf The set S? 8
the union of the two orbits of W?:

Q6.1 57,15 = Por} U{=Pig: fijer | 1<i<5 i<j<s},
D61, fsrbs = L Pert U {ﬁi,sv/))i,j,h‘s | 1<i<5, i<j<h<5},

that are transformed one into the other by an outer automorphism of RS. Both
are maximal in Q(Eg) and belong to Lo(Eg).
The set Sy is the union of the two Wi-orbits

Q130mertes = 107, —Pogt U{Eei +e6, B 7 | 1<i<5,i<j<h<s}
Q73 —vreres = 107, Pest U{ETei — €6, 68 | 1<i<5, i<j<5}.
They are transformed one into the other by an outer automorphism of R, that is

an element of Wg. They are maximal in (E7) and belong to Lo(Eq).

Proor. — Since all roots in £, have equal length, orthogonal roots are strongly
orthogonal. Thus, if a € Q is orthogonal to Q \ {a}, then & N Z[Q] decomposes
into {+a} and Z[Q \ {a}]. Hence & N Z[Q] # &, because & is irreducible. This
proves (1).
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It suffices to prove (2) in the case ag,a1,ag are distinct. Then, by the as-
sumption, (ag|a;) = (aglag) = 1. If a3+ag is a root, then (aq|az) = —1. Hence
(ag — a1]az) = 2 yields ag = a9 — a;. Therefore there is no £ € &; with ¢;(E) odd
fort=20,1,2.

For (¢,7) equal to either (6,1) or (7,3), the element E = E,; € §) satisfies
a(E) = 0 for all ¢ € R{. Hence in this two cases S; splits into {a € S} | a(&) = 2},
for A =41, and each of the two sets belongs to Q(&). For (4,7) €
F\{(6,1),(7,3)} the transitivity of Wf- on S? can be easily checked by a case by
case verification. O

PROPOSITION 6.18. — For (¢,7) € Z\ {(6,1),(7,3)}, and ag € S, the set
(6.21) Qiay = {a € S | (alag) > 0}

1s a maximal element of Qs(Ey) and does not belong to Ly (Ey).

Proor. — Foreach (¢,7) € 2\ {(6,1),(7,3)}, the Weyl group of Rf is transitive
on St. Hence it suffices to consider Qy; ,, when ay is any specific element of S!. We
have:

Q62.0ite; = 1€ates5,Pr238) U{ei + e, B g7 | 1<i<r i<j<3,r=45},

Q7,1,ﬂ6_7 = {ﬁﬁﬂaﬂ&g} U {ﬁi,’??ﬁi,j,(}ﬂ | 1§i§5$i<jg5}7
Q1205100 = {€5+€6} Ueiter, B i, | 1<i<4, i<j<h<d, k=56,r=18},
Os15, = 1o} U {Bi; | 1zi<j=s},

Qs2.0r1e, = {€1+08, —frg} U{eit+er, B | 1<i<6,i<j<6,r=18}.

We give the complete proof for the case (8,1). The other cases can be discussed
similarly.

First we note that e; +e¢; = fiy —fi s ¢i — ¢ = Bjp = Bins Bijuse = Bij + B —
Po € Z1Qg1p,] for all four-tuple ¢,j,h,k of distinet indices with 1 <4,7,h <8
shows that &g C 7Z[Qg14,]. Moreover, (ﬁi.j|ei+ej) =-1, (B;,lei—e) =—1,
(Bol —ei—ep) = =1, (B; j|Byryrs) = —1 for all sets ¢,7,h,k,7,s of distinet indices
with 1 <4,7,h,k,r,s <8 shows that Qg 4, is maximal in £(&s).

Let us show that ng_ﬁo ¢ Qy¢(R). We argue by contradiction. From
BE)=1mod 4 for all fe Qif_ﬂo we obtain that e;(E) £ ¢;(E) = 0mod 4 for
1 <i<j < 8. Then ¢;(F) = 2k; is an even integer for all  =1,...,8. But then
fo&) = 1mod 4 and ﬁi, j(E) = 1mod 4 imply that at the same time 28: ki =1and

i=1
2(k; 4+ k;) = Omod 4, yielding a contradiction, since the second set of equations

tells us that the k;’s are either all odd, or all even. O

ExAMPLE 6.19. — Consider, for an integer p with 1 < p < 8, the set

Q;o = {ﬂo} J {ei+er,ﬁiﬁj,/}m | 1<i<p, i<j§p.p<r§8,r<s§8} C €&s.



262 ANDREA ALTOMANTI - COSTANTINO MEDORI - MAURO NACINOVICH

We note that Q]’O ~ ngp forp =1,...,8. Each Q € £(£g) which is maximal and is
contained in {a € & | (fiyla) > 0} is equivalent, modulo W, to some Q). One easily
verifies that Q;, ¢ 4(Es) for p odd and Q;Q € Q,(&g) for p even.

The definition in (6.21) can be generalized in the following way:

PROPOSITION 6.20. — Let (¢,1) € = be fixed. Define, for
Y4 . . )
(6.22) ai,...,a; € S;, with lg;u<l£§k (ajlaz) > 0,

17

0
iy = 1015+ -5 Ok,
J _ ¢ j—1 )
Qﬂ@“l«--«% - Ql,i,aj 0 {0, € Sl | (aw) >0, Vﬂ € Qi,i-m-,...,ak} a<j<h),
_ Nk
Qévivalv"'vak - Q[i,i,ul,...,ak'

..... X
a maximal element of Q' (S%).

ProOF. — Indeed, using (6.20) we prove by recurrence onj = 0,1,...,k that
(@]a") > 0foralld’,a” € Q;,i,al,'.u,ak' Assume now that £ C R[Qyi 4, 4.1 Ifa € Sf
satisfies (a|f) > 0 for all f € Qy;,,..q there is a j, with 1 <j <k, such that
(ala;) > 0. Thena € Q) . O

05,01 - O

ExampLE 6.21. — Let (¢,7) € £\ {(6,1),(7,3)}. Then, if aj,02 € Sf and
(a1]az) > 0, we have Q,, 4, = Q,,. Thus the maximal Q € @(Sf) that can be descri-
bed by a sequence (6.22) with 1 < k < 2 are equivalent either to Q,;, or to Qg 4,
with a,aq, ag € Sf and (a1|ag) = 0. Since Wf is transitive on the pair of orthogonal
roots, we obtain that each of these sets is equivalent to one of the following:

Q62.0rt0s.e0tes = 23675 Psaer) Uleite | 1<i<i<s, (.p#2360} € Qo(Es),
Q11 psshrafrs = P Bort UiBisg Bries | 2<i<s} € Qs(E7) \ Qv (&),
Q1 2.0ries,e5tes = (€304, B3567: Baser: P3s68 Pasest
U{e; + e | i=12 i<j<6} € Qu(E7) \ Oy (&),
81y fross = PosPragat U{Bij | 1ziz4,i<j<s} € Qs(Eg) \ Qy(Ey),
Q8215855 = PBs6:Brst ULBi, | 1<i<6,r=78}
U{e; + e | 1<i<j<6, (i.)#66)} € L0(Eg).

Let a;,az be two orthogonal roots in Sj. Then Q) , € Qo) for (i) €
{(67 2)7 (87 2)}? and Qé E @8(8[) \ @](8[) fOI‘ (67 /L) E {(77 1)7 (77 2)7 (87 1)}'

ay,02

ExaMPLE 6.22. — The set

Q&l,ﬂo7/31_2_3_,4,/)’1_2_,3,5 = {ﬁ07ﬂ45} U {ﬁi,wﬁi,]‘,h?k | 1<is<3, i<7'§8«,i<]§37j<h<k§8}
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cannot be represented as Qgig,..q for a sequence of orthogonal roots
a,...,a € S5, It belongs to Qy(Es) \ Ly (Eg).

ExAMPLE 6.23. — We consider below various examples of maximal Q € Q?,
1= 1,2, defined by sequences of three or more orthogonal roots. Example (5)
shows that there is a maximal element Q of £(&,) in £y (Eg) \ ().

D81y Prosabross = BosPra:ProsasProse)
U {ﬁi,j7 Bigs Biges Biws Przgn: Bisan: Bijse

This set belongs to Q5(Es) \ Oy (Es).

@

i=12,j=34,
h=5,6, k=78 [ *

Q= Q&Lﬂlz:&x&3/31.3.5,6$ﬁl.3,5.8
2 ={Bo,Pr234:P1356 P1358 Prasst U{Pr | 2<i<s}
U{Bas: Bos: Pos: Bssr Pser Pust-

Then Q € (&) \ Oy(Es), and is maximal.

) Q= Q&l1/30»/)’1,2,3,4»/31,2.5.6aﬂ3.4,5,67ﬁ1,3,5,7

We claim that Q € Qy(&s). Indeed, (B, 4[p; i) >0 if and only if {r,s}n
{i,7,h,k} # 0, hence

{1234}10{125,6}0{845,6}0{135T}=0 = f; s ¢ Q, fori =1,...,T.
The conditions (B, 5|B; ;ni) >0, (BopcalBijnr) >0 are equivalent to {r,s}nN
{i,4,h,k} # 0, #{a,b,c,d} N {i,7,h, k} > 2, respectively. Moreover,
{ﬁ1,37ﬂ1ﬁ4aﬁ1,57ﬂ1,67ﬁ2,37ﬂ2ﬁ55ﬂ3,57ﬂ3,67ﬁ4,57/))4ﬁ65ﬂ4,7} c Q

Then we can easily show that Q cannot contain any root of type f; ;s with
1<i<j<h<T.

Therefore a(E&l) =1foralla € Qﬁ()ﬂﬂl,z,&zlwﬂl.z.é.(i~/}3.4.5,6¢ﬁ1,3,5.7'
Q= Q&l-ﬁo7/)’1.2,34-51,2,5.6ﬁl,g.e.’i7/1)2.3.6,8-ﬁ2,3,5,7-[f1,3.5.8

) = {Bo: B12: P13, Po3: B35 Bs g Prosar Pross Prose Prast Pioss

Br256P1356 P1367 Besser Pesss Prses Pessi Prsss)
is maximal in £(&s) and belongs to O4(Eg) \ Ly (Es).

Q = Q&Lﬁovﬂ1‘2.6.77[)’3.4,6,71ﬁ1,3.6‘8’ﬂ2‘4.6.87ﬁ1.4,7,8‘ﬁ2,3.7‘8
®) = {Bo:Po1,Pos: Prs: Pr2e1: Psaers Prsss Peass Prazs

Biers Posrs: Poers: Bsers Pasrst
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is a maximal element of @(Sf), and a(F)=1mod4 for Ecl) defined by
e1(B) =" =e5(F) =0, eg(E) = e7(E) = eg(E) = —2. Moreover, Q € Qy(R) \ Qo(R).

QszsﬂTB:ﬂ&G:ﬂEA = {ﬂ3-,4’ ﬁ5,6} U {/))i,?‘lgigﬁ’ 7‘:7’8}

(6)
U {e; +ej | 1<i<j<6, (i,)#B4).66)}

is also maximal and belongs to Q¢(Eg).

Q82,85 fs o fssbrs = 125 P45 P56 Prg} U {fi1<i<6, r=78}
U {e;i + €j | 1<i<j<6, (i.)#(1,2),84.66)}

)

is maximal and belongs to £¢(Es).
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